Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (12): 2565-2576    DOI: 10.1016/S2095-3119(13)60735-2
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Transgenic Expression of a Functional Fragment of Harpin Protein Hpa1 in Wheat Represses English Grain Aphid Infestation
 XU Man-yu, ZHOU Ting, ZHAO Yan-ying, LI Jia-bao, XU Heng, DONG Han-song , ZHANG Chun-ling
National Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The harpin protein Hpa1 produced by the rice bacterial blight pathogen promotes plant growth and induces plant resistance to pathogens and insect pests. The region of 10-42 residues (Hpa110-42) in the Hpa1 sequence is critical as the isolated Hpa110-42 fragment is 1.3-7.5-fold more effective than the full length in inducing plant growth and resistance. Here we report that transgenic expression of Hpa110-42 in wheat induces resistance to English grain aphid, a dominant species of wheat aphids. Hpa110-42-induced resistance is effective to inhibit the aphid behavior in plant preference at the initial colonization stage and repress aphid performances in the reproduction, nymph growth, and instar development on transgenic plants. The resistance characters are correlated with enhanced expression of defense-regulatory genes (EIN2, PP2-A, and GSL10) and consistent with induced expression of defense response genes (Hel, PDF1.2, PR-1b, and PR-2b). As a result, aphid infestations are alleviated in transgenic plants. The level of Hpa110-42-induced resistance in regard to repression of aphid infestations is equivalent to the effect of chemical control provided by an insecticide. These results suggested that the defensive role of Hpa110-42 can be integrated into breeding germplasm of the agriculturally significant crop with a great potential of the agricultural application.

Abstract  The harpin protein Hpa1 produced by the rice bacterial blight pathogen promotes plant growth and induces plant resistance to pathogens and insect pests. The region of 10-42 residues (Hpa110-42) in the Hpa1 sequence is critical as the isolated Hpa110-42 fragment is 1.3-7.5-fold more effective than the full length in inducing plant growth and resistance. Here we report that transgenic expression of Hpa110-42 in wheat induces resistance to English grain aphid, a dominant species of wheat aphids. Hpa110-42-induced resistance is effective to inhibit the aphid behavior in plant preference at the initial colonization stage and repress aphid performances in the reproduction, nymph growth, and instar development on transgenic plants. The resistance characters are correlated with enhanced expression of defense-regulatory genes (EIN2, PP2-A, and GSL10) and consistent with induced expression of defense response genes (Hel, PDF1.2, PR-1b, and PR-2b). As a result, aphid infestations are alleviated in transgenic plants. The level of Hpa110-42-induced resistance in regard to repression of aphid infestations is equivalent to the effect of chemical control provided by an insecticide. These results suggested that the defensive role of Hpa110-42 can be integrated into breeding germplasm of the agriculturally significant crop with a great potential of the agricultural application.
Keywords:  Hpa110-42       transgenic wheat       resistance       aphids       chemical control  
Received: 18 October 2013   Accepted:
Fund: 

This study was supported by the Programme of Introducing Talents of Discipline to Universities, Ministry of Education of China (111 Project).

Corresponding Authors:  ZHANG Chun-ling, Tel: +86-25-84399057, E-mail: zhangcl@njau.edu.cn     E-mail:  zhangcl@njau.edu.cn
About author:  XU Man-yu, Tel: +86-25-84399005, E-mail: xu_manyu@163.com

Cite this article: 

XU Man-yu, ZHOU Ting, ZHAO Yan-ying, LI Jia-bao, XU Heng, DONG Han-song , ZHANG Chun-ling. 2014. Transgenic Expression of a Functional Fragment of Harpin Protein Hpa1 in Wheat Represses English Grain Aphid Infestation. Journal of Integrative Agriculture, 13(12): 2565-2576.

Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker JR. 1999. EIN2, a bifunctional transducer of ethylene andstress responses in Arabidopsis. Science, 284, 2148-2152

Chen L, Long J, Zhang S S, Qu S, Yin Q, Qian J, Wu X, SunF, Wu T, Cheng Z, Beer S V, Dong H. 2008a. A fragmentof the Xanthomonas oryzae pv. oryzicola harpin HpaGXoocreduces disease and increases yield of rice in extensivegrower plantings. Phytopathology, 98, 792-802

Chen L, Qian J, Qu S P, Long J Y, Yin Q, Zhang CL, Wu X J,Sun F, Wu T Q, Beer S V, Dong H. 2008b. Identificationof specific fragments of HpaGXooc, a harpin protein fromXanthomonas oryzae pv. oryzicola, that induce diseaseresistance and enhanced growth in rice. Phytopathology,98, 781-791

Dangl J L, Dietrich R A, Richberg M H. 1996. Death don’thave no mercy: Cell death programs in plant-microbeinteractions. The Plant Cell, 8, 1793-1807

Dinant S, Clark A M, Zhu Y, Vilaine F, Palauqui J C, KusiakC, Thompson G A. 2003. Diversity of the superfamily ofphloem lectins (phloem protein 2) in angiosperms. PlantPhysiology, 131, 114-128

Dong H, Delaney T P, Bauer D W, Beer S V. 1999. Harpininduces disease resistance in Arabidopsis through thesystemic acquired resistance pathway mediated by salicylicacid and the NIM1 gene. The Plant Journal, 20, 207-215

Dong H P, Peng J L, Bao Z L, Meng X D, Bonasera J M, ChenG Y, Beer SV, Dong H. 2004. Downstream divergenceof the ethylene signaling pathway for harpin-stimulatedArabidopsis growth and insect defense. Plant Physiology,136, 3628-3638

Dong H P, Yu H Q, Bao Z L, Guo X J, Peng J L, Yao Z, ChenG Y, Dong H. 2005. The ABI2-dependent abscisic acidsignalling controls HrpN-induced drought tolerance inArabidopsis. Planta, 221, 313-327

Fu M Q, Xu M Y, Zhou T, Wang D F, Tian S, Han B, Dong HS, Zhang C L. 2014. Transgenic expression of a functionalfragment of harpin protein Hpa1 in wheat induces thephloem-based defense to English grain aphid. Journal ofExperimental Botany, 65, 1439-1543

He S Y, Huang H C, Collmer A. 1993. Pseudomonas syringaepv. syringae harpinPss: A protein that is secreted via the Hrppathway and elicits the hypersensitive response in plants.Cell, 73, 1255-1266

de Ilarduya O M, Xie Q G, Kaloshian I. 2003. Aphid-induceddefense responses in Mi-1-mediated compatible andincompatible tomato interactions Molecular Plant-Microbe Interactions, 16, 699-708

Jung C, Seo J S, Han SW, Koo Y J, Kim C H, Song S I, NahmB H, Choi Y D, Cheong J J. 2008. Overexpression ofAtMYB44 enhances stomatal closure to confer abiotic stresstolerance in transgenic Arabidopsis. Plant Physiology,146, 623-635

Jung C, Shim J S, Seo J S, Lee H Y, Kim C H, Choi Y D,Cheong J J. 2010. Non-specific phytohormonal inductionof AtMYB44 and suppression of jasmonate-responsive geneactivation in Arabidopsis thaliana. Molecular and CellularBiochemistry, 29, 71-76

Kehr J. 2006. Phloem sap proteins: Their identities andpotential roles in the interaction between plants andphloem-feeding insects. Journal of Experimental Botany,57, 767-774

Kim J F, Beer S V. 2000. Hrp genes and harpins of Erwiniaamylovora: A decade of discovery. In: Vanneste J L, ed.,Fire Blight and its Causative Agent, Erwinia Amylovora.CAB International, Wallingford, UK. pp. 141-162

Li X J, Wang D F, Cai H S, Liu C L, Dong H, Zhang C L.2014. Transgenic expression of an active fragment of theharpin protein Hpa1 in wheat reduces Fusarium head blight.Acta Phytophylogica Sinica, 1, 25-34 (in Chinese)

Liu F Q, Liu H X, Jia Q, Guo X J, Zhang S J, Wu X J, Song F,Dong H. 2006. The internal glycine-rich motif and cysteinesuppress several effects of the HpaGXooc protein in plants.Phytopathology, 96, 1052-1059

