Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
A tomato NBS-LRR gene Mi-9 confers heat-stable resistance to root-knot nematodes

Shudong Chen1, 2, 3*, Yupan Zou1, 3*, Xin Tong1, 2, 3, Cao Xu1, 3#

1 State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing100000, China

2 University of Chinese Academy of Sciences, Beijing 100000, China

3 CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

根结线虫(RKNs)是土壤传播最为广泛的植物内寄生虫。它们会感染多作物的根部,造成严重的产量损失。在番茄中,唯一商业化的抗根结线虫基因Mi-1.2在土壤温度超过28°C时失效。我们从秘鲁番茄小种LA2157中克隆了热稳定的抗根结线虫基因Mi-9,该基因存在于一段由七个NBS-LRR抗性基因组成的基因簇中。通过单独和组合敲除多个候选基因,我们发现单个候选基因Mi-9 Candidate-4 (MiC-4)就足以产生热稳定RKN抗性。我们的研究为番茄在极端高温频发的种植环境下获得热稳定根结线虫抗性找到了新的基因资源。我们还绘制了通过结合比较基因组学和基因组编辑手段快速鉴定抗性基因的路线图,或可用于多种作物遗传改良。



Abstract  

Root-knot nematodes (RKNs) are the most widespread soil-borne obligate endoparasites. They can infect the roots of many crops and cause significant yield losses. In tomato, the only commercially available RKN resistant gene Mi-1.2 fails at soil temperatures above 28°C. We cloned the heat stable RKN-resistant gene Mi-9 from a gene cluster composed of seven nucleotide-binding site and leucine-rich repeat (NBS-LRR) type resistant genes in Solanum arcunum accession LA2157. Screening nematode infections in individual & combinatorial knockouts of five NBS-LRR genes showed that Mi-9 Candidate 4 (MiC-4) alone is sufficient to confer heat stable RKN resistance. Our study identifies a new source of heat stable resistance to RKN in tomato for challenging environmental conditions. We also showcase a roadmap for rapid characterization of resistance genes by combining comparative genomics and genome editing, with the potential to be utilized in other crops.

Keywords:  tomato       nematode        heat-stable resistance        Mi-9        genome editing  
Online: 18 July 2024  
Fund: This work was supported by the National Key R&D Program of China (2018YFA0900600) and (2021YFF1000103-5) to C.X.
About author:  *These authors contributed equally to this work. # Correspondence Cao Xu, E-mail: caoxu@genetics.ac.cn

Cite this article: 

Shudong Chen, Yupan Zou, Xin Tong, Cao Xu. 2024. A tomato NBS-LRR gene Mi-9 confers heat-stable resistance to root-knot nematodes. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.07.017

Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck F J, Lippman Z B, Schatz M C. 2019. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol, 20, 224. doi,10.1186/s13059-019-1829-6.

Brooks C, Nekrasov V, Lippman Z B, Van Eck J. 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol, 166, 1292-1297. doi,10.1104/pp.114.247577.

Cermak T, Curtin S J, Gil-Humanes J, Cegan R, Kono T J Y, Konecna E, Belanto J J, Starker C G, Mathre J W, Greenstein R L, Voytas D F. 2017. A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants. Plant Cell, 29, 1196-1217. doi,10.1105/tpc.16.00922.

Du H, Liang C. 2019. Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads. Nat Commun, 10, 5360. doi,10.1038/s41467-019-13355-3.

Fuller V L, Lilley C J, Urwin P E. 2008. Nematode resistance. New Phytol, 180, 27-44. doi,10.1111/j.1469-8137.2008.02508.x.

J.C. Veremis P A R. 1996. Identification of resistance to Meloidogyne javanica. Theor Appl Genet, 93.

Jablonska B, Ammiraju J S, Bhattarai K K, Mantelin S, Martinez de Ilarduya O, Roberts P A, Kaloshian I. 2007. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol, 143, 1044-1054. doi,10.1104/pp.106.089615.

Jiang L, Ling J, Zhao J, Yang Y, Yang Y, Li Y, Jiao Y, Mao Z, Wang Y, Xie B. 2023. Chromosome-scale genome assembly-assisted identification of Mi-9 gene in Solanum arcanum accession LA2157, conferring heat-stable resistance to Meloidogyne incognita. Plant Biotechnol J. doi,10.1111/pbi.14055.

Koren S, Walenz B P, Berlin K, Miller J R, Bergman N H, Phillippy A M. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, 27, 722-736. doi,10.1101/gr.215087.116. (in English)

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. 2009. Circos: an information aesthetic for comparative genomics. Genome Res, 19, 1639-1645. doi,10.1101/gr.092759.109.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874. doi,10.1093/molbev/msw054. (in English)

Li N, He Q, Wang J, Wang B, Zhao J, Huang S, Yang T, Tang Y, Yang S, Aisimutuola P, Xu R, Hu J, Jia C, Ma K, Li Z, Jiang F, Gao J, Lan H, Zhou Y, Zhang X, Huang S, Fei Z, Wang H, Li H, Yu Q. 2023. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat Genet, 55, 852-860. doi,10.1038/s41588-023-01340-y.

Lilley C J, Maqbool A, Wu D, Yusup H B, Jones L M, Birch P R J, Banfield M J, Urwin P E, Eves-van den Akker S. 2018. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene. PLoS Genet, 14, e1007310. doi,10.1371/journal.pgen.1007310.

Marcais G, Delcher A L, Phillippy A M, Coston R, Salzberg S L, Zimin A. 2018. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol, 14, e1005944. doi,10.1371/journal.pcbi.1005944.

McGinnis S, Madden T L. 2004. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32, W20-W25. doi,10.1093/nar/gkh435. (in English)

van Ooijen G, Mayr G, Albrecht M, Cornelissen B J, Takken F L. 2008. Transcomplementation, but not physical association of the CC-NB-ARC and LRR domains of tomato R protein Mi-1.2 is altered by mutations in the ARC2 subdomain. Mol Plant, 1, 401-410. doi,10.1093/mp/ssn009.

Waszczak C, Carmody M, Kangasjarvi J. 2018. Reactive Oxygen Species in Plant Signaling. Annu Rev Plant Biol, 69, 209-236. doi,10.1146/annurev-arplant-042817-040322. 

No related articles found!
No Suggested Reading articles found!