Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (11): 2862-2879    DOI: 10.1016/S2095-3119(20)63377-9
Special Issue: 油料作物合辑Oil Crops
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of quantitative trait loci and candidate genes controlling seed pigments of rapeseed
ZHU Mei-chen1*, HU Ran1*, ZHAO Hui-yan1, TANG Yun-shan1, SHI Xiang-tian1, JIANG Hai-yan1, ZHANG Zhi-yuan1, FU Fu-you2, XU Xin-fu1, TANG Zhang-lin1, LIU Lie-zhao1, LU Kun1, LI Jia-na1, QU Cun-min
1 Chongqing Engineering Research Center for Rapeseed/College of Agronomy and Biotechnology, Southwest University/Academy of Agricultural Sciences, Southwest University, Chongqing 400716, P.R.China     
2 Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon S7N02X, Canada
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      


Rapeseed (Brassica napus L.) is an important source of edible vegetable oil and feed protein; however, seed pigments affect the quality of rapeseed oil and the feed value of the residue from oil pressing.  Here, we used a population of rapeseed recombinant inbred lines (RILs) derived from the black-seeded male parent cultivar Zhongyou 821 and the yellow-seeded female parent line GH06 to map candidate genes controlling seed pigments in embryos and the seed coat.  We detected 94 quantitative trait loci (QTLs) for seed pigments (44 for embryos and 50 for seed coat), distributed over 15 of the 19 rapeseed chromosomes.  These included 28 QTLs for anthocyanidin content, explaining 2.41–44.66% of phenotypic variation; 24 QTLs for flavonoid content, explaining 2.41–20.26% of phenotypic variation; 16 QTLs for total phenol content, accounting for 2.74–23.68% of phenotypic variation; and 26 QTLs for melanin content, accounting for 2.37–24.82% of phenotypic variation, indicating that these traits are under multigenic control.  Consensus regions on chromosomes A06, A09 and C08 were associated with multiple seed pigment traits, including 15, 19 and 10 QTLs, respectively, most of which were major QTLs explaining >10% of the phenotypic variation.  Based on the annotation of the B. napus “Darmor-bzh” reference genome, 67 candidate genes were predicted from these consensus QTLs regions, and 12 candidate genes were identified as potentially involved in pigment accumulation by RNA-seq and qRT-PCR analysis.  These preliminary results provide insight into the genetic architecture of pigment biosynthesis and lay a foundation for exploring the molecular mechanisms underlying seed coat color in B. napus.
Keywords:  Brassica napus L.        embryo        seed coat        pigments        QTL  
Received: 24 March 2020   Accepted:
Fund: The research was supported by the National Natural Science Foundation of China (31830067), the Major S&T Projects on the Cultivation of New Varieties of Genetically Modified Organisms, China (2018ZX08020001), the Fundamental Research Funds for the Central Universities, China (XDJK2020B030), the China Agriculture Research System of MOF and MARA (CARS-12), the Natural Science Foundation of Chongqing, China (cstc2017jcyjAX0321), and the Higher Education Discipline Innovation Project, China (B12006).
Corresponding Authors:  Correspondence LI Jia-na, Tel/Fax: +86-23-68250642, E-mail:; QU Cun-min, Tel: +86-23-68250701, E-mail:   
About author:  * These authors contributed equally to this study.

Cite this article: 

ZHU Mei-chen, HU Ran, ZHAO Hui-yan, TANG Yun-shan, SHI Xiang-tian, JIANG Hai-yan, ZHANG Zhi-yuan, FU Fu-you, XU Xin-fu, TANG Zhang-lin, LIU Lie-zhao, LU Kun, LI Jia-na, QU Cun-min. 2021. Identification of quantitative trait loci and candidate genes controlling seed pigments of rapeseed. Journal of Integrative Agriculture, 20(11): 2862-2879.

Akhov L, Ashe P, Tan Y, Datla R, Selvaraj G. 2009. Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Botany, 87, 616–625.
