Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (5): 1314-1326    DOI: 10.1016/S2095-3119(20)63267-1
Special Issue: 动物科学合辑Animal Science 植物抗病遗传合辑Plant Disease-resistance Genetics
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Jasmonic acid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection
CHEN Chang-long1, 2, YUAN Fang1, LI Xiao-ying1, 2, MA Rong-cai1, 2, XIE Hua1, 2 
1 Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R.China
2 Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

胡萝卜果胶杆菌Pectobacterium carotovorum (Pc)引发的软腐病对大白菜(Brassica rapa subsp. pekinensis)危害严重。为探索大白菜响应胡萝卜果胶杆菌侵染的防御反应机制,本研究构建了Pc侵染大白菜的抑制消减(SSH)文库,共获得1,919个非冗余表达序列标签(ESTs)。采用ESTs进行cDNA芯片杂交,与接种无菌水的对照大白菜相比,在接种Pc后不同时间点的大白菜中共检测到800个差异表达基因(DEGs),通过实时荧光定量PCR和半定量PCR对部分差异表达基因进行表达检测,结果与芯片杂交结果基本一致,验证了芯片杂交结果的可靠性。通过MapMan软件进行可视化分析发现,1/4的差异表达基因可能参与植物的生物胁迫通路。其中,分别有8、8、1、3和2个差异表达基因与茉莉酸(JA)、乙烯(ET)、茉莉酸&乙烯、生长素和脱落酸(ABA)信号通路有关,然而并未检测到与水杨酸(SA)信号通路相关的差异表达基因。对胡萝卜果胶杆菌侵染大白菜叶片中产生的激素水平进行检测,发现茉莉酸和乙烯水平增加,而水杨酸水平降低。对大白菜进行激素处理后接种胡萝卜果胶杆菌,发现茉莉酸(JA)、茉莉酸甲酯(MeJA)、乙烯前体1-氨基环丙烷-1-羧酸(ACC)或它们的组合(MeJA+ACC、JA+ACC)的处理,相比于对照(无菌水处理),可以减轻软腐病的发病严重程度,其中JA和JA+ACC的处理效果最为明显且其效果相当。这些研究表明茉莉酸和乙烯信号通路可能在Pc侵染大白菜过程中协同作用以抵御Pc,且茉莉酸介导的信号通路作用可能更加强烈。本研究对大白菜响应软腐病的防御反应机制进行了初步解析,对大白菜抗病分子育种和软腐病防治策略的开发具有重要理论价值。

Chinese cabbage (Brassica rapa subsp. pekinensis) suffers from soft rot disease caused by Pectobacterium carotovorum (Pc).  To uncover the mechanisms underlying the defense response of Chinese cabbage to Pc, we constructed a suppression subtractive hybridization (SSH) library from Pc-infected cabbage and obtained 1 919 non-redundant expressed sequence tags (ESTs), which were used for cDNA microarray.  We detected 800 differentially expressed genes (DEGs) in cabbage at different time points post-Pc inoculation, which were further confirmed by quantitative real-time PCR.  One quarter of these DEGs were involved in the biotic stress pathways visualized by MapMan.  Among them, 8, 8, 1, 3, and 2 DEGs were related to jasmonic acid (JA), ethylene (ET), JA+ET, auxin, and abscisic acid (ABA) signaling pathways, respectively, while no DEG was detected for salicylic acid (SA) signaling.  Assessment of phytohormone production in the Pc-infected leaves showed that JA and ET production was increased, while SA production was decreased.  Treatment with JA, methyl jasmonate (MeJA), the ET precursor 1-aminocyclopropane-1-carboxylate (ACC), or combinations thereof, reduced the disease severity, and the JA and JA+ACC treatments were superior and performed equally well.  Our findings suggest that JA and ET may act synergistically against Pc infection in Chinese cabbage, and JA-mediated signaling might be the most significant. 
Keywords:  Brassica rapa        Pectobacterium carotovorum        gene expression        defense response        hormone signaling  
Received: 08 February 2020   Accepted:
Fund: This research was funded by the Beijing Leafy Vegetables Innovation Team of Modern Agro-industry Technology Research System, China (BAIC07), and the Beijing Natural Science Foundation, China (5051002).
Corresponding Authors:  Correspondence XIE Hua, Tel: +86-10-51503832, E-mail:    
About author:  CHEN Chang-long, E-mail:;

Cite this article: 

CHEN Chang-long, YUAN Fang, LI Xiao-ying, MA Rong-cai, XIE Hua. 2021. Jasmonic acid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection. Journal of Integrative Agriculture, 20(5): 1314-1326.

