Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 682-693    DOI: 10.1016/j.jia.2025.12.001
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
VqMAPK3–VqERF1B–VqPRs module confers resistance against Erysiphe necator in grapevine

Chaohui Yan1, Juexi Liu1, Xiaoxuan Wang1#, Yunfei Wang1, Yuejin Wang2, Jiaping Liang1#, Qiliang Yang1#

1 Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China

2 College of Horticulture, Northwest A&F University, Yangling 712100, China

 Highlights 

VqERF1B enhances resistance to powdery mildew by promoting the transcription of VqPRs.

The interaction between VqERF1B and VqMAPK3 further enhances the regulation of VqPRs.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

葡萄白粉菌是严重影响葡萄产量和品质的一种真菌性病原体,对葡萄产业造成重大经济损失。因此,鉴定和表征宿主的抗病机制至关重要。本研究中,我们从中国野生毛葡萄“丹凤-2”中鉴定到一个在葡萄白粉病菌侵染过程中持续高表达的转录因子VqERF1B。在葡萄叶片中瞬时过表达VqERF1B后,发现VqERF1B通过提升PR1PR2PR5PR10病程相关蛋白基因的转录水平,增强葡萄对白粉病的抗性。相反,VqERF1B基因沉默后,葡萄对白粉病的抗性降低。同时,我们对稳定过表达VqERF1B的转基因拟南芥的抗病性评估表明,VqERF1B通过促进PRs的高表达和活性氧(ROS)的积累来增强对白粉病的抗性。此外,一系列试验证实,磷酸化激酶VqMAPK3与VqERF1B蛋白互作。VqERF1B被证明可直接与VqPRs的启动子结合,从而促进VqPRs表达。有趣的是,VqMAPK3-VqERF1B转录复合物对VqPR启动子的激活活性高于VqERF1B单独作用时,以上结果表明VqMAPK3在VqERF1B促进PR基因表达过程中发挥着正向协同作用。本研究揭示了葡萄抗白粉病调控过程,为葡萄分子育种奠定了基础。



Abstract  

Erysiphe necator is a destructive fungal pathogen that compromises grapevine yield and quality, leading to substantial economic losses.  Therefore, elucidating host resistance mechanisms is essential.  In this study, we identified an ethylene response factor, VqERF1B, that exhibits sustained high expression during E. necator infection in Chinese wild grape Vitis quinquangularis accession ‘Danfeng-2’.  Transient overexpression of VqERF1B in grape leaves enhanced resistance to E. necator by elevating transcript levels of pathogenesis-related (PR) genes, including PR1, PR2, PR5, and PR10.  Conversely, silencing VqERF1B resulted in increased susceptibility.  Moreover, transgenic Arabidopsis lines stably overexpressing VqERF1B exhibited enhanced resistance to powdery mildew, associated with elevated PR gene expression and increased accumulation of reactive oxygen species (ROS).  A series of assays identified VqMAPK3, a phosphorylated mitogen-activated protein kinase, as a direct interactor of VqERF1B.  Furthermore, VqERF1B was shown to bind directly to the promoters of VqPRs, thereby activating their transcription.  Notably, the VqMAPK3-VqERF1B complex exhibited greater transactivation activity on VqPR promoters than VqERF1B alone, indicating that VqMAPK3 positively modulates VqERF1B-mediated transcription of PR genes.  This work advances understanding of the molecular basis of grape resistance to E. necator and provides a foundation for molecular breeding strategies.

Keywords:  Erysiphe necator        disease resistance       ERF transcription factor       mitogen-activated protein kinase cascade pathway (MAPK)       pathogenesis-related gene  
Received: 05 October 2024   Accepted: 25 September 2025 Online: 05 December 2025  
Fund: This study is granted by the National Natural Science Foundation of China (52209055, 52379041, and 32272667), the Yunnan Fundamental Research Projects, China (202401AU070197, 202501AW070013, 202501BC070015, and 202501AT070377), the Yunnan Education Department Project, China (2024J0079), the Kunming University of Science and Technology Talent Development Project, China (KKZ3202423161), the Yunnan Key Laboratory of Efficient Utilization of Agricultural Water Resources and Intelligent Control, China (202449CE340014), and the Yunnan Intelligent Water-Fertilizer-Pesticide Integration Technology and Equipment Innovation Team, China (202505AS350025).
About author:  Chaohui Yan, E-mail: ychputao@163.com; #Correspondence Xiaoxuan Wang, E-mail: 112004010002@home.hpu.edu.cn; Jiaping Liang, E-mail: liangjpxaut@163.com; Qiliang Yang, E-mail: yangqilianglovena@163.com

Cite this article: 

Chaohui Yan, Juexi Liu, Xiaoxuan Wang, Yunfei Wang, Yuejin Wang, Jiaping Liang, Qiliang Yang. 2026. VqMAPK3–VqERF1B–VqPRs module confers resistance against Erysiphe necator in grapevine. Journal of Integrative Agriculture, 25(2): 682-693.

