Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2674-2685    DOI: 10.1016/j.jia.2023.11.005
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk
Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao#
State Key Laboratory of Crop Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦条锈病是小麦最具破坏性的真菌病害之一,严重威胁着世界范围内小麦的安全生产。在中国,新的生理小种出现并迅速发展成为优势小种,导致小麦抗性品种丧失抗性,进而被迭代更替,造成小麦产量大幅下降。因此为了预测一个新小种能否成为流行优势小种具有重要意义。本研究中,在10个中国小麦品种上对两个新出现的Yr5毒力小种(TSA-6TSA-9)与四个目前占优势的中国小种(CYR31CYR32CYR33CYR34)的相对寄生适应性进行了评价。将 6 测试条锈菌小种接种二叶期的小麦幼苗,接种后第 5 天,测量以下参数或指标对测试小种的寄生适合度进行评估,包括孢子萌发率(Urediospore germination rate)、孢子形成能力(Sporulation capacity)、潜育期(Latent period)、夏孢子堆长度(Length of the uredia)、夏孢子堆密度(Uredia density)、产孢期(Sporulation period)、病害严重度(Disease severity)和侵染表型(Infection type)。当小麦品种对测试条锈菌小种(即小种-品种亲和组合)感病时,测量寄生适合度参数。结果显示,基于多重比较(LSD)分析,总体测试小种之间的相对寄生适应度参数存在显著差异(P<0.05)。寄生适应度参数进行主成分分析(PCA分析其中代表产孢能力的主成分贡献率是 53.78%,代表扩展能力和孢子活力的主成分贡献率是 21.89%,代表潜在侵染能力的主成分贡献率是 17.46%累计贡献率超过90%,表明这三个主成分基本能够代表测试小种所有相对寄生适合度参数的绝大部信息。本研究还构建了三个主成分和综合因子得分数学模型,基于计算结果表明Yr5毒力小种TSA-9TSA-6的相对寄生适应度均高于CYR34CYR31CYR33,但低于小种CYR32具有发展成为优势小种潜在风险。因此,需要对两个Yr5毒力小种及其变异菌系进行持续监测。在小麦育种中应避免单使用具有Yr5抗性基因的小麦品种(系),并建议与其他有效的Yr基因聚合使用



Abstract  

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive fungal diseases of wheat, and seriously threatens safe production of the crop worldwide.  In China, new races historically appeared and rapidly developed to be predominant races and have resulted in ineffectiveness and replacement of wheat resistance cultivars as well as massive reduction in yield.  In the present study, the relative parasitic fitness of the two newly-emerged Yr5-virulent races (TSA-6 and TSA-9) were compared with those of four currently predominant Chinese races (CYR31, CYR32, CYR33, and CYR34) based on evaluation on 10 Chinese wheat cultivars.  As a result, there were significant differences in the relative parasitic fitness parameters among overall tested races based on multiple comparison (LSD) analysis (P<0.05).  The principal component analysis (PCA) of overall parasitic fitness parameters indicated that the sporulation ability, infection and spore survivability, expansion capacity, and potential pathogenicity were the most important parasitic fitness attributes of the tested races.  Based on the establishment of extracted three principal components and a comprehensive factor score mathematical models, evaluations of the parasitic fitness attributes of tested races showed that the level of relative parasitic fitness of the tested six races was: CYR32 (1.15)>TSA-9 (0.95)>TSA-6 (0.92)>CYR34 (0.29)>CYR31 (–1.54)>CYR33 (–1.77).  The results indicated that two Yr5-virulent races TSA-9 and TSA-6 possessed relative parasitic fitness higher than races CYR34, CYR31, and CYR33, but lower than race CYR32, and have potential risks in developing to be predominant races.  Therefore, continual monitoring of both Yr5-virulent races, and their variants is needed.  The use of wheat cultivars (lines) with Yr5 resistance gene singly in wheat breeding is essential for being avoided, and is suggested to combine with other effective stripe rust resistance genes.

Keywords:  wheat stripe rust        Puccinia striiformis f. sp. tritici        parasitic fitness        Yr5        new race  
Received: 26 January 2023   Accepted: 25 September 2023
Fund: 
This study was supported by the National Natural Science Foundation of China (32072358 and 32272507), the National Key R&D Program of China (2021YFD1401000), the earmarked fund for CARS-03, the Natural Science Basic Research Project in Shaanxi Province of China (2020JZ-15), and National “111 Project” of China (BP0719026).
About author:  Gensheng Zhang, E-mail: 893414818@qq.com; #Correspondence Jie Zhao, Tel/Fax: +86-2987082726, E-mail: jiezhao@nwsuaf.edu.cn

Cite this article: 

Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. 2024. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk. Journal of Integrative Agriculture, 23(8): 2674-2685.