Aalto M K, Helenius E, Kariola T, Pennanen V, Heino P, Hõrak H, Puzõrjova I, Kollist H, Palva E T. 2012. ERD15 - an attenuator of plant ABA responses and stomatal aperture. Plant Science, 182, 19–28.
Alvarez A, Montesano M, Schmelz E, Ponce de León I. 2016. Activation of shikimate, phenylpropanoid, oxylipins, and auxin pathways in Pectobacterium carotovorum elicitors-treated moss. Frontiers in Plant Science, 7, 328.
Anderson J P, Badruzsaufari E, Schenk P M, Manners J M, Desmond O J, Ehlert C, Maclean D J, Ebert P R, Kazan K. 2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell, 16, 3460–3479.
Baldwin I T, Zhang Z P, Diab N, Ohnmeiss T E, McCloud E S, Lynds G Y, Schmelz E A. 1997. Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta, 201, 397–404.
Bigeard J, Colcombet J, Hirt H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8, 521–539.
Bruce A T A, Pérez-Pérez J, Pérez-Pérez M M, Godoy M, Sánchez-Serrano J J, Schmelz E A, Solano R. 2007. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. The Plant Cell, 19, 1665–1681.
Camejo D, Guzmán-CedeñoÁ, Moreno A. 2016. Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiology and Biochemistry, 103, 10–23.
Cohen Y. 2001. The BABA story of induced resistance. Phytoparasitica, 29, 375–378.
Davidsson P R, Kariola T, Niemi O, Palva E T. 2013. Pathogenicity of and plant immunity to soft rot pectobacteria. Frontiers in Plant Science, 4, 191.
Dewdney J, Reuber T L, Wildermuth M C, Devoto A, Cui J, Stutius L M, Drummond E P, Ausubel F M. 2000. Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant Journal, 24, 205–218.
Dodds P N, Rathjen J P. 2010. Plant immunity: Towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11, 539–548.
Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.
Kariola T, Brader G, Li J, Palva E T. 2005. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. The Plant Cell, 17, 282–294.
Kariola T, Palomäki T A, Brader G, Palva E T. 2003. Erwinia carotovora subsp. carotovora and Erwinia-derived elicitors HrpN and PehA trigger distinct but interacting defense responses and cell death in Arabidopsis. Molecular Plant-Microbe Interactions, 16, 179–187.
Kunkel B N, Brooks D M. 2002. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5, 325–331.
Li J, Brader G, Palva E T. 2004. The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell, 16, 319–331.
Li X, Fu L, Chen C, Sun W, Tian Y, Xie H. 2020. Characteristics and rapid diagnosis of Pectobacterium carotovorum ssp. associated with bacterial soft rot of vegetables in China. Plant Disease, 104, 1158–1166.
Liu M, Wu F, Wang S, Lu Y, Chen X, Wang Y, Gu A, Zhao J, Shen S. 2019. Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. Horticulture Research, 6, 68.
Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, Tohge T, Fernie A R, Stitt M, Usadel B. 2014. Mercator: A fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell and Environment, 37, 1250–1258.
Luzzatto T, Golan A, Yishay M, Bilkis I, Ben-Ari J, Yedidia I. 2007a. Priming of antimicrobial phenolics during induced resistance response towards Pectobacterium carotovorum in the ornamental monocot calla lily. Journal of Agricultural and Food Chemistry, 55, 10315–10322.
Luzzatto T, Yishay M, Lipsky A, Ion A, Belausov E, Yedidia I. 2007b. Efficient, long-lasting resistance against the soft rot bacterium Pectobacterium carotovorum in calla lily provided by the plant activator methyl jasmonate. Plant Pathology, 56, 692–701.
Luzzatto-Knaan T, Kerem Z, Doron-Faigenboim A, Yedidia I. 2014. Priming of protein expression in the defence response of Zantedeschia aethiopica to Pectobacterium carotovorum. Molecular Plant Pathology, 15, 364–378.
Meng X, Zhang S. 2013. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology, 51, 245–266.
Miedes E, Vanholme R, Boerjan W, Molina A. 2014. The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science, 5, 358.
Montesano M, Brader G, Ponce de León I, Palva E T. 2005. Multiple defence signals induced by Erwinia carotovora ssp. carotovora elicitors in potato. Molecular Plant Pathology, 6, 541–549.
Norman-Setterblad C, Vidal S, Palva E T. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Molecular Plant-Microbe Interactions, 13, 430–438.
Palva T K, Hurtig M, Saindrenan P, Palva E T. 1994. Salicylic acid induced resistance to Erwinia carotovora subsp. carotovora in tobacco. Molecular Plant-Microbe Interactions, 7, 356–363.
Pieterse C M, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees S C. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521.
Qi J, Yu S, Zhang F, Shen X, Zhao X, Yu Y, Zhang D. 2010. Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Molecular Biology Reporter, 28, 597–604.
Roh E, Park T H, Kim M, Lee S, Ryu S, Oh C S, Rhee S, Kim D H, Park B S, Heu S. 2010. Characterization of a new bacteriocin, Carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. Applied and Environmental Microbiology, 76, 7541–7549.
Sharaf E F, Farrag A A. 2004. Induced resistance in tomato plants by IAA against Fusarium oxysporum lycopersici. Polish Journal of Microbiology, 53, 111–116.
