Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (3): 812-818    DOI: 10.1016/S2095-3119(21)63671-7
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Detection of quantitative trait loci (QTL) associated with spring regrowth in alfalfa (Medicago sativa L.)
JIANG Xue-qian1*, ZHANG Fan1*, WANG Zhen1, LONG Rui-cai1, LI Ming-na1, HE Fei1, YANG Xi-jiang1, YANG Chang-fu1, JIANG Xu1, YANG Qing-chuan1, WANG Quan-zhen2, KANG Jun-mei1
1 Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R.China
2 College of Grassland Agriculture, Northwest A&F University, Yangling 712100, P. R.China
Export:  BibTeX | EndNote (RIS)      

本研究的目的是利用我们在先前研究中构建的F1杂交群体的高密度遗传连锁图谱定位与春季再生相关的数量性状位点(quantitative trait loci, QTL)。该群体包含392个子代,且亲本在春季再生性状上表现出明显的差异。在两个地点连续统计了两年的表型数据,并利用IciMapping软件进行QTL定位分析。利用单个环境中表型的平均值和最佳线性无偏预测(Best Linear Unbiased Prediction,BLUP)作为QTL定位的表型,总共鉴定到36个与春季再生性状显著关联的加性QTL。其中,有十个QTL分别解释了超过10%的表型变异(phenotypic variation, PVE),在P1亲本(父本)中有四个,P2亲本(母本)中有六个。在这些加性QTL中共有六个重叠的QTL区间,在P1和P2中分别有两个和四个。在P1中,两个重叠的区间都位于连锁群7D上。在P2中,PVE >10%的四个QTL在连锁群6D上定位到相同区间。此外,在P2中鉴定出六对显著的上位性QTL,而在P1中没有定位到上位性QTL。在四个重叠的QTL(qCP2019-8qLF2019-5qLF2020-4qBLUP-3)所处区间内筛选到一个候选基因,该基因被注释为MAIL1,拟南芥中的同源基因在植株的生长中起重要作用。本研究定位到的QTLs是利用标记辅助选择对紫花苜蓿春季再生性状进行遗传改良的宝贵资源,鉴定的相关基因为深入了解紫花苜蓿春季再生的遗传特性提供依据。

Abstract  Spring regrowth is an important trait for perennial plants including alfalfa, the most cultivated forage legume worldwide.  However, the genetic and genomic basis of the trait is largely unknown in alfalfa due to its complex genetic background of the tetroploid genome.  The objective of this study was to identify quantitative trait loci (QTLs) associated with spring regrowth using high-resolution genetic linkage maps we constructed previously.  In total, 36 significant additive effect QTLs for the trait were detected.  Among them, 10 QTLs individually explained more than 10% of the phenotypic variation (PVE) with four in P1 and six in P2.  Six overlapped QTLs intervals were detected with two and four intervals distributed in P1 and P2, respectively.  In P1, both overlapped genomic regions were located on homolog 7D.  In P2, the four QTLs with PVE>10% were co-localized on homolog 6D.  Meanwhile, six pairs of significant epistatic QTLs were identified in P2.  Screening of potential candidate genes associated with four overlapped QTLs (qCP2019-8, qLF2019-5, qLF2020-4, and qBLUP-3) narrowed down one candidate annotated as MAIL1.  The Arabidopsis homolog gene has been reported to play an important role in plant growth.  Therefore, the detected QTLs are valuable resources for genetic improvement of alfalfa spring vigor using marker-assisted selection (MAS), and further identification of the associated genes would provide insights into genetic control of spring regrowth in alfalfa.
Keywords:  alfalfa        GBS        genetic map        QTL        spring regrowth  
Received: 25 September 2020   Accepted: 15 March 2021
This research was funded by the Ministry of Science and Technology of People’s Republic of China (2017YFE0111000/EUCLEG 727312) and the Agricultural Science and Technology Innovation Program, China (ASTIP-IAS14).
About author:  JIANG Xue-qian, E-mail:; Correspondence KANG Jun-mei, E-mail: * These authors contributed equally to this research.

Cite this article: 

JIANG Xue-qian, ZHANG Fan, WANG Zhen, LONG Rui-cai, LI Ming-na, HE Fei, YANG Xi-jiang, YANG Chang-fu, JIANG Xu, YANG Qing-chuan, WANG Quan-zhen, KANG Jun-mei. 2022. Detection of quantitative trait loci (QTL) associated with spring regrowth in alfalfa (Medicago sativa L.). Journal of Integrative Agriculture, 21(3): 812-818.