Albert S, Delseny M, Devic M. 1997. BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. The Plant Journal, 11, 289–299.
Alexandra T, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F. 2006. A network of local and redundant gene regulation governs Arabidopsis seed maturation. The Plant Cell, 18, 1642–1651.
Auger B, Baron C, Lucas M O, Vautrin S, Bergès H, Chalhoub B, Fautrel A, Renard M, Nesi N. 2009. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta, 230, 1167–1183.
Auger B, Marnet N, Gautier V, Maia-Grondard A, Leprince F, Renard M, Guyot S, Nesi N, Routaboul J M. 2010. A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L. Journal of Agricultural and Food Chemistry, 58, 6246–6256.
Badani A G, Snowdon R G, Wittkop B, Lipsa F D, Baetzel R, Horn R, Haro A D, Font R, Lühs W, Friedt W. 2006. Colocalization of a partially dominant gene for yellow seed color with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome, 49, 1499–1509.
Bariola P A, MacIntosh G C, Green P J. 1999. Regulation of S-like ribonuclease levels in Arabidopsis. Antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation. Plant Physiology, 119, 331–342.
Baudry A, Caboche M, Lepiniec L. 2006. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell specific accumulation of flavonoids in Arabidopsis thaliana. The Plant Journal, 46, 768–779.
Bauer B, Kostik V, Gjorgjeska B. 2015. Fatty acid composition of seed oil obtained from different canola varieties. Farmaceutski Glasnik, 71, 1–7.
Braybrook S A, Stone S L, Park S, Bui A Q, Le B H, Fischer R L, Goldberg R B, Harada J J. 2006. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 3468–3473.
Burns M, Barnes S, Bowman J, Clarke M, Werner C, Kearsey M. 2003. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity, 90, 39–48.
Chai Y R, Lei B, Huang H L, Li J N, Yin J M, Tang Z L, Wang R, Chen L. 2009. TRANSPARENT TESTA12 genes from Brassica napus and parental species: Cloning, evolution, and differential involvement in yellow seed trait. Molecular Genetics and Genomics, 281, 109–123.
Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Silva C D, Just J, Falentin C, Koh C S, Clainche I L, Bernard M, Bento P, Noel B, Labadie K, et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 345, 950–953.
Chen C P, Xiao L, Zhao Z G, Du D Z. 2015. Research progress in seed coat color of yellow-seeded rapeseed. Journal of Henan Agricultural Sciences, 44, 1–6. (in Chinese)
Chen G Q, Deng W, Peng F, Truksa M, Singer S, Snyder C L, Mietkiewska E, Weselake R J. 2013. Brassica napus TT16 homologs with different genomic origins and expression levels encode proteins that regulate a broad range of endothelium-associated genes at the transcriptional level. The Plant Journal, 74, 663–677.
Chiu L W, Zhou X, Burke S, Wu X, Prior R L, Li L. 2010. The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiology, 154, 1470–1480.
Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu J, Deschamps M. 2006. Genetic control of oil content in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 113, 1331–1345.
Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M. 1999. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. The Plant Journal, 19, 387–398.
Deynze A V, Beversdorf W, Pauls K. 1993. Temperature effects on seed color in black- and yellow-seeded rapeseed. Canadian Journal of Plant Science, 73, 383–387.
Ferreyra M L F, Emiliani J, Rodriguez E J, Campos-Bermudez V A, Grotewold E, Casati P. 2015. The identification of maize and Arabidopsis type I FLAVONE SYNTHASEs links flavones with hormones and biotic interactions. Plant Physiology, 169, 1090–1107.
Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N. 2007. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 50, 840–854.
Guan M W, Huang X H, Xiao Z C, Jia L D, Wang S X, Zhu M C, Qiao C L, Wei L J, Xu X F, Liang Y, Wang R, Lu K, Li J N, Qu C M. 2019. Association mapping analysis of fatty acid content in different ecotypic rapeseed using mrMLM. Frontiers in Plant Science, 9, 1872.