Ali S, Ganai B A, Kamili A N, Bhat A A, Mir Z A, Bhat J A, Tyagi A, Islam S T, Mushtaq M, Yadav P, Rawat S, Grover A. 2018. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research212–213, 29–37.

Ali S, Mir Z A, Tyagi A, Bhat J A, Chandrashekar N, Papolu P K, Rawat S, Grover A. 2017. Identification and comparative analysis of Brassica juncea pathogenesis-related genes in response to hormonal, biotic and abiotic stresses. Acta Physiologiae Plantarum39, 1–15.

Bethke G, Unthan T, Uhrig J F, Pöschl Y, Gust A A, Scheel D, Lee J. 2009. Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proceedings of the National Academy of Sciences of the United States of America106, 8067–8072.

Çakır B, Kılıçkaya O. 2015. Mitogen-activated protein kinase cascades in Vitis viniferaFrontiers in Plant Science6, 556.

Chang Y, Chen G, Yang G, Sun C, Wei W, Korban S, Wu J. 2023. The PcERF5 promotes anthocyanin biosynthesis in red-fleshed pear (Pyrus communis) through both activating and interacting with PcMYB transcription factors. Journal of Integrative Agriculture22, 2687–2704.

Clough S J, Bent A F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thalianaPlant Journal16, 735–743.

Dai L, Wang D, Xie X, Zhang C, Wang X, Xu Y, Wang Y, Zhang J. 2016. The novel gene VpPR4–1 from Vitis pseudoreticulata increases powdery mildew resistance in transgenic Vitis vinifera L. Frontiers in Plant Science7, 695.

Deng H, Pei Y, Xu X, Du X, Xue Q, Gao Z, Shu P, Wu Y, Liu Z, Jian Y. 2024. Ethylene-MPK8-ERF. C1-PR module confers resistance against Botrytis cinerea in tomato fruit without compromising ripening. New Phytologist242, 592–609.

Dong L, Cheng Y, Wu J, Cheng Q, Li W, Fan S, Jiang L, Xu Z, Kong F, Zhang D. 2015. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. Journal of Experimental Botany66, 2635–2647.

Gadoury D M, Cadle-Davidson L, Wilcox W F, Dry I B, Seem R C, Milgroom M G. 2012. Grapevine powdery mildew (Erysiphe necator): A fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Molecular Plant Pathology13, 1–16.

Hao C, Han J, Yan P, Ouyang J, Sheng L, Long G, Deng Z, Cao Y, Ma X. 2025. Citrus PR4A is involved in the defense responses against Xanthomonas citri subsp. citri. Journal of Integrative Agriculture24, 4643–4655.

Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature449, 463–467.

Jelli V, Byoung-Cheorl K. 2019. Current views on temperature-modulated R gene-mediated plant defense responses and tradeoffs between plant growth and immunity. Current Opinion in Plant Biology50, 9–17.

Jiang C, Wang D, Zhang J, Xu Y, Zhang C, Zhang J, Wang X, Wang Y. 2021. VqMYB154 promotes polygene expression and enhances resistance to pathogens in Chinese wild grapevine. Horticulture Research8, 151.

Jones L, Riaz S, Morales-Cruz A, Amrine K C, McGuire B, Gubler W D, Walker M A, Cantu D. 2014. Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necatorBMC Genomics15, 1081.

Kunova A, Pizzatti C, Saracchi M, Pasquali M, Cortesi P. 2021. Grapevine powdery mildew: fungicides for its management and advances in molecular detection of markers associated with resistance. Microorganisms9, 1541.

Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. 2007. Clustal W and clustal X version 2.0. Bioinformatics23, 2947–2948.

Lei C, Dang Z, Zhu M, Zhang M, Wang H, Chen Y, Zhang H. 2024. Identification of the ERF gene family of Mangifera indica and the defense response of MiERF4 to Xanthomonas campestris pv. mangiferaeindicaeGene912, 148382.

Li Q F, He J X. 2016. BZR1 interacts with HY5 to mediate brassinosteroid-and light-regulated cotyledon opening in Arabidopsis in darkness. Molecular Plant9, 113–125.

Li Y, Liu K, Tong G, Xi C, Liu J, Zhao H, Wang Y, Ren D, Han S. 2022. MPK3/MPK6-mediated phosphorylation of ERF72 positively regulates resistance to Botrytis cinerea through directly and indirectly activating the transcription of camalexin biosynthesis enzymes. Journal of Experimental Botany73, 413–428.

Liu D, He X, Li W, Chen C, Ge F. 2012. Molecular cloning of a thaumatin-like protein gene from Pyrus pyrifolia and overexpression of this gene in tobacco increased resistance to pathogenic fungi. Plant CellTissue and Organ Culture (PCTOC), 111, 29–39.

Liu R, Chen T, Yin X, Xiang G, Peng J, Fu Q, Li M, Shang B, Ma H, Liu G, Wang Y, Xu Y. 2021. A Plasmopara viticola RXLR effector targets a chloroplast protein PsbP to inhibit ROS production in grapevine. Plant Journal106, 1557–1570.

