Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (3): 781-794    DOI: 10.1016/j.jia.2023.11.003
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize

Pengcheng Li1, 2*, Shuangyi Yin1*, Yunyun Wang1*, Tianze Zhu1, Xinjie Zhu1, Minggang Ji1, Wenye Rui1, Houmiao Wang1, Chenwu Xu1, 2#, Zefeng Yang1, 2#

1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Agricultural College, Yangzhou University, Yangzhou 225009, China

2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

氮、磷、钾是玉米生长发育所必需的大量矿质元素,对玉米产量和品质形成都至关重要。玉米籽粒灌浆过程中大量元素浓度的动态变化和积累的遗传基础仍不清楚。在本研究中,我们以DH1MT877杂交产生的206个重组自交系为材料,对授粉后6个时间点的籽粒氮、磷和钾浓度进行了测定,并计算不同时间区间内氮、磷和钾的净变化量。在重组自交系群体中,氮、磷和钾的浓度和净变化均观察到丰富的表型变异。数量性状位点(QTL)定位共发现了41QTL,其中氮、磷和钾浓度分别为有171614QTL。条件QTL定位发现了39QTL与氮、磷、钾浓度净变化相关。结合QTL、基因表达、共表达分析和比较基因组数据,我们分别鉴定出443644个候选基因与氮、磷和钾浓度相关,其中GRMZM2G371058与氮浓度相关,编码一个Dof转录因子,GRMZM2G113967与钾浓度相关,编码一个激酶蛋白CIPK。本文研究结果加深对玉米籽粒发育过程中氮、磷、钾积累的遗传机制的认识,为玉米养分浓度的遗传改良提供了有价值的候选基因。



Abstract  

Nitrogen (N), phosphorus (P), and potassium (K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality.  The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown.  In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination.  We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations.  Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients.  Unconditional quantitative trait locus (QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively.  Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations.  By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Dof-type zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967 encoding a CBL-interacting protein kinase, which was related to the K concentration.  The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize.

Keywords:  maize        nutrient concentration        unconditional QTL mapping        conditional QTL mapping        dynamic trait   
Received: 25 July 2023   Accepted: 28 September 2023
Fund: This work was supported by the Seed Industry Revitalization Project of Jiangsu Province, China (JBGS[2021]009), the National Natural Science Foundation of China (32061143030 and 31972487), the Jiangsu Province University Basic Science Research Project, China (21KJA210002), the Key Research and Development Program of Jiangsu Province, China (BE2022343), the Innovative Research Team of Universities in Jiangsu Province, China, the High-end Talent Project of Yangzhou University, China, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China, and the Qing Lan Project of Jiangsu Province, China.
About author:  #Correspondence Chenwu Xu, E-mail: qtls@yzu.edu.cn; Zefeng Yang, Tel: +86-514-87979358, Fax: +86-514-87996817, E-mail: zfyang@yzu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Pengcheng , Shuangyi Yin, Yunyun Wang, Tianze Zhu, Xinjie Zhu, Minggang Ji, Wenye Rui, Houmiao Wang Chenwu Xu, Zefeng Yang. 2024.

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize . Journal of Integrative Agriculture, 23(3): 781-794.

Alfoldi Z, Pinter L, Feil B. 1994. Nitrogen, phosphorus and potassium concentrations in developing maize grains. Journal of Agronomy and Crop Science, 172, 200–206.

de Bang T C, Husted S, Laursen K H, Persson D P, Schjoerring J K. 2021. The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 229, 2446–2469.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society (Series B: Methodological), 57, 289–300.

Broman K W, Wu H, Sen Ś, Churchill G A. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19, 889–890.

Bu Y, Zhang X, Wang C, Guo J, Zhang X, Li X, Yan Q, Zhao J, Xing H. 2018. Conditional and unconditional QTL analyses of seed hardness in vegetable soybean (Glycine max L. Merr.). Euphytica, 214, 1–21.

Cai H, Chu Q, Gu R, Yuan L, Liu J, Zhang X, Chen F, Mi G, Zhang F. 2012a. Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Plant Breeding, 131, 502–510.

Cai H, Chu Q, Yuan L, Liu J, Chen X, Chen F, Mi G, Zhang F. 2012b. Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Molecular Breeding, 30, 251–266.