Javed N, Geng J, Tahir M, Mcvetty P B E, Li G, Duncan R W. 2016. Identification of QTL influencing seed oil content, fatty acid profile and days to flowering in Brassica napus L. Euphytica, 207, 191–211.
Jiang J J, Shao Y L, Li A M, Lu C L, Zhang Y T, Wang Y P. 2013. Phenolic composition analysis and gene expression in developing seeds of yellow- and black-seeded Brassica napus. Journal of Integativer Plant Biology, 55, 537–551.
Khattab R, Eskin M, Aliani M, Thiyam U. 2010. Determination of sinapic acid derivatives in canola extracts using high-performance liquid chromatography. Journal of the American Oil Chemists’ Society, 87, 147–155.
Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. 2006. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology, 57, 405–430.
Lichtenthaler H K, Wellburn A R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Portland Press Limited, 11, 591–592.
Lin L Z, Harnly J M. 2009. Identification of the phenolic components of collard greens, kale, and Chinese broccoli. Journal of Agricultural and Food Chemistry, 57, 7401–7408.
Liu J, Hua W, Yang H L, Guo T T, Sun X C, Wang X F, Liu G H, Wang H Z. 2014. Effects of specific organs on seed oil accumulation in Brassica napus L. Plant Science, 227, 60–68.
Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y, Snowdon R J, Li J N. 2013. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS ONE, 8, e83052.
Liu L Z, Stein A, Wittkop B, Sarvari P, Li J N, Yan X Y, Dreyer F, Frauen M, Friedt W, Snowdon R J. 2012. A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theoretical and Applied Genetics, 124, 1573–1586.
Liu Z W, Fu T D, Tu J X, Chen B Y. 2005. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 110, 303–310.
Liu Z W, Fu T D, Wang Y, Tu J X, Chen B Y, Zhou Y M, Ma C Z, Shan L M. 2006. Development of SCAR and CAPS markers for a partially dominant yellow seed coat gene in Brassica napus L. Euphytica, 149, 381–385.
Lu J, Li J N, Lei B, Wang S G, Chai Y R. 2009. Molecular cloning and characterization of two Brassica napus TTG1 genes reveal genus-specific nucleotide preference, extreme protein-level conservation and fast divergence of organ-specificity. Genes & Genomics, 31, 129–142.
Marles M, Gruber M Y. 2004. Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. Journal of the Science of Food and Agriculture, 84, 251–262.
McCouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. 1997. Report on QTL nomenclature. Rice Genet Newsl, 14, 111–131.
Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L. 2000. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell, 12, 1863–1878.
Nesi N, Delourme R, Brégeon M, Falentin C, Renard M. 2008. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. Comptes Rendus Biologies, 331, 763–771.
Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. 2001. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell, 13, 2099–2114.
Ni Y, Jiang H L, Lei B, Li J N, Chai Y R. 2008. Molecular cloning, characterization and expression of two rapeseed (Brassica napus L.) cDNAs orthologous to Arabidopsis thaliana phenylalanine ammonia-lyase 1. Euphytica, 159, 1–16.
Peer W A, Murphy A S. 2007. Flavonoids and auxin transport: modulators or regulators? Trends in Plant Science, 12, 556–563.
Pirie A, Mullins M G. 1976. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid. Plant Physiology, 58, 468–472.
Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E. 2006. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics, 114, 67–80.
Qu C M, Fu F Y, Lu K, Zhang K, Wang R, Xu X F, Wang M, Lu J, Wan H, Tang Z L, Li J N. 2013. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. Journal of Experimental Botany, 64, 2885–2898.