Badoni S, Chaudhary R, Shekhar R, Badoni S, Ahmad E, Gangwar R P, Tiwari K N, Rawat R S, Deepshikha, Jaiswal J P. 2017. Unveiling sources of stripe rust resistance in diverse wheat (Triticum aestivum L.) germplasm using narrow down methodology: A proof of concept. Journal of Crop Science and Biotechnology20, 393–403.

Bai B B, Liu T G, Liu B, Gao Li, Chen W Q. 2018. High relative parasitic fitness of G22 derivatives is associated with the epidemic potential of wheat stripe rust in China. Plant Disease102, 483–487.

Barret J A. 1978. A model of epidemic development in variety mixture. In: Scott P R, Bainbridge A, eds., Plant Disease Epidemiology. Blackwell Scientific Publications, Oxford. pp. 129–137.

Chen X M. 2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology, 27, 314–337.

Chen X M, Soria M A, Yan G P, Sun J, Dubcovsky J. 2003. Development of ser-friendly PCR markers for wheat stripe rust resistance gene Yr5Crop Science43, 2058–2064.

Dong N, Hu H Y, Hu T Z, Li G, Li X J, Chen X D, Zhang Y J, Ru Z G. 2019. Molecular detection and distribution of stripe rust resistance genes Yr5Yr10 and Yr18 among 348 wheat germplasms. Journal of Northwest A & F University (Natural Science Edition), 28, 1960–1968. (in Chinese)

Groth J V. 1984. Virulence frequency dynamics of cereal rust fungi. In: Cereal Rust. Academic Press, New York. pp. 231–252.

Groth T V, Person C O. 1977. Genetic interdependance of host parasites in epidemics. In: Day P R, ed., The Genetic Basis of Epidemics of Science. The New York Academy of Agriculture, New York. pp. 97–106.

Han D J, Wang Q L, Chen X M, Zeng Q D, Wu J H, Xue W B, Zhan G M, Huang L L, Kang Z S. 2015. Emerging Yr26-virulent races of Puccinia striiformis f. sp. tritici are threatening wheat production in the Sichuan Basin, China. Plant Disease99, 754–760.

Hu C Y, Wang F T, Lang X W, Feng J, Li K J, Lin R M, Yao X B. 2022. Resistance analyses on wheat stripe rust resistance genes to the predominant races of Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica55, 491–502. (in Chinese)

IPPICSCASS (Institute of Plant Protection and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences). 1990. Occurrence and stripe rust and powdery mildew on wheat and its control strategy in 1990. Bulletin of Agricultural Science and Technology8, 26–28. (in Chinese)

Jiang Y Y, Liu W C, Huang C, Liu J, Yang Q B, Lu M H. 2017. Forecast on occurrence trend of important diseases and pests on crops in China in 2017. China Plant Protection37, 45–49, 57. (in Chinese)

Jiang Y Y, Liu W C, Huang C, Lu M H, Liu J. 2019. Forecast on occurrence trend of important diseases and pests on crops in China in 2019. China Plant Protection39, 36–39. (in Chinese)

Ju M, Liu W, Wang L, Sun M D, Kang Z S, Zhao J. 2022. Two main routes of spore migration contributing to the occurrence of wheat stripe rust in the Jiangsu and Zhejiang costal sporadic epidemiological region in 2019 based on phenotyping and genotyping analyses. Plant Disease106, 2948–2957.

Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. 2015. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinai striiformis f. sp. triticiScientia Agricultura Sinica48, 3439–3453. (in Chinese)

Leonard K J, Czochor R J. 1980. Theory of genetic interactions among population of plants and their pathogens. Annual Review of Phytopathology18, 237–258.

Li Q, Li G B, Yue W Y, Du J Y, Yang L J, Kang Z S, Jing J X, Wang B T. 2016. Pathogenicity changes of wheat stripe rust fungus and disease resistance of wheat cultivars (lines) in Shaanxi province during 2002–2014. Acta Phytopathologica Sinica46, 374–383. (in Chinese)

Li Y F, Yuan Z Y, Ren H B. 1992. Monitoring and pathogenicity of Puccinia striiformis f. sp. tritici CYR29. Journal of Shanxi Agricultural University2, 11–13. (in Chinese)

Li Z Q, Zeng S M. 2002. Wheat Rusts in China. China Agriculture Press, Beijing. p. 379. (in Chinese)

Line R F, Chen X M. 1995. Successes in breeding for and managing durable resistance to wheat rusts. Plant Disease79, 1254–1255.

