Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (11): 3158-3168    DOI: 10.1016/j.jia.2022.07.055
Special Issue: 玉米遗传育种Maize Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Cytological study on haploid male fertility in maize
YANG Ji-wei1, 2*, LIU Zong-hua1*, QU Yan-zhi1, ZHANG Ya-zhou1, LI Hao-chuan1
1 College of Agronomy, Henan Agricultural University/State Key Laboratory of Wheat and Maize Crop Science/Henan Grain Crop Collaborative Innovation Center, Zhengzhou 450046, P.R.China
2 Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米单倍体育种技术主要取决于单倍体基因组加倍,并已广泛应用于商业育种之中。单倍体基因组自然加倍(SHGD)是一种简单、快捷的方法,并在育种者中越来越受欢迎。但目前SHGD的细胞学机制仍不清楚。为此,我们利用诱导系YHI-1与两个极端SHGD能力的重组自交系RL36RL7进行杂交,得到单倍体籽粒。对单倍体植物中花药减数分裂过程中花粉母细胞(PMC)与对应的二倍体花粉母细胞进行了比较。结果表明:早期加倍、第一次减数分裂中期染色体偏分离及第二次减数分裂异常三个主要的途径与SHGD有关。此外,对单倍体和二倍体植株的叶片及PMC利用流式细胞仪进行倍性分析,结果表明:单倍体植株体细胞染色体加倍和生殖细胞染色体加倍是相对独立的过程。这些结果为进一步研究SHGD的可能机制提供了基础,将有助于单倍体育种技术在玉米育种实践中应用。



Abstract  Doubled haploid (DH) breeding technology, which relies on haploid genome doubling, is widely used in commercial maize breeding.  Spontaneous haploid genome doubling (SHGD), a more simplified and straightforward method, is gaining popularity among maize breeders.  However, the cytological mechanism of SHGD remains unclear.  This study crossed inbred lines RL36 and RL7, which have differing SHGD abilities, with inducer line YHI-1 to obtain haploid kernels.  The meiotic processes of pollen mother cells (PMCs) in the haploid plants were compared with diploid controls.  The results suggested that three main pathways, the early doubling of haploid PMCs, the first meiotic metaphase chromosomal segregation distortion, and anomaly of the second meiosis, are responsible for SHGD.  Furthermore, flow cytometry analysis of ploidy levels in leaves and PMCs from haploids and diploid controls revealed that somatic cell chromosome doubling and germ cell chromosome doubling are independent processes.  These findings provide a foundation for further studies on the underlying mechanism of SHGD, aiding the application of DH technology in maize breeding practices.  
Keywords:  maize       haploid         male fertility        spontaneous genome doubling        meiosis  
Received: 31 March 2021   Accepted: 07 June 2021
Fund: This work was supported by the Agricultural Seed Joint Research Project of Henan Province, China (2022010202), the Science and Technology Project of Henan Province, China (222102110276) and the China Postdoctoral Science Foundation (2020M682031).
About author:  YANG Ji-wei, E-mail: yangjiwei2009@126.com; LIU Zong-hua, E-mail: zhliu100@163.com; Correspondence LI Hao-chuan, Tel: +86-371-56990188, E-mail: lihaochuan1220@163.com * These authors contributed equally to this study.

Cite this article: 

YANG Ji-wei, LIU Zong-hua, QU Yan-zhi, ZHANG Ya-zhou, LI Hao-chuan. 2022. Cytological study on haploid male fertility in maize. Journal of Integrative Agriculture, 21(11): 3158-3168.

