Alcock T
D, Havlickova L, He Z, Bancroft I, White P J, Broadley M R, Graham N S. 2017.
Identification of candidate genes for calcium and magnesium accumulation in Brassica napus L. by association genetics. Frontiers in Plant Science, 8, 1968.
Chalhoub
B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C,
Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I,
Bernard M, Bento P, Noel B, Labadie K, et al. 2014. Early
allopolyploid evolution in the post-Neolithic Brassica napus oilseed
genome. Science, 345, 950–953.
Deng S, Lu
L, Li J, Du Z, Liu T, Li W, Xu F, Shi L, Shou H, Wang C. 2020. Purple acid
phosphatase 10c encodes a major acid phosphatase that regulates plant growth
under phosphate-deficient conditions in rice. Journal of Experimental Botany, 71, 14.
Du H, Yang
C, Ding G, Shi L, Xu F. 2017. Genome-wide identification and characterization
of SPX domain-containing members and their responses to phosphate deficiency in Brassica napus. Frontiers in Plant Science, 8, 35.
Evanno G,
Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals
using the software STRUCTURE, a simulation study. Molecular Ecology, 14, 2611–2620.
Gahoonia T
S, Nielsen N E. 2004. Barley genotypes with long root hairs sustain high grain
yields in low-P field. Plant and Soil, 262, 55–62.
Ghahremani
M, Park J, Anderson E M, Marty-Howard N J, Mullen R T, Plaxton W C. 2019.
Lectin AtGAL1 interacts with high-mannose glycoform of the purple acid
phosphatase AtPAP26 secreted by phosphate-starved Arabidopsis. Plant Cell and Environment, 42, 1158–1166.
Haling R
E, Brown L K, Bengough A G, Young I M, Hallett P D, White P J, George T S.
2013. Root hairs improve root penetration, root–soil contact, and phosphorus
acquisition in soils of different strength. Journal of Experimental Botany, 64, 3711–3721.
Hammond J
P, Broadley M R, White P J, King G J, Bowen H C, Hayden R, Meacham M C, Mead A,
Overs T, Spracklen W P, Greenwood D J. 2009. Shoot yield drives phosphorus use
efficiency in Brassica oleracea and correlates with root
architecture traits. Journal of Experimental Botany, 60, 1953–1968.
Hufnagel
B, Sousa S M D, Assis L, Guimaraes C T, Leiser W, Azevedo G C, Negri B, Larson
B G, Shaff J E, Pastina M M, Barros B A, Weltzien E, Rattunde H F W, Viana J H,
Clark R T, Falcão A, Gazaffi R, Augusto A, Garcia F, Schaffert R E, et al. 2014. Duplicate and conquer, multiple homologs of PHOSPHORUS-STARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiology, 166, 659–677.
Hurley B
A, Tran H T, Marty N J, Park J, Snedden W A, Mullen R T, Plaxton W C. 2010. The
dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for
efficient acclimation of Arabidopsis to nutritional phosphate deprivation. Plant Physiology, 153, 1112–1122.
Kaida R,
Satoh Y, Bulone V, Yamada Y, Kaku T, Hayashi T, Kaneko T S. 2009. Activation of
beta-glucan synthases by wall-bound purple acid phosphatase in tobacco cells. Plant Physiology, 150, 1822–1830.
Kamfwa K,
Cichy K A, Kelly J D. 2015. Genome-wide association analysis of symbiotic
nitrogen fixation in common bean. Theoretical and Applied Genetics, 128, 1999–2017.
Kochian L
V. 2012. Plant nutrition, rooting for more phosphorus. Nature, 488,
466–467.
Li S, Chen
L, Zhang L, Li X, Liu Y, Wu Z, Dong F, Wan L, Liu K, Hong D, Yang G. 2015. BnaC9, SMG7b functions as a positive regulator of the number of seeds per
silique in Brassica napus by regulating the formation of
functional female gametophytes. Plant Physiology, 169,
2744–2760.
Lynch J P.
2011. Root phenes for enhanced soil exploration and phosphorus acquisition,
tools for future crops. Plant Physiology, 156, 1041–1049.