Adhikari L, Lindstrom O M, Markham J, Missaoui A M. 2018. Dissecting key adaptation traits in the polyploid perennial Medicago sativa using GBS-SNP mapping. Frontiers in Plant Science, 9, 934.
Adhikari L, Makaju S O, Missaoui A M. 2019. QTL mapping of flowering time and biomass yield in tetraploid alfalfa (Medicago sativa L.). BMC Plant Biology, 19, 359.
Adhikari L, Missaoui A M. 2017. Nodulation response to molybdenum supplementation in alfalfa and its correlation with root and shoot growth in low pH soil. Journal of Plant Nutrition, 40, 2290–2302.
Adhikari L, Missaoui A M. 2019. Quantitative trait loci mapping of leaf rust resistance in tetraploid alfalfa. Physiological and Molecular Plant Pathology, 106, 238–245.
Bates D, Maechler M, Bolker B. 2012. lme4: linear mixed-effects models using S4 classes (R package version 1.1-21). [2019-03-05].
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools: An Integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194–1202.
Chen H, Zeng Y, Yang Y, Huang L, Tang B, Zhang H, Hao F, Liu W, Li Y, Liu Y, Zhang X, Zhang R, Zhang Y, Li Y, Wang K, He H, Wang Z, Fan G, Yang H, Bao A, et al. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 11, 2494.
Chen T, Zhu Y, Chen K, Shen C, Zhao X, Shabala S, Shabala L, Meinke H, Venkataraman G, Chen Z H, Xu J, Zhou M. 2020. Identification of new QTL for salt tolerance from rice variety Pokkali. Journal of Agronomy and Crop Science, 206, 202–213.
Francki M G, Walker E, Li D A, Forrest K. 2018. High-density SNP mapping reveals closely linked QTL for resistance to Stagonospora nodorum blotch (SNB) in flag leaf and glume of hexaploid wheat. Genome, 61, 145–149.
He F, Long R, Zhang T, Zhang F, Wang Z, Yang X, Jiang X, Yang C, Zhi X, Li M, Yu L, Kang J, Yang Q. 2020. Quantitative trait locus mapping of yield and plant height in autotetraploid alfalfa (Medicago sativa L.). Crop Journal, 8, 812–818.
Jing Q, Bélanger G, Baron V, Bonesmo H, Virkajärvi P, Young D. 2012. Regrowth simulation of the perennial grass timothy. Ecological Modelling, 232, 64–77.
Lei M, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop Journal, 3, 269–283.
Li X, Alarcón-Zúñiga B, Kang J, Nadeem Tahir M H, Jiang Q, Wei Y, Reyno R, Robins J G, Brummer E C. 2015. Mapping fall dormancy and winter injury in tetraploid alfalfa. Crop Science, 55, 1995–2011.
Liu Z Y, Baoyin T, Li X L, Wang Z L. 2019. How fall dormancy benefits alfalfa winter-survival? Physiologic and transcriptomic analyses of dormancy process. BMC Plant Biology, 19, 205.
McCord P, Gordon V, Saha G, Hellinga J, Vandemark G, Larsen R, Smith M, Miller D. 2014. Detection of QTL for forage yield, lodging resistance and spring vigor traits in alfalfa (Medicago sativa L.). Euphytica, 200, 269–279.
Munjal G, Hao J, Teuber LR, Brummer EC. 2018. Selection mapping identifies loci underpinning autumn dormancy in alfalfa (Medicago sativa). G3 (Bethesda), 8, 461–468.
Radovic J, Sokolovic D, Markovic J. 2009. Alfalfa-most important perennial forage legume in animal husbandry. Biotechnology in Animal Husbandry, 25, 465–475.
Rahman M A, Bimpong I K, Bizimana J B, Pascual E D, Arceta M, Swamy B P M, Diaw F, Rahman M S, Singh R K. 2017. Mapping QTLs using a novel source of salinity tolerance from Hasawi and their interaction with environments in rice. Rice, 10, 47.
Ray I M, Han Y, Lei E, Meenach C D, Monteros M J. 2015. Identification of quantitative trait loci for alfalfa forage biomass productivity during drought stress. Crop Science, 55, 2012–2033.
Sakiroglu M, Brummer E C. 2017. Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. Theoretical and Applied Genetics, 130, 261–268.
Uhlken C, Horvath B, Stadler R, Sauer N, Weingartner M. 2014. MAIN-LIKE1 is a crucial factor for correct cell division and differentiation in Arabidopsis thaliana. The Plant Journal, 78, 107–120.
Yang  G, Zhai H, Wu H Y, Zhang X Z, Lü S X, Wang Y Y, Li Y Q, Hu B, Wang L, Wen Z X, Wang D C, Wang S D, Harada K, Xia Z J, Xie F T. 2017. QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of Japanese×Chinese cultivars, Journal of Integrative Agriculture, 9, 1900–1912.
Yu X, Pijut P M, Byrne S, Asp T, Bai G, Jiang Y. 2015. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass. Plant Science, 235, 37–45.
Zhang F, Kang J, Long R, Yu L X, Sun Y, Wang Z, Zhao Z, Zhang T, Yang Q. 2020. Construction of high-density genetic linkage map and mapping quantitative trait loci (qtl) for flowering time in autotetraploid alfalfa (Medicago sativa L.) using genotyping by sequencing. The Plant Genome, 13, e20045.
Zhang F, Kang J, Long R, Yu L X, Wang Z, Zhao Z, Zhang T, Yang Q. 2019. High-density linkage map construction and mapping QTL for yield and yield components in autotetraploid alfalfa using RAD-seq. BMC Plant Biology, 19, 165.
Zhang X, Huang C, Wu D, Qiao F, Li W, Duan L, Wang K, Xiao Y, Chen G, Liu Q, Xiong L, Yang W, Yan J. 2017. High-throughput phenotyping and qtl mapping reveals the genetic architecture of maize plant growth. Plant Physiology, 173, 1554–1564.
[1] GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin.