Beaumont V H, Widholm J M. 1993. Ploidy variation of pronamide-treated maize calli during long term culture. Plant Cell Reports, 12, 648–651.
Bielig L M, Mariani A, Berding N. 2003. Cytological studies of 2n male gamete formation in sugarcane, Saccharum L. Euphytica, 133, 117–124.
Chaikam V, Mahuku G. 2012. Chromosome doubling of maternal haploids. In: Prasanna B M, Chaikam V, Mahuku G, eds., Doubled Haploid Technology in Maize Breeding: Theory and Practice. International Maize and Wheat Improvement Center, Mexico, DF. pp. 24–29.
Chalyk S T. 1994. Properties of maternal haploid maize plants and potential application to maize breeding. Euphytica, 79, 13–18. 
Dwivedi S L, Britt A B, Tripathi L, Sharma S, Upadhyaya H D, Ortiz R. 2015. Haploids: Constraints and opportunities in plant breeding. Biotechnology Advances, 33, 812–829. 
Gallo P H, Micheletti P L, Boldrini K R, Risso-Pascotto C, Pagliarini M S, Valle C B D. 2007. 2n gamete formation in the genus Brachiaria (Poaceae: Paniceae). Euphytica, 154, 255–260.
Geiger H H, Braun M D, Gordillo G A, Koch S, Jesse J, Krutzfeld B A E. 2006. Variation for female fertility among haploid maize lines. Maize Genetics Newsletter, 80, 28–29.
Geiger H H, Schönleben M. 2011. Incidence of male fertility in haploid elite dent maize germplasm. Maize Genetics Newsletter, 85, 22–32.
Germanà M A. 2011. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports, 30, 839–857.
Hallauer A R, Carena M J, Miranda J B. 2010. Quantitative Genetics in Maize Breeding. Springer Science & Business Media, LLC, New York, NY.
Häntzschel K R, Weber G. 2010. Blockage of mitosis in maize root tips using colchicine-alternatives. Protoplasma, 241, 99–104.
Heyn F W. 1977. Analysis of unreduced gametes in the Brassicaceae by crosses between species and ploidy levels. Zeitschrift fur Pflanzenzuchtung, 78, 13–30.
Kato A, Geiger H H. 2002. Chromosome doubling of haploid maize seedlings using nitrous oxide gas at the flower primordial stage. Plant Breeding, 121, 370–377. 
Kelliher T, Walbot V. 2011. Emergence and patterning of the five cell types of the Zea mays anther locule. Developmental Biology, 350, 32–49. 
Kelliher T, Walbot V. 2014. Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes. The Plant Journal, 77, 639–652. 
Kleiber D, Prigge V, Melchinger A E, Burkard F, San Vicente F, Palomino G, Gordillo G A. 2012. Haploid fertility in temperate and tropical maize germplasm. Biological Science, 52, 623–630. 
Lam S L. 1974. Origin and formation of unreduced gametes in the potato. Heredity, 65, 175–178. 
Ma H L, Li G L, Tobias W, Zhang Y, Zheng D B, Yang X H, Li J S, Liu W X, Yan J B, Chen S J. 2018. Genome-wide association study of haploid male fertility in maize (Zea mays L.). Frontiers in Plant Science, 9, 974.
Mashkina O S. 1979. Ways of formation of unreduced microspores in sweet cherries. Tsitolo Genetika, 13, 343–346.
Melchinger A E, Molenaar W S, Mirdita V, Schipprack W. 2016. Colchicine alternatives for chromosome doubling in maize haploids for doubled haploid production. Crop Science, 56, 1–11.
Molenaar W S, Schipprack W, Melchinger A E. 2018. Nitrous oxide induced chromosome doubling of maize haploids. Crop Science, 58, 650–659. 
Nanda D K, Chase S S. 1966. An embryo marker for detecting monoploids of maize (Zea mays L.). Crop Science, 6, 131–138. 
Nelms B, Walbot V. 2019. Defining the developmental program leading to meiosis in maize. Science, 364, 52–56.
Pagliarini M S, Takayama S Y, Freitas P M D, Carraro L R, Adamowski E V, Silva N. 1999. Failure of cytokinesis and 2n gamete formation in Brazilian accessions of Paspalum. Euphytica, 108, 129–135. 
Palomino G, Hernández L T, Torres E D. 2008. Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp. nuttaliae. Euphytica, 164, 221–230. 
Prasanna B M, Chaikam V, Mahuku G. 2012. Doubled Haploid Technology in Maize Breeding: Theory and Practice. International Maize and Wheat Improvement Center, Mexico.
Ramanna M S. 1979. A re-examination of the mechanisms of 2n gamete formation in potato and its implications for breeding. Euphytica, 28, 537–561. 
Ren J J, Boerman N, Liu R X, Wu P H, Trampe B, Vanous K, Frei U K, Chen S J, Lübberstedt T. 2020. Mapping of QTL and identification of candidate genes conferring spontaneous haploid genome doubling in maize (Zea mays L.). Plant Science, 293, 110337. 
Ren J J, Wu P H, Tian X L, Lübberstedt T, Chen S J. 2017. QTL mapping for haploid male fertility by a segregation distortion method and fine mapping of a key QTL qhmf4 in maize. Theoretical and Applied Genetics, 130, 1349–1359. 
Ross K J, Fransz P, Jones G H. 1996. A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Research, 4, 507–516. 
Rouiss H, Cuenca J, Navarro L, Ollitrault P, Aleza P. 2017. Unreduced megagametophyte production in lemon occurs via three meiotic mechanisms, predominantly second-division restitution. Frontiers in Plant Science, 8, 1211. 
Shamina N V, Shatskaia O A. 2011. Two novel meiotic restitution mechanisms in haploid maize (Zea mays L.). Russian Journal of Genetics, 47, 438–445. 
De Storme N, Geelen D. 2013. Sexual polyploidization in plants cytological mechanisms and molecular regulation. New Phytologist, 198, 670–684. 
Sugihara N, Higashigawa T, Aramoto D, Kato A. 2013. Haploid plants carrying a sodium azide-induced mutation (fdr1) produce fertile pollen grains due to first division restitution (FDR) in maize (Zea mays L.). Theoretical and Applied Genetics, 126, 2931–2941. 
Trampe B, Santos I G D, Frei U K, Ren J J, Chen S J, Lübberstedt T. 2020. QTL mapping of spontaneous haploid genome doubling using genotyping-by-sequencing in maize (Zea mays L.). Theoretical and Applied Genetics, 133, 2131–2140.
Wan Y, Duncan D R, Rayburn A L, Petolino J F, Widholm J M. 1991. The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theoretical and Applied Genetics, 81, 205–211. 
Weber D F. 2014. Today’s use of haploids in corn plant breeding. Advances in Agronomy, 123, 123–144. 
Wu P H, Ren J J, Li L, Chen S J. 2014. Early spontaneous diploidization of maternal maize haploids generated by in vivo haploid induction. Euphytica, 200, 127–138. 
Wu P H, Ren J J, Tian X L, Lübberstedt T, Li W, Li G L, Li X L, Chen S J. 2017. New insights into the genetics of haploid male fertility in maize. Crop Science, 57, 637–647. 
Yamashita, K, Nakazaw, Y, Namai K, Amagai M, Tsukazaki H, Wako T, Kojima A. 2012. Modes of inheritance of two apomixis components, diplospory and parthenogenesis, in Chinese chive (Allium ramosum) revealed by analysis of the segregating population generated by back-crossing between amphimictic and apomictic diploids. Breed Science, 62, 160–169. 
Yang J W, Qu Y Z, Chen Q, Tang J H, Lübberstedt T, Li H C, Liu Z H. 2019. Genetic dissection of haploid male fertility in maize (Zea mays L.). Plant Breeding, 138, 259–265. 
Zabirova E R, Shatskaya O A, Shcherbak V S. 1993. Line 613/2 as a source of a high frequency of spontaneous diploidization in corn. Maize Genetics Cooperation Newsletter, 67, 67.