MacDonald
G K, Bennett E M, Potter P A, Ramankutty N. 2011. Agronomic phosphorus imbalances
across the world’s croplands. Proceedings of the National Academy of Sciences of the United States of America, 108, 3086–3091.
Martín A
C, Pozo J C, Iglesias J, Rubio V, Solano R, Peña A, Leyva A, Paz-Ares J. 2000.
Influence of cytokinins on the expression of phosphate starvation responsive
genes in Arabidopsis. Plant Journal, 24, 559–567.
Mehra P,
Pandey B K, Giri J. 2017. Improvement in phosphate acquisition and utilization
by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnology Journal, 15, 1054–1067.
Morcuende
R, Bari R, Gibon Y, Zheng W, Pant B D, Bläsing U, Czechowski T, Udvrdi M K,
Stitt M, Scheible W. 2007. Genome-wide reprogramming of metabolism and
regulatory networks of Arabidopsis in response to phosphorus. Plant Cell and Environment, 30, 85–112.
Mori A,
Fukuda T, Vejchasarn P, Nestler J, Pariasca-Tanaka J, Wissuwa M. 2016. The role
of root size versus root efficiency in phosphorus acquisition in rice. Journal of Experimental Botany, 67, 1179–1189.
Moussa A
A, Mandozai A, Qu J, Jin Y, Zhang Q, Abd El-Rahim M G, Wang P. 2021. Mapping
QTLs using high-density snps genotyped by sequencing reveals novel potential
regions underlying maize root morphological traits at seedling stage. International Journal of Agriculture and Biology, 25,
904–914.
Secco D,
Wang C, Arpat B A, Wang Z, Poirier Y, Tyerman S D, Wu P, Shou H, Whelan J.
2012. The emerging importance of the SPX domain-containing proteins in
phosphate homeostasis. New Phytologist, 193, 842–851.
Shane M W,
Dixon K W, Lambers H. 2010. The occurrence of dauciform roots amongst western
australian reeds, rushes and sedges, and the impact of phosphorus supply on
dauciform-root development in Schoenus unispiculatus (Cyperaceae). New Phytologist, 165, 887–898.
Shi L, Shi
T, Broadley M R, White P J, Long Y, Meng J, Xu F, Hammond J P. 2013.
High-throughput root phenotyping screens identify genetic loci associated with
root architectural traits in Brassica napus under contrasting
phosphate availabilities. Annals of Botany, 112,
381–389.
Sundus Z,
Tang M, Liu S, Tan X. 2022a. Candidate genes association study to identify
allele-specific SNP marker of ω-3 fatty acid in Brassica napus. Journal of Plant Physiology, 248, 153–159.
Sundus Z,
Tang M, Wang Y, Sarwar R, Liu S, Tan X. 2020b. Candidate genes-association
study to identify loci related to oleic acid in Brassica napus using SNP markers and their heterologous expression in yeast. Plant Physiology and Biochemistry, 16, 294–302.
Svistoonoff
S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L,
Desnos T. 2007. Root tip contact with low-phosphate media reprograms plant root
architecture. Nature Genetics, 39, 792–796.
Takahashi
Y, Teshima K M, Yokoi S, Lnnan H, Shimamoto K. 2009. Variations in hd1 proteins, hd3a promoters, and ehd1 expression levels contribute
to diversity of flowering time in cultivated rice. Proceedings of the National Academy of Sciences of the United States of America, 106, 4555–4560.
Tan Z, Xie
Z, Dai L, Zhang Y, Zhao H, Tang S, Hong D. 2022. Genome-and transcriptome-wide
association studies reveal the genetic basis and the breeding history of seed
glucosinolate content in Brassica napus. Plant Biotechnology Journal, 20, 211–225.
Wang L, Li
Z, Qian W, Guo W, Gao X, Huang L, Wang H, Zhu H, Wu J W, Wang D, Liu D. 2011.
The Arabidopsis purple acid phosphatase AtPAP10 is predominantly
associated with the root surface and plays an important role in plant tolerance
to phosphate limitation. Plant Physiology, 157, 1283–1299.
