Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (04): 1195-1204    DOI: 10.1016/j.jia.2023.08.008
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |

Fine mapping and cloning of the sterility gene Bra2Ms in non-heading Chinese cabbage (Brassica rapa ssp. chinensis)

Liping Song1, Xia Li2, Liguang Tang1, Chuying Yu1, Bincai Wang1, Changbin Gao1, Yanfeng Xie1, Xueli Zhang1, Junliang Wang1, Chufa Lin1, Aihua Wang1#

1 Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China

2 Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  雄性不育是植物发育过程中重要的生物学过程,也是目前作物杂种优势利用的重要途径。不结球白菜为典型的异花授粉作物,杂种优势明显,然而,其细胞核雄性不育的分子机理仍不明确。矮脚黄A(WS24-3)为新发现的不结球白菜隐性核雄性不育材料,之前的研究将不育基因Bra2MS锁定在白菜A2染色体上,通过细胞学观察发现,产生不育的原因主要是花粉母细胞减数分裂出现异常。本研究通过精细定位将Bra2MS锁定在129K的物理距离内,结合细胞学数据、转录组数据对这129K序列进行ORF分析,初步确定一个编码PHD-finger蛋白转录因子的Bra039753即是WS24-3A的不育基因Bra2Ms。在减数分裂时期,Bra039753在不育系WS24-3A中明显下调表达。Bra2Ms基因的DNA序列在不育材料中有一段369bp的外源插入,且在第一个外显子上,该插入区段与目标基因是共分离的。这些实验数据将为不结球白菜核不育形成的遗传机制研究提供新线索,本研究中获得的分子标记可辅助加快不结球白菜及其他十字花科作物优良不育系的选育。

Abstract  The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage (Brassica rapa ssp. chinensis).  However, the molecular mechanisms underlying male sterility in B. rapa are still largely unclear.  We previously obtained the natural male sterile line WS24-3 of non-heading Chinese cabbage and located the male sterile locus, Bra2Ms, on the A2 chromosome.  Cytological observations revealed that the male sterility of WS24-3 resulted from disruption of the meiosis process during pollen formation.  Fine mapping of Bra2Ms delimited the locus within a physical distance of about 129 kb on the A2 chromosome of B. rapa.  The Bra039753 gene encodes a plant homeodomain (PHD)-finger protein and is considered a potential candidate gene for Bra2MsBra039753 was significantly downregulated in sterile line WS24-3 compared to the fertile line at the meiotic anther stage.  Sequence analysis of Bra039753 identified a 369 bp fragment insertion in the first exon in male sterile plants, which led to an amino acid insertion in the Bra039753 protein.  In addition, the 369 bp fragment insertion was found to cosegregate with the male sterility trait.  This study identified a novel locus related to male sterility in non-heading Chinese cabbage, and the molecular marker obtained in this study will be beneficial for the marker-assisted selection of excellent sterile lines in non-heading Chinese cabbage and other Brassica crops.
Keywords:  non-heading Chinese cabbage       male sterility        Bra2Ms        fine mapping        PHD-finger protein
  
Received: 28 April 2023   Accepted: 05 July 2023
Fund: We thank the Wuhan Major Project of Key Technologies in Biological Breeding and New Variety Cultivation, China (2022021302024852), the Science and Technology Support Project of Rural Vitalization in Hubei Province, China (2022BBA121), the Key Research and Development Project of Hubei Province, China (2021BBA097), and the Key Research and Development Project of Hubei Province, China (2021BBA102) for the financial support.
About author:  Liping Song, E-mail: lp19871120@126.com; #Correspondence Aihua Wang, Tel: +86-27-61801260, E-mail: wangaihualt@163.com

Cite this article: 

Liping Song, Xia Li, Liguang Tang, Chuying Yu, Bincai Wang, Changbin Gao, Yanfeng Xie, Xueli Zhang, Junliang Wang, Chufa Lin, Aihua Wang. 2024.

Fine mapping and cloning of the sterility gene Bra2Ms in non-heading Chinese cabbage (Brassica rapa ssp. chinensis) . Journal of Integrative Agriculture, 23(04): 1195-1204.

Aasland R, Gibson T J, Stewart A F. 1995. The PHD finger: Implications for chromatin-mediated transcriptional regulation. Trends in Biochemical Sciences, 20, 56–59.

Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy K V. 2015. Male sterility systems in major field crops and their potential role in crop improvement. Plant Biology and Biotechnology, 25, 639–656.

Bai X, Peirson B N, Dong F, Xue C, Makaroff C A. 1999. Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis. Plant Cell, 11, 417–430.