Line R F, Qayoum A. 1992. Virulence, Aggressiveness, Evolution, and Distribution of Races of Puccinia striiformis (the Cause of Stripe Rust of Wheat) in North America, 1968–87. Technical Bulletin Number 1788. United States Department of Agriculture, Agricultural Research Service, Washington, D.C. p. 44.

Liu B, Liu T G, Zhang Z Y, Jia Q Z, Wang B T, Gao L, Peng Y L, Jin S L, Chen W Q. 2017. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica47, 681–687. (in Chinese)

Liu J, Jiang Y Y, Huang C, Wu Q L, Zhang T, Zeng J. 2021. Forecast on occurrence trend of important diseases and pests on food crops in China in 2021. China Plant Protection 41, 37–39, 42. (in Chinese)

Liu T G, Peng Y L, Chen W Q, Zhang Z Y. 2010. First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42. Plant Disease94, 1163.

Macer R C f. 1966. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. Hereditas2, 127–142.

Nagarajan S. 1986. Race 13 (67S8) of Puccinia striiformis virulent on Triticum spelta var. album in India. Plant Disease70, 173.

NATESC (National Agricultural Technique Extension Service Center of China). 2022. Forecast on occurrence trend of important diseases and pests on crops in China in 2022. China Plant Protection42, 107–108. (in Chinese)

Parlevliet J E. 1979. Components of resistance that reduce the rate of epidemic development. Annual Review of Phytopathology17, 203–222.

Smith P H, Hadfield J, Hart N J, Koebner R M, Boyd L A. 2007. STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster. Genome50, 259–265.

Song W Z, Zhang Z J. 1990. The study on the method to estimate fitness of wheat variety yellow rust race. Acta Agriculturae Universitatis PekinensisS1, 170–173. (in Chinese)

Tekin M, Cat A, Akan K, Catal M, Akar T. 2021. A new virulent race of wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) on the resistance gene Yr5 in Turkey. Plant Disease105, 3292.

Wan A M, Chen X M, He Z H. 2007. Wheat stripe rust in China. Australian Journal of Agricultural Research58, 605–619.

Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. 2004. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease88, 896–904.

Wan A M, Zhao Z H, Wu L R. 2003. Reviews of occurrence of wheat stripe rust in 2002 in China. Plant Protection29, 5–8. (in Chinese)

Wang B T, Li C B, Li Q, Wang F, Shi Y Q, Liu Q R, Kang Z S. 2009. Parasitic fitness of major epidemic stains of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica39, 82–87. (in Chinese)

Wang K N, Hong X W, Si Q M, Wang J X, Shen J P. 1963. Studies on the physiologic specialization of stripe rust of wheat in China. Journal of Plant Protection2, 23–36. (in Chinese)

Wang L, Liu F, Bian Y M, Sun M D, Kang Z S, Zhao J. 2024. Revealing inheritance of a Xinjiang isolate BGTB-1 of Puccinia striiformis f. sp. tritici and the shift of pathogenicity from avirulence to virulence at heterozygous AvrYr5 locus. Journal of Integrative Agriculture23, doi: 10.1016/j.jia.2024.04.023.

Wang L, Zheng D, Zuo S X, Chen X M, Zhuang H, Huang L L, Kang Z S, Zhao J. 2018. Inheritance and linkage of virulence genes in Chinese predominant race CYR32 of the wheat stripe rust pathogen Puccinia striiformis f. sp. triticiFrontiers in Plant Science9, 120.

Wang M N, Chen X M. 2017. Stripe rust resistance. In: Chen X M, Kang Z S, eds., Stripe Rust. Springer, Dordrecht. pp. 353–558.

Wang M N, Wan A M, Chen X M. 2022. Race characterization of Puccinia striiformis f. sp. tritici in the United States from 2013 to 2017. Plant Disease106, 1462–1473.

Wang Q, Ma J J, Yang L J, Li Q, Wang B T. 2017. Population structure and diversity analysis of Puccinia striiformis f. sp. tritici in Hubei province in 2015. Journal of Triticeae Crops37, 275–280. (in Chinese)

Wellings C R. 2011. Global status of stripe rust, a review of historical and current threats. Euphyticam179, 129–141.

