Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (11): 3185-3198    DOI: 10.1016/j.jia.2022.07.057
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
dep1 improves rice grain yield and nitrogen use efficiency simultaneously by enhancing nitrogen and dry matter translocation
HUANG Li-ying2, 3, Li Xiao-xiao1, ZHANG Yun-bo3, 4, Shah FAHAD5, WANG Fei1, 4

1 National Key Laboratory of Crop Genetic Improvement, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R.China

2 Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, P.R.China

3 College of Agriculture, Yangtze University, Jingzhou 434025, P.R.China

4 Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, P.R.China

5 Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  携带dep1基因(直立密穗)的水稻品种具有高产和高氮利用效率的潜力。然而,在田间条件下,对这些品种高产和高氮利用效率有关的农艺和生理性状研究的较少。因此,本研究在0和120 kg N ha-1下对遗传背景均为南粳6号的两个分别携带DEP1 (NIL-DEP1) 和dep1-1 (NIL-dep1)基因的近等基因系材料(NILs)进行了产量和氮利用效率评价。综合所有的氮肥处理和种植年份,NIL-dep1的产量和氮素籽粒生产效率(NUEg)分别比NIL-DEP1高25.5%和21.9%。NIL-dep1相对于NIL-DEP1的产量优势主要源于较大的库容(即较高的总颖花数)、较高的结实率、总干物质积累和收获指数。氮素利用而非氮素吸收更有利于NIL-dep1的高产。NIL-dep1显著较高的NUEg与其较高的氮和干物质转运效率、较低的成熟期叶片和茎秆氮素浓度以及较高的叶片谷氨酰胺合成酶(GS)活性有关。综上,在大田条件下,dep1通过提高籽粒灌浆期的叶片GS活性增加氮素和干物质转运,进而提高水稻产量和氮利用效率。

Abstract  

The rice cultivars carrying dep1 (dense and erect panicle 1) have the potential to achieve both high grain yield and high nitrogen use efficiency (NUE).  However, few studies have focused on the agronomic and physiological performance of those cultivars associated with high yield and high NUE under field conditions.  Therefore, we evaluated the yield performance and NUE of two near-isogenic lines (NILs) carrying DEP1 (NIL-DEP1) and dep1-1 (NIL-dep1) genes under the Nanjing 6 background at 0 and 120 kg N ha–1.  Grain yield and NUE for grain production (NUEg) were 25.5 and 21.9% higher in NIL-dep1 compared to NIL-DEP1 averaged across N treatments and planting years, respectively.  The yield advantage of NIL-dep1 over NIL-DEP1 was mainly due to larger sink size (i.e., higher total spikelet number), grain-filling percentage, total dry matter production, and harvest index.  N utilization rather than N uptake contributed to the high yield of NIL-dep1.  Significantly higher NUEg in NIL-dep1 was associated with higher N and dry matter translocation efficiency, lower leaf and stem N concentration at maturity, and higher glutamine synthetase (GS) activity in leaves.  In conclusion, dep1 improved grain yield and NUE by increasing N and dry matter transport due to higher leaf GS activity under field conditions during the grain-filling period.

Keywords:  dep1        grain yield        nitrogen use efficiency        nitrogen translocation        rice  
Received: 18 April 2021   Accepted: 07 July 2021
Fund: This work was supported by the National Natural Science Foundation of China (32071948), the Fundamental Research Funds for the Central Universities, China (2662020ZKPY015), and the Guangxi Natural Science Foundation, China (2022GXNSFAA035488).  
About author:  HUANG Li-ying, E-mail: lyhuang8901@126; Correspondence WANG Fei, Tel: +86-27-87284385, E-mail: fwang@mail.hzau.edu.cn

Cite this article: 

HUANG Li-ying, Li Xiao-xiao, ZHANG Yun-bo, Shah FAHAD, WANG Fei. 2022. dep1 improves rice grain yield and nitrogen use efficiency simultaneously by enhancing nitrogen and dry matter translocation. Journal of Integrative Agriculture, 21(11): 3185-3198.

Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science, 309, 741–745. 
Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, et al. 2014. Producing more grain with lower environmental costs. Nature, 514, 486–489.
Cui Z L, Zhang H Y, Chen X P, Zhang C C, Ma W Q, Huang C D, Zhang W F, Mi G H, Miao Y X. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555, 363–368.
Drechsel P, Heffer P, Magen H, Mikkelsen R, Wichelns D. 2015. Managing Water and Fertilizer for Sustainable Agricultural Intensification. International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI). 1st ed. Paris, France. 
Fan X R, Tang Z, Tan Y W, Zhang Y, Luo B B, Yang M, Lian X, Shen Q R, Miller A J, Xu G H. 2016. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proceedings of the National Academy of Sciences of the United States of America, 113, 7118–7123.
Fei C, Yu J H, Xu Z J, Xu Q. 2019. Erect panicle architecture contributes to increased rice production through the improvement of canopy structure. Molecular Breeding, 39, 128.
Fujita D, Trijatmiko K R, Tagle A G, Sapasap M V, Koide Y, Sasaki K, Kobayashi N. 2013. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proceedings of the National Academy of Sciences of the United States of America, 110, 20431–20436.
Gu J F, Chen Y, Zhang H, Li Z K, Zhou Q, Yu C, Kong X S, Liu L J, Wang Z Q, Yang J C. 2017. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Research, 206, 74–85. 
Gu J F, Li Z K, Mao Y Q, Struik P, C, Zhang H, Liu L J, Wang Z Q, Yang J C. 2018. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science, 274, 320–331. 
Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W, Vitousek P M, Zhang F S. 2010. Significant acidification in major Chinese croplands. Science, 327, 1008–1010.
Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 47, 834–838.
Huang L Y, Sun F, Yuan S, Peng S B, Wang F. 2018a. Different mechanisms underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Research, 216, 150–157. 
Huang L Y, Sun F, Yuan S, Peng S B, Wang F. 2018b. Responses of candidate green super rice and super hybrid rice varieties to simplified and reduced input practice. Field Crops Research, 218, 78–87.
Huang L Y, Yang D S, Li X X, Peng S B, Wang F. 2019. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Research, 233, 49–58. 
Huang M, Zou Y B. 2018. Integrating mechanization with agronomy and breeding to ensure food security in China. Field Crops Research, 224, 22–27. 
Huang M, Zou Y B. 2020. Reducing environmental risk of nitrogen by popularizing mechanically dense transplanting for rice production in China. Journal of Integrative Agriculture, 19, 2362–2366.
Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 41, 494–497. 
Jiao X Q, Mongol N, Zhang F S. 2018. The transformation of agriculture in China: Looking back and looking forward. Journal of Integrative Agriculture, 17, 755–764.
Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 42, 541–544. 
Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. 2015. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research, 175, 47–55.
Kickey T, Heumez E, Pocholle D, Pageau K, Vanacker H, Dubois F, Gouis J L, Hirel B. 2006. Combined agronomic and physiological aspects of nitrogen management in wheat high-light a central role for glutamine synthetase. New Phytologist, 169, 265–278.
Koutroubas S D, Ntanos D A. 2003. Genotypic differences for grain yield and nitrogen utilization in indica and japonica rice under Mediterranean conditions. Field Crops Research, 83, 251–260.
Ladha J K, Kirk G J D, Bennett J, Peng S, Reddy C K, Reddy P M, Sing U. 1998.  Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crops Research, 56, 41–71.
Le C, Zha Y, Li Y, Sun D, Lu H, Yin B. 2010. Eutrophication of lake waters in China: Cost, causes, and control. Environmental Management, 45, 662–668.
Li S, Tian Y H, Wu K, Ye Y F, Yu J P, Zhang J Q, Liu Q, Hu M Y, Li H, Tong Y P, Harberd N P, Fu X D. 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 560, 595–600.
Liu H, Zhao Z Q. 2006. Research progress in the selecting standard of the plant genotype with nitrogen efficiency. Journal of Anhui Agricultural Sciences, 34, 3265–3267. (in Chinese)
Mae T. 1997. Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant and Soil, 196, 201–210.
Mae T, Ohira K. 1981. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.). Plant and Cell Physiology, 22, 1067–1074.
Meng T Y, Wei H H, Li X Y, Dai Q G, Huo Z Y. 2018. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Research, 228, 135–146.
Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. 2006. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 96, 37–47.
Peng S B, Buresh R J, Huang J L, Zhong X H, Zou Y B, Yang J C, Wang G H, Liu Y Y, Hu R F, Tang Q Y, Cui K H, Zhang F S, Dorbermann A. 2010. Improving nitrogen fertilization in rice by site specific N management: a review. Agronomy for Sustainable Development, 30, 649–656.
