Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (5): 1314-1322    DOI: 10.1016/S2095-3119(19)62833-9
Special Issue: 动物科学合辑Animal Science
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide detection of selective signatures in a Jinhua pig population
XU Zhong1, SUN Hao1, ZHANG Zhe1, Zhao Qing-bo1, Babatunde Shittu Olasege1, Li Qiu-meng1, Yue Yang1, Ma Pei-pei1, Zhang Xiang-zhe1, Wang Qi-shan1, Pan Yu-chun1, 2 
1 Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P.R.China
2 Shanghai Key Laboratory of Veterinary Bio-technology, Shanghai 200240, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The aim of this study was to detect evidence for signatures of recent selection in the Jinhua pig genome.  These results can be useful to better understand the regions under selection in Jinhua pigs and might shed some lights on groups of genes that control production traits.  In the present study, we performed extended haplotype homozygosity (EHH) tests to identify significant core regions in 202 Jinhua pigs.  A total of 26 161 core regions spanning 636.42 Mb were identified, which occupied approximately 28% of the genome across all autosomes, and 1 158 significant (P<0.01) core haplotypes were selected.  Genes in these regions were related to several economically important traits, including meat quality, reproduction, immune responses and exterior traits.  A panel of genes including ssc-mir-365-2, KDM8, RABEP2, GSG1L, RHEB, RPH3AL and a signal pathway of PI3K-Akt were detected with the most extreme P-values.  The findings in our study could draw a comparatively genome-wide map of selection signature in the pig genome, and also help to detect functional candidate genes under positive selection for further genetic and breeding research in Jinhua and other pigs.
Keywords:  pig genome        selection signatures        extended haplotype homozygosity (EHH)        candidate genes  
Received: 12 April 2019   Accepted:
Fund: This work was supported by the Key Technology R&D Program of China (2016C02054-2) and the National Natural Science Foundation of China (31872976).
Corresponding Authors:  Correspondence PAN Yu-chun, Tel: +86-21-34205836, Fax: +86-21-34206394, E-mail: panyuchun1963@aliyun.com; WANG Qi-shan, E-mail: wangqishan@sjtu.edu.cn   
About author:  XU Zhong, E-mail: 642205305@qq.com; 9

Cite this article: 

XU Zhong, SUN Hao, ZHANG Zhe, Zhao Qing-bo, Babatunde Shittu Olasege, Li Qiu-meng, Yue Yang, Ma Pei-pei, Zhang Xiang-zhe, Wang Qi-shan, Pan Yu-chun . 2020.

Genome-wide detection of selective signatures in a Jinhua pig population
. Journal of Integrative Agriculture, 19(5): 1314-1322.

Ai H S, Fang X D, Yang B, Huang Z Y, Chen H, Mao L K, Zhang F, Zhang L, Cui L L, He W M, Yang J, Yao X M, Zhou L S, Han L J, Li J, Sun S L, Xie X H, Lai B X, Su Y, Lu Y, et al. 2015. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics, 47, 217.
Bomba L, Nicolazzi E L, Milanesi M, Negrini R, Mancini G, Biscarini F, Stella A, Valentini A, Ajmone-Marsan P. 2015. Relative extended haplotype homozygosity signals across breeds reveal dairy and beef specific signatures of selection. Genetics Selection Evolution, 47, 25.
Browning B L, Browning S R. 2016. Genotype imputation with millions of reference samples. American Journal of Human Genetics, 98, 116–126.
Cong P Q, Xiao S Q, Chen Y S, Wang L L, Gao J T, Li M, He Z Y, Guo Y X, Zhao G Y, Zhang X Y, Chen L X, Mo D L, Liu X H. 2014. Integrated miRNA and mRNA transcriptomes of porcine alveolar macrophages (PAM cells) identifies strain-specific miRNA molecular signatures associated with H-PRRSV and N-PRRSV infection. Molecular Biology Reports, 41, 5863–5875.