Chen Q, Mu X, Chen F, Yuan L, Mi G. 2016. Dynamic change of mineral nutrient content in different plant organs during the grain filling stage in maize grown under contrasting nitrogen supply. European Journal of Agronomy, 80, 137–153.

Chen X, Luo M, Mo C, Li W, Ji Y, Xie Q, Jiang X. 2023. MeCIPK10 regulates the transition of the K+ transport activity of MeAKT2 between low- and high-affinity molds in cassava. Journal of Plant Physiology, 280, 153861.

Ciampitti I A, Camberato J J, Murrell S T, Vyn T J. 2013. Maize nutrient accumulation and partitioning in response to plant density and nitrogen rate: I. Macronutrients. Agronomy Journal, 105, 783–795.

Clarkson D T, Hanson J B. 1980. The mineral nutrition of higher plants. Annual Review of Plant Physiology, 31, 239–298.

Desnoues E, Baldazzi V, Genard M, Mauroux J B, Lambert P, Confolent C, Quilot-Turion B. 2016. Dynamic QTLs for sugars and enzyme activities provide an overview of genetic control of sugar metabolism during peach fruit development. Journal of Experimental Botany, 67, 3419–3431.

Domínguez F, Cejudo F J. 2014. Programmed cell death (PCD): An essential process of cereal seed development and germination. Frontiers in Plant Science, 5, 366.

Du Q G, Juan Y, Sadiq S S M, Yang R X, Yu J J, Li W X. 2021. Comparative transcriptome analysis of different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes. Journal of Integrative Agriculture, 20, 2043–2055.

Duvick D N. 2005. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy, 86, 83–145.

Feil B, Thiraporn R, Lafitte H. 1993. Accumulation of nitrogen and phosphorus in the grain of tropical maize cultivars. Maydica, 38, 291–300.

Frazee A C, Pertea G, Jaffe A E, Langmead B, Salzberg S L, Leek J T. 2015. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nature Biotechnology, 33, 243–246.

Gong X, Liu X, Pan Q, Mi G, Chen F, Yuan L. 2020. Combined physiological, transcriptome, and genetic analysis reveals a molecular network of nitrogen remobilization in maize. Journal of Experimental Botany, 71, 5061–5073.

Gu R, Chen F, Liu B, Wang X, Liu J, Li P, Pan Q, Pace J, Soomro A A, Lubberstedt T, Mi G, Yuan L. 2015. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). Theoretical and Applied Genetics, 128, 1777–1789.

Guo S, Chen Y, Chen X, Chen Y, Yang L, Wang L, Qin Y, Li M, Chen F, Mi G, Gu R, Yuan L. 2019. Grain mineral accumulation changes in Chinese maize cultivars released in different decades and the responses to nitrogen fertilizer. Frontiers in Plant Science, 10, 1662.

Gupta A K, Gaur V S, Gupta S, Kumar A. 2013. Nitrate signals determine the sensing of nitrogen through differential expression of genes involved in nitrogen uptake and assimilation in finger millet. Functional & Integrative Genomics, 13, 179–190.

Havé M, Marmagne A, Chardon F, Masclaux-Daubresse C. 2017. Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. Journal of Experimental Botany, 68, 2513–2529.

Hawkesford M J, Cakmak I, Coskun D, De Kok L J, Lambers H, Schjoerring J K, White P J. 2023. Functions of macronutrients. In: Marschner’s Mineral Nutrition of Plants. Elsevier, United Kingdom. pp. 201–281.

Hirel B, Le Gouis J, Ney B, Gallais A. 2007. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 58, 2369–2387.

Huang S, Wang P, Yamaji N, Ma J F. 2020. Plant nutrition for human nutrition: hints from rice research and future perspectives. Molecular Plant, 13, 825–835.

Huang Y, Wang H, Zhu Y, Huang X, Li S, Wu X, Zhao Y, Bao Z, Qin L, Jin Y, Cui Y, Ma G, Xiao Q, Wang Q, Wang J, Yang X, Liu H, Lu X, Larkins B A, Wang W, et al. 2022. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature, 612, 292–300.