Qu C M, Lu K, Liu S, Bu H, Fu F Y, Wang R, Xu X F, Li J N. 2014. SNP detection and analysis of genes for flavonoid pathway in yellow- and black-seeded Brassica napus L. Acta Agronomica Sinica, 40, 1914–1924. (in Chinese)
Qu C M, Zhao H Y, Fu F Y, Zhang K, Yuan J, Liu L, Wang R, Xu X F, Lu K, Li J N. 2016. Molecular mapping and QTL for expression profiles of flavonoid genes in Brassica napus. Frontiers in Plant Science, 7, 1691.
Rahman M, Joersbo M, Poulsen M. 2001. Development of yellow-seeded Brassica napus of double low quality. Plant Breeding, 120, 473–478.
Romani A, Vignolini P, Isolani L, Ieri F, Heimler D. 2006. HPLC-DAD/MS Characterization of flavonoids and hydroxycinnamic derivatives in turnip tops (Brassica rapa L. subsp. sylvestris L.). Journal of Agricultural and Food Chemistry, 54, 1342–1346.
Routaboul J M, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L. 2006. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta, 224, 96–107.
Shan X T, Li Y Q, Yang S, Gao R F, Zhou L D, Bao T T, Han T T, Wang S C, Gao X, Wang L. 2019. A functional homologue of Arabidopsis TTG1 from Freesia interacts with bHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both Freesia hybrida and Arabidopsis thaliana. Plant Physiology and Biochemistry, 141, 60–72.
Shao Y L, Jiang J J, Ran L P, Lu C L, Wei C X, Wang Y P. 2014. Analysis of flavonoids and hydroxycinnamic acid derivatives in rapeseeds (Brassica napus L. var. napus) by HPLC-PDA-ESI (-)-MSn/HRMS. Journal of Agricultural and Food Chemistry, 62, 2935–2945.
Shi S, Wu J S. 2003. The study of seedcoat color in yellow-seeded Brassica napus. Journal of Huazhong Agricultural University, 22, 608–612. (in Chinese)
Shirzadegan M. 1986. Inheritance of seed color in Brassica napus L. Zeitschrift fuer Pflanzenzuechtung, 96, 140–146.
Silva L D C E, Wang S, Zeng Z B. 2012. Composite interval mapping and multiple interval mapping: Procedures and guidelines for using windows QTL cartographer. Methods in Molecular Biology, 871, 75–119.
Stein A, Wittkop B, Liu L, Obermeier C, Friedt W, Snowdon R J. 2013. Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breeding, 132, 382–389.
Stracke R, Ishihara H, Barsch G H A, Mehrtens F, Niehaus K, Weisshaar B. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal, 50, 660–677.
Teh L S. 2015. Genetic variation and inheritance of phytosterol and oil content in winter oilseed rape (Brassica napus L.).
Ph D thesis, Grorg-Agust University of Goettingen, Germany.
Theander O, Aman P, Miksche G E, Yasuda S. 1977. Carbohydrates, polyphenols, and lignin in seed hulls of different colors from turnip rapeseed. Journal of Agricultural and Food Chemistry, 25, 270–273.
Vu T T, Jeong C Y, Nguyen H N, Lee D, Lee S A, Kim J R, Hong S W, Lee H. 2015. Characterization of Brassica napus Flavonol Synthase involved in flavonol biosynthesis in Brassica napus L. Journal of Agricultural and Food Chemistry, 63, 7819–7829.
Wang J, Xian X H, Xu X F, Qu C M, Lu K, Li J N, Liu L Z. 2017. Genome-wide association mapping of seed coat color in Brassica napus. Journal of Agricultural and Food Chemistry, 65, 5229–5237.
Wang S, Basten C, Zeng Z. 2006. Windows QTL cartographer. Version 2.5 [computer program] department of statistics, North Carolina State University, Raleigh, NC. [2012-08-10].
Wang Y, Meng G S, Chen S L, Chen Y J, Jiang J J, Wang Y P. 2018. Correlation analysis of phenolic contents and antioxidation in yellow- and black-seeded Brassica napus. Molecules, 23, 1815.
Wei Y L, Li J N, Lu J, Tang Z L, Pu D C, Chai Y R. 2007. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Molecular Biology Reports, 34, 105–120.