Dennis G, Sherman B T, Hosack D A, Yang J, Gao W, Lane H C, Lempicki R A. 2003. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 4, R60.
Diao S Q, Luo Y Y, Ma Y L, Deng X, He Y T, Gao N, Zhang H, Li J Q, Chen Z M, Zhang Z. 2018. Genome-wide detection of selective signatures in a Duroc pig population. Journal of Integrative Agriculture, 17, 2528–2535.
Edea Z, Kim K S. 2014. A whole genomic scan to detect selection signatures between Berkshire and Korean native pig breeds. Journal of Animal Science & Technology, 56, 23.
Fu Y H, Li C C, Tang Q Z, Tian S L, Jin L, Chen J H, Li M Z, Li C C. 2016. Genomic analysis reveals selection in Chinese native black pig. Scientific Reports, 6, 36354.
Groenen M A M, Archibald A L, Uenishi H, Tuggle C K, Takeuchi Y, Rothschild M F, Rogel-Gaillard C, Park C, Milan D, Megens H J, Li S T, Larkin D M, Kim H, Frantz L A F, Caccamo M, Ahn H, Aken B L, Anselmo A, Anthon C, Auvil L, et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 491, 393–398.
Guo J, Sun C J, Qu L, Shen M M, Dou T C, Ma M, Wang K H, Yang N. 2017. Genetic architecture of bone quality variation in layer chickens revealed by a genome-wide association study. Scientific Reports, 7, 45317.
He L C, Li P H, Ma X, Sui S P, Gao S, Kim S W, Gu Y Q, Huang Y, Ding N S, Huang R H. 2017. Identification of new single nucleotide polymorphisms affecting total number born and candidate genes related to ovulation rate in Chinese Erhualian pigs. Animal Genetics, 48, 48–54.
He X P, Xu X W, Zhao S H, Fan B, Yu M, Zhu M J, Li C C, Peng Z Z, Liu B. 2009. Investigation of Lpin1 as a candidate gene for fat deposition in pigs. Molecular Biology Reports, 36, 1175–1180.
Huang D W, Sherman B T, Lempicki R A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44–57.
Jeong H, Song K D, Seo M, Caetano-Anolles K, Kim J, Kwak W, Oh J D, Kim E, Jeong D K, Cho S, Kim H, Lee H K. 2015. Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing. Bmc Genetics, 16, 104.
Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589–595.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc G P D. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079.
Li X L, Yang S B, Tang Z L, Li K, Rothschild M F, Liu B, Fan B. 2014. Genome-wide scans to detect positive selection in Large White and Tongcheng pigs. Animal Genetics, 45, 329–339.
Li Z C, Chen J C, Wang Z, Pan Y C, Wang Q S, Xu N Y, Wang Z G. 2016. Detection of selection signatures of population-specific genomic regions selected during domestication process in Jinhua pigs. Animal Genetics, 47, 672–681.
Lim K S, Lee K T, Park J E, Chung W H, Jang G W, Choi B H, Hong K C, Kim T H. 2017. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequencing. Animal Genetics, 48, 166–174.
Logie L, Van Aalten L, Knebel A, Force T, Hastie C J, MacLauchlan H, Campbell D G, Gourlay R, Prescott A, Davidson J, Fuller W, Sutherland C. 2017. Rab-GTPase binding effector protein 2 RABEP2. is a primed substrate for Glycogen Synthase kinase-3 GSK3. Scientific Reports, 7, 17682.
Nonneman D J, Shackelford S D, King D A, Wheeler T L, Wiedmann R T, Snelling W M, Rohrer G A. 2013. Genome-wide association of meat quality traits and tenderness in swine. Journal of Animal Science, 91, 4043–4050.
Oh S, Janknecht R. 2012. Histone demethylase JMJD5 is essential for embryonic development. Biochemical and Biophysical Research Communications, 420, 61–65.
Qanbari S, Pimentel E C G, Tetens J, Thaller G, Lichtner P, Sharifi A R, Simianer H. 2010. A genome-wide scan for signatures of recent selection in Holstein cattle. Animal Genetics, 41, 377–389.