Perchilk M, Tegeder M. 2017. Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiology, 175, 235–247.
Rakotoson T, Dusserre J, Letourmy P, Ramonta I R, Cao T V, Ramanantsoanirina A, Roumet P, Ahmadi N Raboin L M. 2017. Genetic variability of nitrogen use efficiency in rainfed upland rice. Field Crops Research, 213, 194–203.
Sui B, Feng X M, Tian G L, Hu X Y, Shen Q R, Guo S W. 2013. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Research, 150, 99–107.
Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X, Fu X D. 2014. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 46, 652–657.
Sun Y J, Ma J, Sun Y Y, Xu H, Yang Z Y, Liu S J, Jia X Y, Zheng H C. 2012. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Research, 127, 85–98.
Talla S K, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R. 2016. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. Journal of Experimental Botany, 67, 1839–1851.
Ti C P, Yan X Y. 2020. Nitrogen regulation in China’s agricultural systems. In: Atmospheric Reactive Nitrogen in China. Springer, Singapore.
Vijayalakshmi P, Vishnukiran T, Kumari B R, Srikanth B, Rao I S, Swamy K N, Surekha K, Sailaja N, Subbarao L V, Rao P R, Voleti S R. 2015. Biochemical and physiological characterization for nitrogen use efficiency in aromatic rice genotypes. Field Crops Research, 179, 132–143.
Wang F, Peng S B. 2017. Yield potential and nitrogen use efficiency of China’s super rice. Journal of Integrative Agriculture, 16, 1000–1008.
Wang J Y, Nakazaki T, Chen S Q, Chen W F, Saito H, Tsukiyama T, Okumoto Y, Xu Z J, Tanisaka T. 2009. Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theoretical and Applied Genetics, 119, 85–91.
Wang Y Z, Zhang N, Chen H W, Wang F, Huang Y C, Jia B Y, Wang S, Wang Y, Xu Z J. 2020. Effects of dep1 on grain yield and grain quality in the background of two japonica rice (Oryza sativa) cultivars. Plant Breeding, 139, 608–617.
Wu L L, Yuan S, Huang L Y, Sun F, Zhu G L, Li G H. 2016. Physiological mechanisms underlying the high-grain yield and high-nitrogen use efficiency of elite rice varieties under a low rate of nitrogen application in China. Frontiers in Plant Science, 7, 1024.
Wu Y, Wang Y, Mi X F, Shan J X, Li X M, Xu J L, Lin H X. 2016. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genetic, 12, e1006386. 
Xu Q, Liu T S, Bi W J, Wang Y Z, Xu H, Tang L, Sun J, Xu Z J. 2015. Different effects of dep1 on vascular bundle- and panicle-related traits under indica and japonica genetic backgrounds. Molecular Breeding, 35, 173. 
Yang J C, Zhang J H. 2010. Grain-filling problem in ‘super’ rice. Journal of Experimental Botany, 61, 1–5. 
Yang Z Y, Li N, Ma P, Li Y, Zhang R P, Song Q, Guo X, Sun Y J, Xu H, Ma J. 2020. Improving nitrogen and water use efficiencies of hybrid rice through methodical nitrogen-water distribution management. Field Crops Research, 246, 107698.
Ye L T, Lv H J, Song W J, Tu E D, Shen Q R, Zhang Y L. 2011. Variation of activity of N metabolizing enzymes in rice plants different in N use efficiency at their late growth stages. Acta Pedologiga Sinica, 48, 132–140. (in Chinese)
Yi X H, Zhang Z J, Zeng S Y, Tian C Y, Peng J C, Li M, Lu Y, Meng Q C, Gu M H, Yan C J. 2011. Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.). Journal of Genetics and Genomics, 38, 217–223. 
Zhang H, Jing W J, Zhao B H, Wang W L, Xu Y J, Zhang W Y, Gu J F, Liu L J, Wang Z Q, Yang J C. 2021. Alternative fertilizer and irrigation practices improve rice yield and resource use efficiency by regulating source–sink relationships. Field Crops Research, 265, 108124.
Zhang N, Jiang K W, Chen H W, Shao K T, Yan A, Liang C W, Wang S, Huang Y C, Wang Y, Jia B Y, Wang Y. 2020. DEP1 affects rice grain weight and quality at different spikelet positions. Agronomy Journal, 112, 4587–4601.
Zhang W F, Dou Z X, He P, Ju X T, Powlson D, Chadwick D, Norse D, Lu Y L, Zhang Y, Wu L, Chen X P, Zhang F S. 2013. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America, 110, 8375–8380.
Zhao M Z, Zhao M H, Gu S, Sun J, Ma Z B, Wang L L, Zheng W J, Xu Z J. 2019. Dep1 is involved in regulating the carbon–nitrogen metabolic balance to affect grain yield and quality in rice (Oriza sativa L.). PLoS ONE, 14, e0213504.
Zhong X H, Huang N R, Zheng H B, Peng S B, Buresh R J. 2007. Specification for the“three controls” nutrient management technology for irrigated rice. Guangdong Agricultural Sciences, 5, 13–15. (in Chinese)
Zhou Y, Zhu J Y, Li Z Y, Yi C D, Liu J, Zhang H C, Tang S Z, Gu M H, Liang G H. 2009. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architec-ture during rice domestication. Genetics, 183, 315–324.
Zhu K Y, Zhou Q, Shen Y, Yan J Q, Xu Y J, Wang Z Q, Yang J C. 2020. Agronomic and physiological performance of an indica–japonica rice variety with a high yield and high nitrogen use efficiency. Crop Science, 60, 1556–1568. 
Zhu Z L, Chen D L. 2002. Nitrogen fertilizer use in China - Contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 63, 117–127.