Liu R X, Chen L, Jia Z H, Lü B B, Dong H. 2011. Transcriptionfactor AtMYB44 regulates induced expression ofthe ETHYLENE INSENSITIVE2 gene in Arabidopsisresponding to a harpin protein. Molecular Plant-MicrobeInteractions, 24, 377-389

Liu R X, Lü B B, Wang X M, Zhang C L, Zhang S P,Qian J, Chen L, Shi H J, Dong H S. 2010. Thirty-seventranscription factor genes differentially respond to a harpinprotein and affect resistance to the green peach aphid inArabidopsis. Journal of Biosciences, 35, 435-450

Lü B B, Li X J, Sun W W, Li L, Gao R, Zhu Q, Tian S M, FuM Q, Yu H L, Tang X M, Zhang C L. 2013. AtMYB44regulates resistance to the green peach aphid anddiamondback moth by activating EIN2-affected defensesin Arabidopsis. Plant Biology (Stuttg), 15, 841-850

Lü B B, Sun W W, Zhang S P, Zhang C L, Qian J, Wang X M,Gao R, Dong H. 2010. HrpNEa-induced deterrent effect onphloem feeding of the green peach aphid Myzus persicaerequires AtGSL5 and AtMYB44 genes in Arabidopsisthaliana. Journal of Biosciences, 36, 123-137

Miao W G, Wang X B, Li M, Song C F, Wang Y, Hu D W,Wang J S. 2010a. Genetic transformation of cotton with aharpin-encoding gene hpaXoo confers an enhanced defenseresponse against different pathogens through a primingmechanism. BMC Plant Biology, 10, 67.

Miao W G, Wang X B, Song C F, Wang Y, Ren Y H, Wang JS. 2010b. Transcriptome analysis of Hpa1Xoo transformedcotton revealed constitutive expression of genes in multiplesignalling pathways related to disease resistance. Journalof Experimental Botany, 61, 4263-4275

Mukhtar M S, Nishimura M T, Dangl J 2009. NPR1 in plantdefense: It’s not over ‘til it’s turned over. Cell, 137, 804-806

Peng J L, Bao Z L, Ren H Y, Wang J S, Dong H. 2004.Expression of harpinXoo in transgenic tobacco inducespathogen defense in the absence of hypersensitiveresponse. Phytopathology, 94, 1048-1055

Peng J L, Dong H, Dong H P, Delaney T P, Bonasera B M, Beer S V. 2003. Harpin-elicited hypersensitive cell death andpathogen resistance requires the NDR1 and EDS1 genes.Physiology Molecular Plant Pathology, 62, 317-326

Qiao H, Chang K N, Yazaki J, Ecker J R. 2009. Interplaybetween ethylene, ETP1/ETP2 F-box proteins, anddegradation of EIN2 triggers ethylene responses inArabidopsis. Genes Development, 23, 512-521

Qiao H, Shen Z, Huang S S, Schmitz R J, Urich M A, Briggs SP, Ecker J R. 2012. Processing and subcellular traffickingof ER-tethered EIN2 control response to ethylene gas.Science, 338, 390-393

Read S M, Northcote D H. 1983. Subunit structure andinteractions of the phloem proteins of Cucurbita maxima(pumpkin). European Journal of Biochemistry, 134, 561-569

Ren H Y, Gu G Y, Long J Y, Yin Q, Wu T Q, Song T, ZhangS J, Chen Z Y, Dong H. 2006a. Combinative effects of abacterial type-III effector and a biocontrol bacterium onrice growth and disease resistance. Journal of Biosciences,31, 617-627

Ren H Y, Song T, Wu T Q, Sun L J, Liu Y X, Yang F F, ChenZ Y, Dong H. 2006b. Effects of a biocontrol bacteriumon transgenic rice plants expressing a bacterial type-IIIeffector. Annals of Microbiology, 56, 281-287

Sang S L, Li X J, Gao R, You Z Z, Lü B B, Liu P Q, Ma QX, Dong H. 2012. Apoplastic and cytoplasmic locationof harpin protein Hpa1Xoo plays different roles in H2O2generation and pathogen resistance in Arabidopsis. PlantMolecular Biology, 79, 375-391