Wen J, Xu J F, Long Y, Xu H M, Wu J G, Meng J L, Shi C H. 2015. Mapping QTLs controlling beneficial fatty acids based on the embryo and maternal plant genomes in Brassica napus L. Journal of the American Oil Chemists’ Society, 92, 541–552. (in Chinese)
Wolfram K, Schmidt J, Wray V, Milkowski C, Schliemann W, Strack D. 2010. Profiling of phenylpropanoids in transgenic low-sinapine oilseed rapeseed (Brassica napus). Phytochemistry, 71, 1076–1084.
Wu G, Zhang L, Wu Y H, Cao Y L, Lu C M. 2010. Comparison of five endogenous reference genes for specific PCR detection and quantification of Brassica napus. Journal of Agricultural and Food Chemistry, 58, 2812–2817.
Wu Y, Bhat P R, Close T J, Lonardi S. 2008. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genetics, 4, e1000212.
Xiao S S, Xu J S, Li Y, Zhang L, Shi S J, Shi S W, Wu J S, Liu K D. 2007. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome, 50, 611–618.
Xie D Y, Sharma S B, Paiva N L, Ferreira D, Dixon R A. 2003. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 299, 396–399.
Xu B B, Li J N, Zhang X K, Wang R, Xie L L, Chai Y R. 2007. Cloning and molecular characterization of a functional flavonoid 3´-hydroxylase gene from Brassica napus. Journal of Plant Physiology, 164, 350–363.
Yan B J, Li H X. 1998. The relationship between browning ratio in etro PPO and phenols of pear explants. Journal of Sichuan Agricultural University, 16, 24–27. (in Chinese)
Yan X Y, Li J N, Fu F Y, Jin M Y, Chen L, Liu L Z. 2009. Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica, 170, 355–364.
Ye X L, Li J N, Tang Z L, Liang Y, Chen L. 2001. Study on seedcoat color and related characters of Brassica napus. Acta Agronomica Sinica, 27, 550–556. (in Chinese)
Ye X L, Li X, Li J N. 2002. Mechanism of Melanin synthesis in seed coat of Brassica napus L. Acta Agronomica Sinica, 28, 638–643. (in Chinese)
Zhai Y G, Yu K D, Cai S L, Hu L M, Amoo O, Xu L, Yang Y, Ma B Y, Jiao Y M, Zhang C F, Khan M H U, Khan S U, Fan C C, Zhou Y M. 2020. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnology Journal, 18, 1153–1168.
Zhang K, Lu K, Qu C M, Liang Y, Wang R, Chai Y R, Li J N. 2013. Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus. PLoS ONE, 8, e61247.
Zhang Y, Li X, Chen W, Yi B, Wen J, Shen J X, Ma C Z, Chen B Y, Tu J X, Fu T D. 2011. Identification of two major QTL for yellow seed color in two crosses of resynthesized Brassica napus line No. 2127–17. Molecular Breeding, 28, 335–342.
Zhao J. 2002. QTLs for oil content and their relationships to other agronomic traits in an European×Chinese oilseed rape population. Ph D thesis, Grorg-Agust University of Goettingen, Germany.
Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. 2005. Oil content in a European×Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Science, 45, 51–59.
Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. 2006. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theoretical and Applied Genetics, 113, 33–38.
Zhao J Y, Dimov Z, Becker H C, Ecke W, Möllers C. 2008. Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Molecular Breeding, 21, 115–125.
Zhao P C, Li X X, Jia J T, Yuan G X, Chen S Y, Qi D M, Cheng L Q, Liu G S. 2019. bHLH92 from sheepgrass acts as a negative regulator of anthocyanin/proanthocyandin accumulation and influences seed dormancy. Journal of Experimental Botany, 70, 269–284.
Zhou X Z, Wei K H, Chen Z H, Xie K, Zhu J J. 1997. Black sesame extracted from melanoma study. Biomass Chemical Engineering, 4, 17–19. (in Chinese)
[1] GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin.