Quan J P, Ding R R, Wang X W, Yang M, Yang Y, Zheng E Q, Gu T, Cai G Y, Wu Z F, Liu D W, Yang J. 2018. Genome-wide association study reveals genetic loci and candidate genes for average daily gain in Duroc pigs. Asian-Australasian Journal of Animal Sciences, 31, 480.
Ren J, Duan Y Y, Qiao R M, Yao F, Zhang Z Y, Yang B, Guo Y M, Xiao S J, Wei R X, Ouyang Z X, Ding N S, Ai H S, Huang L S. 2011. A Missense mutation in PPARD causes a major QTL effect on ear size in pigs. Plos Genetics, 7, e1002043.
Roque K, Shin K M, Jo J H, Lim G D, Song E S, Shin S J, Gautam R, Lee J H, Kim Y G, Cho A R, Kim C Y, Kim H J, Lee M S, Oh H G, Lee B C, Kim J H, Kim K H, Jeong H K, Kim H A, Heo Y. 2018. Association between endotoxin levels in dust from indoor swine housing environments and the immune responses of pigs. Journal of Veterinary Science, 19, 331–338.
Sabeti P C, Reich D E, Higgins J M, Levine H Z P, Richter D J, Schaffner S F, Gabriel S B, Platko J V, Patterson N J, McDonald G J, Ackerman H C, Campbell S J, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander E S. 2002. Detecting recent positive selection in the human genome from haplotype structure. Nature, 419, 832–837.
Sabeti P C, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X H, Byrne E H, McCarroll S A, Gaudet R, Schaffner S F, Lander E S, Consortium I H. 2007. Genome-wide detection and characterization of positive selection in human populations. Nature, 449, 913-912.
Scheet P, Stephens M. 2006. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. American Journal of Human Genetics, 78, 629–644.
Smith J M, Haigh J. 2007. The hitch-hiking effect of a favourable gene. Genetics Research, 89, 391–403.
Sun H, Wang Z, Zhang Z, Xiao Q, Mawed S, Xu Z, Zhang X, Yang H, Zhu M, Xue M, Liu X, Zhang W, Zhen Y, Wang Q, Pan Y. 2018. Genomic signatures reveal selection of characteristics within and between Meishan pig populations. Animal Genetics, 49, 119–126.
Suryawan A, Nguyen H V, Davis T A. 2013. Distinct role of rheb and Grb10 in the regulation of mTORC1 signaling in skeletal muscle of neonatal pigs. Faseb Journal, 27, 1084.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.
Tang K, Thornton K R, Stoneking M. 2007. A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biology, 5, 1587–1602.
Teng L, Hong L J, Liu R Z, Chen R, Li X Y, Yu M. 2016. Cellular Localization and regulation of expression of the PLET1 gene in porcine placenta. International Journal of Molecular Sciences, 17, 2048.
Voight B F, Kudaravalli S, Wen X Q, Pritchard J K. 2006. A map of recent positive selection in the human genome. PLoS Biology, 4, 446–458.
Wang K, Wu P X, Yang Q, Chen D J, Zhou J, Jiang A N, Ma J D, Tang Q Z, Xiao W H, Jiang Y Z, Zhu L, Li X W, Tang G Q. 2018. Detection of selection signatures in Chinese Landrace and Yorkshire pigs based on genotyping-by-sequencing data. Frontiers in Genetics, 9, 119.
Wang L G, Zhang L C, Yan H, Liu X, Li N, Liang J, Pu L, Zhang Y B, Shi H B, Zhao K B, Wang L X. 2014. Genome-wide association studies identify the loci for 5 exterior traits in a Large White×Minzhu pig population. PLoS ONE, 9, e103766.
Wang Y D, Ma C, Sun Y, Li Y, Kang L, Jiang Y L. 2017. Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs. BMC Genomics, 18, 780.