Spoel S H, Mou Z, Tada Y, Spivey N W, Genschik P, Dong X.2009. Proteasome-mediated turnover of the transcriptioncoactivator NPR1 plays dual roles in regulating plantimmunity. Cell, 137, 860-872

Stone B A, Clarke A E. 1992. Chemistry and physiology ofhigher plant 1,3-β-glucans (callose). In: Stone B A, ClarkeA E, eds., Chemistry and Biology of 1,3-β-glucans. LaTrobe University Press, Bundoora, Australia. pp. 365-429

Taketa S, Yuo T, Tonooka T, Tsumuraya Y, Inagaki Y,Haruyama N, Larroque O, Jobling S A. 2012. Functionalcharacterization of barley betaglucanless mutantsdemonstrates a unique role for CslF6 in (1,3;1,4)-β-Dglucanbiosynthesis. Journal of Experimental Botany, 63,381-392

Tjallingii W F. 1987. Electrical recording of stylet penetrationactivities. In: Minks A K, Harrewijn P, eds., Aphids: TheirBiology, Natural Enemies and Control. Vol 2B. Elsevier,Amsterdam. pp. 95-108

Tjallingii W F. 2006. Salivary secretions by aphids interactingwith proteins of phloem wound responses. Journal ofExperimental Botany, 57, 739-745

Voigt C A, Schäfer W, Salomon S. 2006. A comprehensiveview on organ-specific callose synthesis in wheat (Triticumaestivum L.): Glucan synthase-like gene expression, callosesynthase activity, callose quantification and deposition.Plant Physiology & Biochemistry, 44, 242-247

de Vos M, Jander G. 2009. Myzus persicae (green peachaphid) salivary components induce defence responsesin Arabidopsis thaliana. Plant, Cell & Environment, 32,1548-1560

Wang X Y, Song C F, Miao W G, Ji Z L, Wang X, Zhang Y,Zhang J H, Hu J S, Borth W, Wang J S. 2008. Mutationsin the N-terminal coding region of the harpin protein Hpa1from Xanthomonas oryzae cause loss of hypersensitivereaction induction in tobacco. Applied Microbiology andBiotechnology, 81, 359-369

Wei Z M, Lacy R J, Zumoff C H, Bauer D W, He S Y, CollmerA, Beer S V. 1992. Harpin, elicitor of the hypersensitiveresponse produced by the plant pathogen Erwiniaamylovora. Science, 257, 85-88

Will T, van Bel A J. 2008. Induction as well as suppression:How aphid saliva may exert opposite effects on plantdefense. Plant Signaling & Behavior, 3, 427-430

Will T, van Bel A J E. 2006. Physical and chemical interactionsbetween aphids and plants. Journal of ExperimentalBotany, 57, 729-737

Wu X J, Wu T, Long J Y, Yin Q, Zhang Y, Chen L, LiangY, Liu R X, Gao T, Dong H. 2007. Productivity andbiochemical properties of green tea in response to abacterial type-III effector protein and its variants. Journalof Biosciences, 32, 1119-1132

Yang M, Qin B P, Liu C L, Cai H S, Wang Z L, Liang Y C,Yin Y P. 2013. The molecular identification of transgenicHpa110-42 wheat and resistance evaluation on FusariumHead Blight Scientia Agricultura Sinica, 46, 657-667 (in Chinese)

Yu I C, Parker J, Bent A F. 1998. Gene-for-gene diseaseresistance without the hypersensitive response inArabidopsis dnd1 mutant. Proceedings of the NationalAcademy of Sciences of the United States of America, 95,7819-7824

Zhang C L, Shi H J, Chen L, Wang X M, Lü B B, Zhang SP, Liang Y, Liu R X, Qian J, Sun W W, You Z Z, DongH. 2011a. Harpin-induced expression and transgenicoverexpression of the phloem protein gene AtPP2-A1 inArabidopsis repress phloem feeding of the green peachaphid Myzus persicae. BMC Plant Biology, 11, 11.