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller L A, Rhee S Y, Stitt M. 2004. mapman: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal, 37, 914–939.
Vidal S, Eriksson A R B, Montesano M, Denecke J, Palva E T. 1998. Cell wall-degrading enzymes from Erwinia carotovora cooperate in the salicylic acid-independent induction of a plant defense response. Molecular Plant-Microbe Interactions, 11, 23–32.
Vidal S, Ponce de León I, Denecke J, Palva E T. 1997. Salicylic acid and the plant pathogen Erwinia carotovora induce defense genes via antagonistic pathways. Plant Journal, 11, 115–123.
Zimmerli L, Jakab G, Métraux J P, Mauch-Mani B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proceedings of the National Academy of Sciences of the United States of America, 97, 12920–12925.
[1] ZHANG Yan-mei, AO De, LEI Kai-wen, XI Lin, Jerry W SPEARS, SHI Hai-tao, HUANG Yan-ling, YANG Fa-long. Dietary copper supplementation modulates performance and lipid metabolism in meat goat kids[J]. >Journal of Integrative Agriculture, 2023, 22(1): 214-221.
[2] JIANG Yong, MA Xin-yan, XIE Ming, ZHOU Zheng-kui, TANG Jing, CHANG Guo-bin, CHEN Guo-hong, HOU Shui-sheng. Dietary threonine deficiency affects expression of genes involved in lipid metabolism in adipose tissues of Pekin ducks in a genotype-dependent manner[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2691-2699.
[3] RONG Hao, YANG Wen-jing, XIE Tao, WANG Yue, WANG Xia-qin, JIANG Jin-jin, WANG You-ping. Transcriptional profiling between yellow- and black-seeded Brassica napus reveals molecular modulations on flavonoid and fatty acid content[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2211-2226.
[4] AN Feng, ZHANG Kang, ZHANG Ling-kui, LI Xing, CHEN Shu-min, WANG Hua-sen, CHENG Feng. Genome-wide identification, evolutionary selection, and genetic variation of DNA methylation-related genes in Brassica rapa and Brassica oleracea[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1620-1632.
[5] HE Peng, ZHANG Hui-zhi, ZHANG Li, JIANG Bin, XIAO Guang-hui, YU Jia-ning. The GhMAX2 gene regulates plant growth and fiber development in cotton[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1563-1575.
[6] WANG Ya-di, LI Fei, ZHANG Xin, LIU Ting-li, LIANG Wen-xing, LI De-long. PnSCR82, a small cysteine-rich secretory protein of Phytophthora nicotianae, can enhance defense responses in plants[J]. >Journal of Integrative Agriculture, 2022, 21(3): 751-761.
[7] LIU Cong, LI De-xiong, HUANG Xian-biao, Zhang Fu-qiong, Xie Zong-zhou, Zhang Hong-yan, Liu Ji-hong. Manual thinning increases fruit size and sugar content of Citrus reticulata Blanco and affects hormone synthesis and sugar transporter activity[J]. >Journal of Integrative Agriculture, 2022, 21(3): 725-735.
[8] FENG Zhi-ming, GAO Peng, ZHAO Jian-hua, WANG Guang-da, ZHANG Hui-min, CAO Wen-lei, XUE Xiang, ZHANG Ya-fang, Ma Yu-yin, Hua Rong, CHEN Zong-xiang, CHEN Xi-jun, HU Ke-ming, ZUO Shi-min. iTRAQ-based quantitative proteomics analysis of defense responses triggered by the pathogen Rhizoctonia solani infection in rice[J]. >Journal of Integrative Agriculture, 2022, 21(1): 139-152.
[9] GUO Bing-bing, LI Jia-ming, LIU Xing, QIAO Xin, Musana Rwalinda FABRICE, WANG Peng, ZHANG Shao-ling, WU Ju-you. Identification and expression analysis of the PbrMLO gene family in pear, and functional verification of PbrMLO23[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2410-2423.
[10] JI Xiao-hao, WANG Bao-liang, WANG Xiao-di, WANG Xiao-long, LIU Feng-zhi, WANG Hai-bo. Differences of aroma development and metabolic pathway gene expression between Kyoho and 87-1 grapes[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1525-1539.
[11] WANG Lu-lu, ZHAO Chun-fang, LIU Chang-jun, ZHANG Hao, LIAN Ling. Analysis of DNA methylation of CD79B in MDV-infected chicken spleen[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2995-3002.
[12] WANG Xi-cheng, WU Wei-min, ZHOU Bei-bei, WANG Zhuang-wei, QIAN Ya-ming, WANG Bo, YAN Li-chun. Genome-wide analysis of the SCPL gene family in grape (Vitis vinifera L.)[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2666-2679.
[13] CHI Zhuo-heng, WANG Yong-qing, DENG Qun-xian, ZHANG Hui, PAN Cui-ping, YANG Zhi-wu. Endogenous phytohormones and the expression of flowering genes synergistically induce flowering in loquat[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2247-2256.
[14] LIU Fang-hua, KANG Zhi-wei, TAN Xiao-ling, FAN Yong-liang, TIAN Hong-gang, LIU Tong-xian . Physiology and defense responses of wheat to the infestation of different cereal aphids[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1464-1474.
[15] LIU Xiang, KANG Zhi-wei, YU Xing-lin, LI Fan, LIU Tong-xian, LI Qiang . Role of TRP channels and HSPs in thermal stress response in the aphid parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae)[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1530-1542.
No Suggested Reading articles found!