Wang X,
Chen Y, Thomas C L, Ding G, Xu P, Shi D, Grandke F, Jin K, Cai H, Xu F, Yi B,
Broadley M R, Shi L. 2017a. Genetic variants associated with the root system
architecture of oilseed rape (Brassica napus L.) under
contrasting phosphate supply. DNA Research, 24, 407–417.
Wang X,
Long Y, Wang N, Zou J, Ding G, Broadley M R, White P J, Yuan P, Zhang Q, Luo Z,
Liu P, Zhao H, Zhang Y, Cai H, King G J, Xu F, Meng J, Shi L. 2017b. Breeding
histories and selection criteria for oilseed rape in Europe and China
identified by genome wide pedigree dissection. Scientific Reports, 7, 1–11.
Wei L,
Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Li W, Du H, Li J. 2015.
Genome-wide association analysis and differential expression analysis of
resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnology Journal, 14, 1368–1380.
Wissuwa M.
2005. Combining a modelling with a genetic approach in establishing
associations between genetic and physiological effects in relation to
phosphorus uptake. Plant and Soil, 269, 57–68.
Wissuwa M,
Wegner J, Ae N, Yano M. 2002. Substitution mapping of Pup1, a major QTL
increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theoretical and Applied Genetics, 105, 890–897.
Wu W, Lin
Y, Liu P, Chen Q, Tian J, Liang C. 2018. Association of extracellular dNTP
utilization with a GmPAP1-like protein identified in cell wall proteomic
analysis of soybean roots. Journal of Experimental Botany, 69, 603–617.
Wykoff D
D, Grossman A R, Weeks D P, Usuda H, Shimogawara K. 1999. Psr1, a
nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America, 96, 15336–15341.
Xu P, Wang
X, Li H, Dai S, Cao X, Liu Z. 2022. Genetic control of the root system traits
in oilseed rape under contrasting phosphate supply conditions by genome-wide
association study. Plant Molecular Biology Reporter, 1, 1–13.
Yan X,
Liao H, Beebe S E, Blair M W, Lynch J P. 2004. QTL mapping of root hair and
acid exudation traits and their relationship to phosphorus uptake in common
bean. Plant and Soil, 265, 17–29.
Yang H,
Liu J, Huang S, Guo T, Deng L, Hua W. 2014. Selection and evaluation of novel
reference genes for quantitative reverse transcription PCR (qRT-PCR) based on
genome and transcriptome data in Brassica napus L. Gene, 538,
113–122.
Yang M,
Ding G, Shi L, Feng J, Xu F, Meng J. 2010. Quantitative trait loci for root
morphology in response to low phosphorus stress in Brassica napus. Theoretical and Applied Genetics, 121,
181–193.
Zangani E,
Afsahi K, Shekari F, Mac Sweeney E, Mastinu A. 2021. Nitrogen and phosphorus
addition to soil improves seed yield, foliar stomatal conductance, and the
photosynthetic response of rapeseed (Brassica napus L.). Agriculture, 11, 483.
Zhang D,
Song H, Cheng H, Hao D, Wang H, Kan G, Jin H, Yu D. 2014. The acid
phosphatase-encoding gene GmACP1 contributes to soybean tolerance to
low-phosphorus stress. PLoS Genetics, 10, e1004061.
Zhang Y,
Thomas C L, Xiang J, Long Y, Wang X, Zou J, Luo Z, Ding G, Cai H, Graham N S,
Hammond J P, King G J, White P J, Xu F, Broadley M R, Shi L, Meng J. 2016. QTL
meta-analysis of root traits in Brassica napus under contrasting
phosphorus supply in two growth systems. Scientific Reports, 6,
33113.
Zhang Z,
Li Z, He F, Lv J, Xie B, Yi X, Li J, Li J, Song J, Pu Z, Ma J, Peng Y, Chen G,
Wei Y, Zheng Y, Li W. 2023. Genome-wide association and linkage mapping
strategies reveal genetic loci and candidate genes of important agronomic
traits in Sichuan wheat. Journal of Integrative Agriculture, 22, 3380–3393.
|