Genetic dissection of ear-related traits using immortalized F2 population in maize [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2492-2507.

[2] CHAO Kai-xiang, WU Cai-juan, LI Juan, WANG Wen-li, WANG Bao-tong, LI Qiang. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2305-2318.
[3] LIU Chen, TIAN Yu, LIU Zhang-xiong, GU Yong-zhe, ZHANG Bo, LI Ying-hui, NA Jie, QIU Li-juan. Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1903-1912.
[4] JIANG Xue-qian, ZHANG Fan, WANG Zhen, LONG Rui-cai, LI Ming-na, HE Fei, YANG Xi-jiang, YANG Chang-fu, JIANG Xu, YANG Qing-chuan, WANG Quan-zhen, KANG Jun-mei. Detection of quantitative trait loci (QTL) associated with spring regrowth in alfalfa (Medicago sativa L.)[J]. >Journal of Integrative Agriculture, 2022, 21(3): 812-818.
[5] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
[6] SHI Mei-qi, LIAO Xi-liang, YE Qian, ZHANG Wei, LI Ya-kai, Javaid Akhter BHAT, KAN Gui-zhen, YU De-yue. Linkage and association mapping of wild soybean (Glycine soja) seeds germinating under salt stress[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2833-2847.
[7] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[8] WANG Li-xia, WANG Jie, LUO Gao-ling, YUAN Xing-xing, GONG Dan, HU Liang-liang, WANG Su-hua, CHEN Hong-lin, CHEN Xin, CHENG Xu-zhen. Construction of a high-density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1753-1761.
[9] YANG Meng-jiao, WANG Cai-rong, Muhammad Adeel HASSAN, WU Yu-ying, XIA Xian-chun, SHI Shu-bing, XIAO Yong-gui, HE Zhong-hu. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1180-1192.
[10] CAO Jian-bo, HE Li-min, Chinedu Charles NWAFOR, QIN Li-hong, ZHANG Chun-yu, SONG Yan-tun, HAO Rong. Ultrastructural studies of seed coat and cotyledon during rapeseed maturation[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1239-1249.
[11] YU Chao, WAN Hui-hua, Peter M. BOURKE, CHENG Bi-xuan, LUO Le, PAN Hui-tang, ZHANG Qi-xiang . High density genetic map and quantitative trait loci (QTLs) associated with petal number and flower diameter identified in tetraploid rose[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1287-1301.
[12] HU Fu-chu, CHEN Zhe, WANG Xiang-he, WANG Jia-bao, FAN Hong-yan, QIN Yong-hua, ZHAO Jietang, HU Gui-bing. Construction of high-density SNP genetic maps and QTL mapping for dwarf-related traits in Litchi chinensis Sonn[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2900-2913.
[13] LI Cen-cen, YU Shu-long, REN Hai-feng, WU Wei, WANG Ya-ling, HAN Qiu, XU Hai-xia, XU Yong-jie, ZHANG Peng-peng. Identification and functional prediction of long intergenic noncoding RNAs in fetal porcine longissimus dorsi muscle[J]. >Journal of Integrative Agriculture, 2021, 20(1): 201-211.
[14] ZHOU Chun-yun, XIONG Hong-chun, LI Yu-ting, GUO Hui-jun, XIE Yong-dun, ZHAO Lin-shu, GU Jiayu, ZHAO Shi-rong, DING Yu-ping, SONG Xi-yun, LIU Lu-xiang. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1721-1730.
[15] Dong Yun, Wang Yi, Jin Feng-wei, Xing Li-juan, Fang Yan, Zhang Zheng-ying, ZOU Jun-jie, Wang Lei, Xu Miao-yun. Differentially expressed miRNAs in anthers may contribute to the fertility of a novel Brassica napus genic male sterile line CN12A[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1731- 1742.
No Suggested Reading articles found!