Wang Z, Chen Q, Yang Y M, Yang H J, He P F, Zhang Z, Chen Z L, Liao R R, Tu Y Y, Zhang X Z, Wang Q S, Pan Y C. 2014. A genome-wide scan for selection signatures in Yorkshire and Landrace pigs based on sequencing data. Animal Genetics, 45, 808–816.
Weichhart T, Saemann M D. 2008. The PI3K/Akt/mTOR pathway in innate immune cells: Emerging therapeutic applications. Annals of the Rheumatic Diseases, 67, 70–74.
Weir B S, Cockerham C C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.
Wilkinson S, Lu Z H, Megens H J, Archibald A L, Haley C, Jackson I J, Groenen M A M, Crooijmans R P M A, Ogden R, Wiener P. 2013. Signatures of diversifying selection in European pig breeds. PLoS Genetics, 9, e1003453.
Wu D, Song D C, Li X Y, Yu M, Li C C, Zhao S H. 2013. Molecular characterization and identification of the E2/P4 response element in the porcine HOXA10 gene. Molecular and Cellular Biochemistry, 374, 213–222.
Wu X L, Lee C, Jiang J, Peng Y L, Yang S L, Xiao B N, Liu X C, Shi Q S. 2001. Mapping a quantitative trait locus for growth and backfat on porcine chromosome 18. Asian-Australasian Journal of Animal Sciences, 14, 1665–1669.
Xu Z, Sun H, Zhang Z, Zhao Q B, Olasege, B S, Li Q M, Yue Y, Ma P P, Zhang X Z, Wang Q S, Pan Y C. 2019. Assessment of autozygosity derived from runs of homozygosity in Jinhua pigs disclosed by sequencing data. Frontiers in Genetics, 10, 274.
Yin Q, Yang H, Han X, Fan B, Liu B. 2012. Isolation, mapping, SNP detection and association with backfat traits of the porcine CTNNBL1 and DGAT2 genes. Molecular Biology Reports, 39, 4485–4490.
Zhou G H, Zhao G M. 2007. Biochemical changes during processing of traditional Jinhua ham. Meat Science, 77, 114–120.
[1] ZHANG Hua, WU Hai-yan, TIAN Rui, KONG You-bin, CHU Jia-hao, XING Xin-zhu, DU Hui, JIN Yuan, LI Xi-huan, ZHANG Cai-ying. Genome-wide association and linkage mapping strategies reveal genetic loci and candidate genes of phosphorus utilization in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2521-2537.
[2] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
[3] DING Xiao-yu, XU Jin-song, HUANG He, QIAO Xing, SHEN Ming-zhen, CHENG Yong, ZHANG Xue-kun. Unraveling waterlogging tolerance-related traits with QTL analysis in reciprocal intervarietal introgression lines using genotyping by sequencing in rapeseed (Brassica napus L.)[J]. >Journal of Integrative Agriculture, 2020, 19(8): 1974-1983.
[4] XIA Ning, YAN Wen-bing, WANG Xiao-qi, SHAO Yu-peng, YANG Ming-ming, WANG Zhi-kun, ZHAN Yu-hang, TENG Wei-li, HAN Ying-peng, SHI Yan-guo. Genetic dissection of hexanol content in soybean seed through genome-wide association analysis[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1222-1229.
[5] DIAO Shu-qi, LUO Yuan-yu, MA Yun-long, DENG Xi, HE Ying-ting, GAO Ning, ZHANG Hao, LI Jia-qi, CHEN Zan-mou, ZHANG Zhe. Genome-wide detection of selective signatures in a Duroc pig population[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2528-2535.
[6] ZHAO Jie, QIN Jing-jing, SONG Qian, SUN Chuan-qing, LIU Feng-xia. Combining QTL mapping and expression profile analysis to identify candidate genes of cold tolerance from Dongxiang common wild rice (Oryza rufipogon Griff.)[J]. >Journal of Integrative Agriculture, 2016, 15(9): 1933-1943.
No Suggested Reading articles found!