Zhang C L, Xiao S, Li W, Feng W, Li J, Wu Z, Gao X, LiuF, Shao M. 2011b. Overexpression of a Harpin-encodinggene hrf1 in rice enhances drought tolerance. Journal ofExperimental Botany, 62, 4229-4238

Zhang C L, Fu M Q, Xu H, Dong H. 2012. Transcriptionalregulation of Arabidopsis phloem defenses as a paradigm toexplore molecular mechanism underlying wheat resistanceto aphids. Jounal of Nanjing Agricultural University, 35,113-124. ( in Chinese)

Zhu W G, Magbanua M M, White F F. 2000. Identificationof two novel hpaG-associated genes in the hpaG genecluster of Xanthomonas oryzae pv. oryzae. Journal ofBacteriology, 182, 1844-1853.
[1] HUANG Hong-hao, LU Yi-xing, WU Su-juan, MA Zhen-bao, ZENG Dong-ping, ZENG Zhen-ling. Identification of blaIMI-mediated carbapenem-resistant Enterobacter from a duck farm in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2500-2508.
[2] Tiago SILVA, Ying NIU, Tyler TOWLES, Sebe BROWN, Graham P. HEAD, Wade WALKER, Fangneng HUANG. Selection, effective dominance, and completeness of Cry1A.105/Cry2Ab2 dual-protein resistance in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2151-2161.
[3] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

[4] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[5] ZHANG Yan, TIAN Tian, ZHANG Kun, ZHANG You-jun, WU Qing-jun, XIE Wen, GUO Zhao-jiang, WANG Shao-li.

Lack of fitness cost and inheritance of resistance to abamectin based on the establishment of a near-isogenic strain of Tetranychus urticae [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1809-1819.

[6] Ambreen LEGHARI, Shakeel Ahmed LAKHO, Faiz Muhammad KHAND, Khaliq ur Rehman BHUTTO, Sameen Qayoom LONE, Muhammad Tahir ALEEM, Iqra BANO, Muhammad Ali CHANDIO, Jan Muhammad SHAH, LIN Hui-xing, FAN Hong-jie. Molecular epidemiology, characterization of virulence factors and antibiotic-resistance profile of Streptococcus agalactiae isolated from dairy farms in China and Pakistan[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1514-1528.
[7] LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1291-1307.
[8] GAO Xian-xian, TANG Ya-ling, SHI Qing-yao, WEI Yu-shu, WANG Xiao-xue, SHAN Wei-xing, QIANG Xiao-yu. Vacuolar processing enzyme positively modulates plant resistance and cell death in response to Phytophthora parasitica infection[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1424-1433.
[9] DONG Xiu-chun, QIAN Tai-feng, CHU Jin-peng, ZHANG Xiu, LIU Yun-jing, DAI Xing-long, HE Ming-rong. Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1351-1365.
[10] SONG Zhong-ping, ZUO Yuan-yuan, XIANG Qin, LI Wen-jia, LI Jian, LIU Gang, DAI Shou-fen, YAN Ze-hong.

Investigation of Aegilops umbellulata for stripe rust resistance, heading date, and the contents of iron, zinc, and gluten protein [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1258-1265.

[11] Irshad AHMAD, Maksat BATYRBEK, Khushnuma IKRAM, Shakeel AHMAD, Muhammad KAMRAN, Misbah, Raham Sher KHAN, HOU Fu-jiang, HAN Qing-fang.

Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density [J]. >Journal of Integrative Agriculture, 2023, 22(2): 417-433.

[12] HU Wen-jing, FU Lu-ping, GAO De-rong, LI Dong-sheng, LIAO Sen, LU Cheng-bin. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15[J]. >Journal of Integrative Agriculture, 2023, 22(2): 360-370.
[13] Zaid CHACHAR, Siffat Ullah KHAN, ZHANG Xue-huan, LENG Peng-fei, ZONG Na, ZHAO Jun. Characterization of transgenic wheat lines expressing maize ABP7 involved in kernel development[J]. >Journal of Integrative Agriculture, 2023, 22(2): 389-399.
[14] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
[15] PAN Fan, GAO Li-jie, ZHU Kai-hui, DU Gui-lin, ZHU Meng-meng, ZHAO Li, GAO Yu-lin, TU Xiong-bing, ZHANG Ze-hua. Regional selection of insecticides and fungal biopesticides to control aphids and thrips and improve the forage quality of alfalfa crops[J]. >Journal of Integrative Agriculture, 2023, 22(1): 185-194.
No Suggested Reading articles found!