[1] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[2] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[3] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[4] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[5] Jingnan Zou, Ziqin Pang, Zhou Li, Chunlin Guo, Hongmei Lin, Zheng Li, Hongfei Chen, Jinwen Huang, Ting Chen, Hailong Xu, Bin Qin, Puleng Letuma, Weiwei Lin, Wenxiong Lin.

The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting [J]. >Journal of Integrative Agriculture, 2024, 23(3): 806-823.

[6] Min Jiang, Zhang Chen, Yuan Li , Xiaomin Huang, Lifen Huang, Zhongyang Huo.

Rice canopy temperature is affected by nitrogen fertilizer [J]. >Journal of Integrative Agriculture, 2024, 23(3): 824-835.

[7] Fubing Liao, Xiangqian Feng, Ziqiu Li, Danying Wang, Chunmei Xu, Guang Chu, Hengyu Ma, Qing Yao, Song Chen.

A hybrid CNN-LSTM model for diagnosing rice nutrient levels at the rice panicle initiation stage [J]. >Journal of Integrative Agriculture, 2024, 23(2): 711-723.

[8] Tingting Zhou, Qian Zhao, Chengzhou Li, Lu Ye, Yanfang Li, Nemat O. Keyhani, Zhen Huang. Synergistic effects of the entomopathogenic fungus Isaria javanica and low doses of dinotefuran on the efficient control of the rice pest Sogatella furcifera[J]. >Journal of Integrative Agriculture, 2024, 23(2): 621-638.
[9] Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2024, 23(1): 20-38.
[10] Tingcheng Zhao, Aibin He, Mohammad Nauman Khan, Qi Yin, Shaokun Song, Lixiao Nie.

Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions [J]. >Journal of Integrative Agriculture, 2024, 23(1): 93-107.

[11] Nafiu Garba HAYATU, LIU Yi-ren, HAN Tian-fu, Nano Alemu DABA, ZHANG Lu, SHEN Zhe, LI Ji-wen, Haliru MUAZU, Sobhi Faid LAMLOM, ZHANG Hui-min. Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2848-2864.
[12] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[13] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[14] YIN Wen, FAN Zhi-long, HU Fa-long, FAN Hong, HE Wei, SUN Ya-li, WANG Feng, ZHAO Cai, YU Ai-zhong, CHAI Qiang. No-tillage with straw mulching boosts grain yield of wheat via improving the eco-physiological characteristics in arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3416-3429.
[15] PIAO Ri-hua, CHEN Mo-jun, MENG Fan-mei, QI Chun-yan, KOH Hee-Jong, GAO Meng-meng, SONG An-qi, JIN Yong-mei, YAN Yong-feng. Identification and characterization of the chalkiness endosperm gene CHALK-H in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2921-2933.
No Suggested Reading articles found!