Dong S, Zou J, Fang B, Zhao Y, Shi F, Song G, Huang S, Feng H. 2022. Defect in BrMS1, a PHD-finger transcription factor, induces male sterility in ethyl methane sulfonate-mutagenized Chinese cabbage (Brassica rapa L. ssp. pekinensis). Frontiers in Plant Science, 13, 992391.

Feng H, Wei P, Piao Z Y, Liu Z Y, Li C Y, Wang Y G, Ji R Q, Ji S J, Zou T, Choi S R, Lim Y P. 2009. SSR and SCAR mapping of a multiple-allele male-sterile gene in Chinese cabbage (Brassica rapa L.). Theoretical and Applied Genetics, 119, 333–339.

Hafidh S, Honys D. 2021. Reproduction multitasking: The male gametophyte. Annual Review of Plant Biology, 72, 581–614.

Hou S, Sun Z, Li Y, Wang Y, Ling H, Xing G, Han Y, Li H. 2017. Transcriptomic analysis, genic SSR development, and genetic diversity of proso millet (Panicum miliaceum; Poaceae). Applications in Plant Sciences, 5, 1600137.

Hu J, Lan M, Xu X, Yang H, Zhang L, Lv F, Yang H, Yang D, Li C, He J. 2021. Transcriptome profiling reveals molecular changes during flower development between male sterile and fertile chinese cabbage (Brassica rapa ssp. pekinensis) lines. Life (Basel), 11, 525.

Johnson M A, Harper J F, Palanivelu R. 2019. A fruitful journey: Pollen tube navigation from germination to fertilization. Annual Review of Plant Biology, 70, 809–837.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

Lewis J, Fenwick G R. 1987. Glucosinolate content of Brassica vegetables: Analysis of twenty-four cultivars of calabrese (green sprouting broccoli, Brassica oleracea L. var. botrytis subvar. cymosa Lam.). Food Chemistry, 25, 259–268.

Li H, Zhu L, Yuan G, Heng S, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J. 2016. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L. Molecular Genetics and Genomics, 291, 1523–1534.

Li X, Wang A, Zu F, Hu Z, Lin J, Zhou G, Tu J. 2016. Identification of a nuclear-recessive gene locus for male sterility on A2 chromosome using the Brassica 60K SNP array in non-heading Chinese cabbage. Genes and Genomics, 38, 1–7.

Liu H, Zhou F, Zhou T, Yang Y, Zhao Y. 2018. Cytological characterization and molecular mapping of a novel recessive genic male sterility in sesame (Sesamum indicum L.). PLoS ONE, 13, e0204034.

Martinez-Perez E, Shaw P, Moore G. 2001. The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature, 411, 204–207.

Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. 2015. The molecular biology of meiosis in plants. Annual Review of Plant Biology, 66, 297–327.

Mercier R, Vezon D, Bullier E, Motamayor J C, Sellier A, Lefèvre F, Pelletier G, Horlow C. 2001. SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes and Development, 15, 1859–1871.

Mori S, Shimma S, Masuko-Suzuki H, Watanabe M, Nakanishi T, Tsukioka J, Goto K, Fukui H, Hirai N. 2021. Fluorescence from abnormally sterile pollen of the Japanese apricot. Plant Biotechnol (Tokyo), 38, 355–366.

Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.

Qiu Y, Li X X, Zhi H Y, Shen D, Lu P. 2009. Differential expression of salt tolerance related genes in Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee. Journal of Zhejiang University Science B, 10, 847–851.

Qu C, Fu F, Liu M, Zhao H, Liu C, Li J, Tang Z, Xu X, Qiu X, Wang R, Lu K. 2015. Comparative transcriptome analysis of recessive male sterility (RGMS) in sterile and fertile Brassica napus lines. PLoS ONE, 10, e0144118.

Rybarczyk-Plonska A, Hansen M K, Wold A B, Hagen S F, Borge G I A, Bengtsson G B. 2014. Vitamin C in broccoli (Brassica oleracea L. var. italica) flower buds as affected by postharvest light, UV-B irradiation and temperature. Postharvest Biology and Technology, 98, 82–89.

Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology & Evolution, 4, 406–425.

Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K. 1999. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 96, 11664–11669.

Sears E R. 1976. Genetic control of chromosome pairing in wheat. Annual Review of Genetics, 10, 31–51.

Shi F, Liu Z, Wang N, Zhao Y, Dong S, Zou J, Feng H. 2020. Identification of a male sterile gene Ms in Brassica rapa L. Molecular Breeding, 40, 61.

Shi J, Cui M, Yang L, Kim Y J, Zhang D. 2015. Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science, 20, 741–753.