Wellings C R, McIntosh R A. 1990. Puccinia striiformis f. sp. tritici in Australasia: Pathogenic changes during the first 10 years. Plant Pathology39, 316–325.

Wu L R, Yang H A, Yuan W H, Song W Z, Yang J X, Li Y F, Bi Y Q. 1993. On the physioligic specialization of stripe rust of wheat in China during 1985–1990. Acta Phytopathologica Sinica23, 269–274. (in Chinese)

Xia T, Li J J, Li Qiang, Li C B, Wang F, Kang Z S, Wang B T. 2012. Determination of parasitic fitness of T4 new strains of Puccinia striiformis f. sp. tritici to ‘Zhong 4’. Acta Phytopathologica Sinica42, 594–599. (in Chinese)

Xue W B, Xu X, Mu J M, Wang Q L, Wu J H, Huang L L, Kang Z S, Han D. J. 2014. Evaluation of stripe rust resistance and genes in Chinese elite wheat varieties. Journal of Triticeae Crops34, 1054–1060. (in Chinese)

Yang L J, Zeng F S, Gong S J, Zhang X J, Wang H, Xiang L B, Yu D Z. 2013. Evaluation of resistance to powdery mildew in 68 Chinese major wheat cultivars and postulation of their resistance genes. Scientia Agricultura Sinica46, 3351–3368. (in Chinese)

Yuan F M, Quan Y J, Liu D M, Chen Z G. 2019. Molecular identification of resistance to strip rust in 197 wheat cultivars (lines) and germplasm resources from Qinghai Plateau. Southwest China Journal of Agricultural Sciences32, 1–13. (in Chinese)

Zeng S M. 1996. Study on the method of estimation of relative parasitic fitness of plant pathogenic fungi, examplified with Puccinia striiformis West. Acta Phytopathologica Sinica26, 97–104. (in Chinese)

Zhang C F, Shang H S, Li Z Q. 1994. Parasitic fitness of the major epidemic races of wheat stripe rust in China. Journal of Northwest A&F University (Natural Science Edition), 22, 28–32. (in Chinese)

Zhang G S, Liu W, Chen X R, Wang L, Tian X X, Du Z M, Kang Z S, Zhao J. 2022a. Evaluation on potential risk of the emerging Yr5-virulent races of Puccinia striiformis f. sp. tritici to 165 Chinese wheat cultivars. Plant Disease106, 1867–1874.

Zhang G S, Liu W, Wang L, Ju M, Tian X X, Du Z M, Kang Z S, Zhao J. 2022b. Genetic characteristics and linkage of virulence genes of the Puccinia striiformis f. sp. tritici TSA-6 isolate to Yr5 host resistance. Plant Disease107, 688–700.

Zhang G S, Zhao Y Y, Kang Z S, Zhao J. 2020. First report of a Puccinia striiformis f. sp. tritici race virulent to wheat stripe rust resistance gene Yr5 in China. Plant Disease104, 284.

Zhao J, Wang L, Wang Z, Chen X, Zhang H, Yao J, Zhan G, Chen W, Huang L, Kang Z. 2013. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology103, 927–934.

Zhao J, Wang M N, Chen X M, Kang Z S. 2016. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annual Review of Phytopathology54, 207–228.

Zhao M Q, Zhao Z M, Ma Z H, Zeng S M. 1997. Studies on the methods of estimating parasitic fitness of Magnaporthe grisea Barr. Journal of China Agricultural University2, 51–57. (in Chinese)

Zhou J, Li K Y, Zhang L, Peng Q, Xu R H, Ren M J. 2020. Identification of adult-plant resistance to stripe rust and molecular marker detection of Yr gene in 242 wheat varieties (lines). Journal of Henan Agricultural Science49, 84–97. (in Chinese)

[1] YAN Shan-chun, WU Hong-fei, ZHENG Lin, TAN Ming-tao, JIANG Dun. Cadmium (Cd) exposure through Hyphantria cunea pupae reduces the parasitic fitness of Chouioia cunea: A potential risk to its biocontrol efficiency[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3103-3114.
[2] CHAO Kai-xiang, WU Cai-juan, LI Juan, WANG Wen-li, WANG Bao-tong, LI Qiang. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2305-2318.
No Suggested Reading articles found!