Genetic dissection of ear-related traits using immortalized F2 population in maize [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2492-2507.

[2] CHAO Kai-xiang, WU Cai-juan, LI Juan, WANG Wen-li, WANG Bao-tong, LI Qiang. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2305-2318.
[3] LIU Chen, TIAN Yu, LIU Zhang-xiong, GU Yong-zhe, ZHANG Bo, LI Ying-hui, NA Jie, QIU Li-juan. Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1903-1912.
[4] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
[5] SHI Mei-qi, LIAO Xi-liang, YE Qian, ZHANG Wei, LI Ya-kai, Javaid Akhter BHAT, KAN Gui-zhen, YU De-yue. Linkage and association mapping of wild soybean (Glycine soja) seeds germinating under salt stress[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2833-2847.
[6] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[7] SHAO Ze-qiang, ZHENG Cong-cong, Johannes A. POSTMA, LU Wen-long, GAO Qiang, GAO Ying-zhi, ZHANG Jin-jing. Nitrogen acquisition, fixation and transfer in maize/alfalfa intercrops are increased through root contact and morphological responses to interspecies competition[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2240-2254.
[8] WANG Li-xia, WANG Jie, LUO Gao-ling, YUAN Xing-xing, GONG Dan, HU Liang-liang, WANG Su-hua, CHEN Hong-lin, CHEN Xin, CHENG Xu-zhen. Construction of a high-density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1753-1761.
[9] YANG Meng-jiao, WANG Cai-rong, Muhammad Adeel HASSAN, WU Yu-ying, XIA Xian-chun, SHI Shu-bing, XIAO Yong-gui, HE Zhong-hu. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1180-1192.
[10] YU Chao, WAN Hui-hua, Peter M. BOURKE, CHENG Bi-xuan, LUO Le, PAN Hui-tang, ZHANG Qi-xiang . High density genetic map and quantitative trait loci (QTLs) associated with petal number and flower diameter identified in tetraploid rose[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1287-1301.
[11] ZHU Mei-chen, HU Ran, ZHAO Hui-yan, TANG Yun-shan, SHI Xiang-tian, JIANG Hai-yan, ZHANG Zhi-yuan, FU Fu-you, XU Xin-fu, TANG Zhang-lin, LIU Lie-zhao, LU Kun, LI Jia-na, QU Cun-min. Identification of quantitative trait loci and candidate genes controlling seed pigments of rapeseed[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2862-2879.
[12] HU Fu-chu, CHEN Zhe, WANG Xiang-he, WANG Jia-bao, FAN Hong-yan, QIN Yong-hua, ZHAO Jietang, HU Gui-bing. Construction of high-density SNP genetic maps and QTL mapping for dwarf-related traits in Litchi chinensis Sonn[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2900-2913.
[13] ZHOU Chun-yun, XIONG Hong-chun, LI Yu-ting, GUO Hui-jun, XIE Yong-dun, ZHAO Lin-shu, GU Jiayu, ZHAO Shi-rong, DING Yu-ping, SONG Xi-yun, LIU Lu-xiang. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1721-1730.
[14] MA Fu-ying, DU Jie, WANG Da-chuan, WANG Hui, ZHAO Bing-bing, HE Guang-hua, YANG Zheng-lin, ZHANG Ting, WU Ren-hong, ZHAO Fang-ming. Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1163-1169.
[15] Qingbin WANG, ZOU Yang. China’s alfalfa market and imports: Development, trends, and potential impacts of the U.S.–China trade dispute and retaliations[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1149-1158.
No Suggested Reading articles found!