Song L, Li X, Zu F, Gao C, Wang B, Lin C, Tu J, Wang A, Zhou G. 2019. Comparative transcript profiling and cytological observation of the newly bred recessive genic male sterility non-heading Chinese cabbage (Brassica rapa ssp. chinensis) line WS24-3A. Genes Genomics, 41, 1475–1492.

Tan C, Liu Z, Huang S, Feng H. 2019. Mapping of the male sterile mutant gene ftms in Brassica rapa L. ssp. pekinensis via BSR-Seq combined with whole-genome resequencing. Theoretical and Applied Genetics, 132, 355–370.

Tanaka N, Uraguchi S, Kajikawa M, Saito A, Ohmori Y, Fujiwara T. 2018. A rice PHD-finger protein OsTITANIA, is a growth regulator that functions through elevating expression of transporter genes for multiple metals. The Plant Journal, 96, 997–1006.

Tian Z, Ji C, Xie Z, Shi X, Tian B, Cao G, Wei X, Yang Y, Wei F, Shi G. 2022. Integrated cytological and transcriptomic analysis reveals insights into pollen fertility in newly synthetic Brassica allohexaploids. Frontiers in Plant Science, 13, 1096804.

Wang J, Niu B, Huang J, Wang H, Yang X, Dong A, Makaroff C. 2016. The PHD finger protein MMD1/DUET ensures the progression of male meiotic chromosome condensation and directly regulates the expression of the condensin gene CAP-D3. Plant Cell, 28, 1894–1909.

Wang Y, Copenhaver G P. 2018. Meiotic recombination: Mixing it up in plants. Annual Review of Plant Biology, 69, 577–609.

Wang Y Q, Ye W Z, Cao J S, Yu X L, Xiang X, Gang L U. 2005. Cloning and characterization of the microspore development-related gene BcMF2 in Chinese cabbage pak-choi (Brassica campestris L. ssp. chinensis Makino). Journal of Integrative Plant Biology, 47, 863–872.

Wang Z, Li J, Chen S, Heng Y, Chen Z, Yang J, Zhou K, Pei J, He H, Deng X W, Ma L. 2017. Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proceedings of the National Academy of Sciences of the United States of America, 114, 12614–12619.

Wilson Z A. Zhang D. 2009. Stamen specification and anther development in rice. Chinese Science Bulletin, 54, 2342–2353.

Xiao D, Liu S T, Wei Y P, Zhou D Y, Hou X L, Li Y, Hu C M. 2016. cDNA-AFLP analysis reveals differential gene expression in incompatible interaction between infected non-heading Chinese cabbage and Hyaloperonospora parasitica. Horticulture Research, 3, 16034.

Yang W C, Ye D, Xu J, Sundaresan V. 1999. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes & Development, 13, 2108–2117.

Yang X, Makaroff C A, Ma H. 2003. The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell, 15, 1281–1295.

Yao Y, Li Y, He Y, Gao J, Fan M. 2020. Research progress of plant PHD proteins. Shangdong Agricultural Sciences, 52, 165–172. (in Chinese)

Ying M, Dreyer F, Cai D, Jung C. 2003. Molecular markers for genic male sterility in Chinese cabbage. Euphytica, 132, 227–234.

Zhang S, Li F, Han H, Zhang S, Niu X, Sun R. 2008. Screening of linked markers of nuclear dominant male sterility genes in Chinese cabbage. Agricultural Sciences in China, 8, 2379–2385.

Zhou D, Chen C, Jin Z, Chen J, Lin S, Lyu T, Liu D, Xiong X, Cao J, Huang L. 2022. Transcript profiling analysis and ncRNAs’ identification of male-sterile systems of Brassica campestris reveal new insights into the mechanism underlying anther and pollen development. Frontiers in Plant Science, 13, 806865.

Zickler D, Kleckner N. 2015. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harbor Perspectives in Biology, 7, a016626.

[1] XU Yu-chao, HOU Xi-lin, XU Wei-wei, SHEN Lu-lu, Lü Shan-wu, ZHANG Shi-lin, HU Chun-mei. Isolation and characterization of an ERF-B3 gene associated with flower abnormalities in non-heading Chinese cabbage[J]. >Journal of Integrative Agriculture, 2016, 15(3): 528-536.
[2] WANG Li, GE Ting-ting, PENG Hai-tao, WANG Cheng, LIU Tong-kun, HOU Xi-lin. Molecular Cloning, Expression Analysis and Localization of Exo70A1 Related to Self Incompatibility in Non-Heading Chinese Cabbage (Brassica campestris ssp. chinensis)[J]. >Journal of Integrative Agriculture, 2013, 12(12): 2149-2156.
No Suggested Reading articles found!