[1] Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress[J]. >Journal of Integrative Agriculture, 2026, 25(2): 639-647.
[2] Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao. ZmCals12 impacts maize growth and development by regulating symplastic transport[J]. >Journal of Integrative Agriculture, 2026, 25(1): 42-55.
[3] Xiaohui Xu, Qiang Chai, Falong Hu, Wen Yin, Zhilong Fan, Hanting Li, Zhipeng Liu, Qiming Wang. Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area[J]. >Journal of Integrative Agriculture, 2026, 25(1): 326-338.
[4] Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes[J]. >Journal of Integrative Agriculture, 2026, 25(1): 92-104.
[5] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[6] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[7] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[8] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[9] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[10] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[11] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[12] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[13] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[14] Guanghao Li, Qijian Zhang, Weiping Lu, Dalei Lu. Response of nutrient accumulation, remobilization and yield to combined application of nitrogen and potassium in waxy maize[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4561-4572.
[15] Xiuling Wang, Li Niu, Huaipan Liu, Xucun Jia, Yulong Zhao, Qun Wang, Yali Zhao, Pengfei Dong, Moubiao Zhang, Hongping Li, Panpan An, Zhi Li, Xiaohuan Mu, Yongen Zhang, Chaohai Li. Integrated transcriptomics and metabolomics analysis provide insights into the alleviation of waterlogging stress in maize by exogenous spermidine application[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4546-4560.
No Suggested Reading articles found!