Iwai T, Takahashi M, Oda K, Terada Y, Yoshida K T. 2012. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiology, 160, 2007–2014.

Kumar R, Taware R, Gaur V S, Guru S K, Kumar A. 2009. Influence of nitrogen on the expression of TaDof1 transcription factor in wheat and its relationship with photo synthetic and ammonium assimilating efficiency. Molecular Biology Reports, 36, 2209–2220.

Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9, 1–13.

Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 27, 2987–2993.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25, 1754–1760.

Li J, Wu F, He Y, He B, Gong Y, Yahaya B S, Xie Y, Xie W, Xu J, Wang Q, Feng X, Liu Y, Lu Y. 2022. Maize transcription factor ZmARF4 confers phosphorus tolerance by promoting root morphological development. International Journal of Molecular Sciences, 23, 2361.

Li P, Chen F, Cai H, Liu J, Pan Q, Liu Z, Gu R, Mi G, Zhang F, Yuan L. 2015. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. Journal of Experimental Botany, 66, 3175–3188.

Li P, Du C, Zhang Y, Yin S, Zhang E, Fang H, Lin D, Xu C, Yang Z. 2018. Combined bulked segregant sequencing and traditional linkage analysis for identification of candidate gene for purple leaf sheath in maize. PLoS ONE, 13, e0190670.

Li Q, Ding G, Yang N, White P J, Ye X, Cai H, Lu J, Shi L, Xu F. 2020. Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L. Plant, Cell & Environment, 43, 712–731.

Liu G, Zhu H, Liu S, Zeng R, Zhang Z, Li W, Ding X, Zhao F, Zhang G. 2010. Unconditional and conditional QTL mapping for the developmental behavior of tiller number in rice (Oryza sativa L.). Genetica, 138, 885–893.

Liu J C, Huang Y Q, Zhou J F, Bian F R, Chen F J, Mi G H. 2013. Identification of quantitative trait loci for phytic acid concentration in maize grain under two nitrogen conditions. Journal of Integrative Agriculture, 12, 765–772.

McCouch S R. 1997. Report on QTL nomenclature. Rice Genetics Newsletter, 14, 11–13.

Milliken G A. 1990. Nonlinear regression analysis and its applications. Technometrics, 32, 219–220.

Nelson D, Sommers L. 1973. Determination of total nitrogen in plant material. Agronomy Journal, 65, 109–112.

Ranum P, Pena-Rosas J P, Garcia-Casal M N. 2014. Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312, 105–112.

Ren Z W, Kopittke P M, Zhao F J, Wang P. 2023. Nutrient accumulation and transcriptome patterns during grain development in rice. Journal of Experimental Botany, 74, 909–930.

Sharma S, Carena M. 2016. Grain quality in maize (Zea mays L.): Breeding implications for short-season drought environments. Euphytica, 212, 247–260.

Soon Y, Kalra Y. 1995. A comparison of plant tissue digestion methods for nitrogen and phosphorus analyses. Canadian Journal of Soil Science, 75, 243–245.

Sun X, Peng L, Guo J, Chi W, Ma J, Lu C, Zhang L. 2007. Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. The Plant Cell, 19, 1347–1361.

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38, e164-e164.

Wang X, Wang H, Long Y, Liu L, Zhao Y, Tian J, Zhao W, Li B, Chen L, Chao H, Li M. 2015. Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L. Theoretical and Applied Genetics, 128, 1175–1192.

Wang Y, Chen Y F, Wu W H. 2021. Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology, 63, 34–52.

Wu F, Liu Z, Xu J, Gao S, Lin H, Liu L, Liu Y, Lu Y. 2016. Molecular evolution and association of natural variation in ZmARF31 with low phosphorus tolerance in maize. Frontiers in Plant Science, 7, 1076.

Wu H, Becraft P W, Dannenhoffer J M. 2022. Maize endosperm development: Tissues, cells, molecular regulation and grain quality improvement. Frontiers in Plant Science, 13, 852082.

Wu Y, Yang W, Wei J, Yoon H, An G. 2017. Transcription factor OsDOF18 controls ammonium uptake by inducing ammonium transporters in rice roots. Molecules and Cells, 40, 178–185.

Xie R Z, Yu X F, Li S K, Gao J L. 2022. Historical trends in maize morphology from the 1950s to the 2010s in China. Journal of Integrative Agriculture, 21, 2159–2167.

Yin S, Li P, Xu Y, Liu J, Yang T, Wei J, Xu S, Yu J, Fang H, Xue L, Hao D, Yang Z, Xu C. 2020. Genetic and genomic analysis of the seed-filling process in maize based on a logistic model. Heredity (Edinb), 124, 122–134.

Zhang M, Hu Y, Han W, Chen J, Lai J, Wang Y. 2023. Potassium nutrition of maize: Uptake, transport, utilization, and role in stress tolerance. The Crop Journal, 11, 1048–1058.

Zhao J, Becker H C, Zhang D, Zhang Y, Ecke W. 2006. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theoretical and Applied Genetics, 113, 33–38.

Zheng L, Zhang W, Chen X, Ma J, Chen W, Zhao Z, Zhai H, Wan J. 2011. Dynamic QTL analysis of rice protein content and protein index using recombinant inbred lines. Journal of Plant Biology, 54, 321–328.

Zhu J. 1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 141, 1633–1639.

[1] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
[2] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

[3] Peng Wang, Lan Yang, Xichao Sun, Wenjun Shi, Rui Dong, Yuanhua Wu, Guohua Mi.

Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO3 and NH4+ supply [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1048-1060.

[4] Weina Zhang, Zhigan Zhao, Di He, Junhe Liu, Haigang Li, Enli Wang.

Combining field data and modeling to better understand maize growth response to phosphorus (P) fertilizer application and soil P dynamics in calcareous soils [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1006-1021.

[5] Binbin Li, Xianmin Chen, Tao Deng, Xue Zhao, Fang Li, Bingchao Zhang, Xin Wang, Si Shen, Shunli Zhou.

Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize [J]. >Journal of Integrative Agriculture, 2024, 23(2): 551-565.

[6] WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua. Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1896-1908.
[7] LIU Min-guo, Thomas CAMPBELL, LI Wei, WANG Xi-qing. Analyzing architectural diversity in maize plants using the skeletonimage- based method[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3804-3809.
[8] XU Meng-ze, WANG Yu-hong, NIE Cai-e, SONG Gui-pei, XIN Su-ning, LU Yan-li, BAI You-lu, ZHANG Yin-jie, WANG Lei. Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3769-3782.
[9] SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3394-3407.
[10] XIE Si-di, TIAN Ran, ZHANG Jun-jie, LIU Han-mei, LI Yang-ping, HU Yu-feng, YU Guo-wu, HUANG Yu-bi, LIU Ying-hong. Dek219 encodes the DICER-LIKE1 protein that affects chromatin accessibility and kernel development in maize[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2961-2980.
[11] LI Peng-cheng, YANG Xiao-yi, WANG Hou-miao, PAN Ting, YANG Ji-yuan, WANG Yun-yun, XU Yang, YANG Ze-feng, XU Chen-wu. Metabolic responses to combined water deficit and salt stress in maize primary roots[J]. >Journal of Integrative Agriculture, 2021, 20(1): 109-119.
[12] Sooyeon Lim, Gibum Yi. Investigating seed mineral composition in Korean landrace maize (Zea mays L.) and its kernel texture specificity[J]. >Journal of Integrative Agriculture, 2019, 18(9): 1996-2005.
[13] LI Xiang-ling, GUO Li-guo, ZHOU Bao-yuan, TANG Xiang-ming, CHEN Cong-cong, ZHANG Lei, ZHANG Shao-yun, LI Chong-feng, XIAO Kai, DONG Wei-xin, YIN Bao-zhong, ZHANG Yue-chen . Characterization of low-N responses in maize (Zea mays L.) cultivars with contrasting nitrogen use efficiency in the North China Plain[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2141-2152.
[14] GU Ri-liang, HUANG Ran, JIA Guang-yao, YUAN Zhi-peng, REN Li-sha, LI Li, WANG Jian-hua. Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture contents[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1571-1578.
[15] HE An-le, LIU Jia, WANG Xin-hua, ZHANG Quan-guo, SONG Wei, CHEN Jie. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize[J]. >Journal of Integrative Agriculture, 2019, 18(3): 599-607.
No Suggested Reading articles found!