Liu W, Yan C, Li R, Chen G, Wang X, Wen Y, Zhang C, Wang X, Xu Y, Wang Y. 2023. VqMAPK3/VqMAPK6, VqWRKY33, and VqNSTS3 constitute a regulatory node in enhancing resistance to powdery mildew in grapevine. Horticulture Research10, uhad116.

Liu X, Zhu J, Li R, Feng Y, Yao Q, Duan D. 2025. The role of the transcription factor NAC17 in enhancing plant resistance and stress tolerance in Vitis quinquangularisJournal of Integrative Agriculture24, 3435–3450.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Ma N, Sun P, Li Z Y, Zhang F J, Wang X F, You C X, Zhang C L, Zhang Z. 2024. Plant disease resistance outputs regulated by AP2/ERF transcription factor family. Stress Biology4, 1–12.

Meng X, Xu J, He Y, Yang K Y, Mordorski B, Liu Y, Zhang S. 2013. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. The Plant Cell25, 1126–1142.

Meng X, Zhang S. 2013. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology51, 245–266.

Müller M, Munné-Bosch S. 2015. Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiology169, 32–41.

Návarová H, Bernsdorff F, Döring A C, Fau-Zeier J, Zeier J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell24, 5123–5141.

Nie S, Wang D. 2023. AP2/ERF transcription factors for tolerance to both biotic and abiotic stress factors in plants. Tropical Plant Biology16, 105–112.

Qiu W, Feechan A, Dry I. 2015. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture Research2, 15020.

Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S. 2017. Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. The Plant Cell29, 526–542.

Sun X, Yu G, Li J, Liu J, Wang X, Zhu G, Zhang X, Pan H. 2018. AcERF2, an ethylene-responsive factor of Atriplex canescens, positively modulates osmotic and disease resistance in Arabidopsis thalianaPlant Science274, 32–43.

Torres M A. 2010. ROS in biotic interactions. Physiologia Plantarum138, 414–429.

Torres M A, Jones J D, Dangl J L. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiology141, 373–378.

Wang D, Jiang C, Li R, Wang Y. 2019. VqbZIP1 isolated from Chinese wild Vitis quinquangularis is involved in the ABA signaling pathway and regulates stilbene synthesis. Plant Science287, 110202–110214.

Wang G, Lovato A, Liang Y, Wang M, Chen F, Tornielli G B, Polverari A, Pezzotti M, Cheng Z. 2014. Validation by isolation and expression analyses of the mitogen-activated protein kinase gene family in the grapevine (Vitis vinifera L.). Australian Journal of Grape and Wine Research20, 255–262.

Wang K, Shao Z, Guo F, Wang K, Zhang Z. 2021. The mitogen-activated protein kinase kinase TaMKK5 mediates immunity via the TaMKK5–TaMPK3–TaERF3 module. Plant Physiology187, 2323–2337.

Wang L, Liu W, Wang Y. 2020. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinereaPlant Science293, 110421–110436.

Wang M, Zhu Y, Han R, Yin W, Guo C, Li Z, Wang X. 2018. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana improves resistance to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. International Journal of Molecular Sciences19, 696.

Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, Wang Y, Wang X. 2018. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal16, 844–855.

Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J. 1995. Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis34, 159–164.

Weßling R, Panstruga R. 2012. Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts. Plant Methods8, 35.

Xia S, Liu H, Liu Y, Zhang G, Ren D, Qian Q. 2025. Editing of the APETALA2/ethylene responsive factor confers improvements in seed shattering and quality in rice. Journal of Integrative Agriculture24, 3282–3286.

Xiao S, EIIwood S, Findlay K, Oliver R P, Turner J G. 1997. Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases. Plant Journal12, 757–768.

Xing C, Chen Q, Qiao Q, Gu S, Cheng X, Dong H, Lin L, Zhang F, Han C, Zhang Z. 2023. PbrWRKY70 increases pear (Pyrus bretschneideri Rehd) black spot disease tolerance by negatively regulating ethylene synthesis via PbrERF1B-2. Plant Science334, 111773.

Xing L, Di Z, Yang W, Liu J, Li M, Wang X, Cui C, Wang X, Wang X, Zhang R. 2017. Overexpression of ERF1-V from Haynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses. Frontiers in Plant Science8, 1948.

Xu J, Meng J, Meng X, Zhao Y, Liu J, Sun T, Liu Y, Wang Q, Zhang S. 2016. Pathogen-responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity. The Plant Cell28, 1144–1162.

Xu R, Duan P, Yu H, Zhou Z, Zhang B, Wang R, Li J, Zhang G, Zhuang S, Lyu J, Li N, Chai T, Tian Z, Yao S, Li Y. 2018. Control of grain size and weight by the OsMKKK10–OsMKK4–OsMAPK6 signaling pathway in rice. Molecular Plant11, 860–873.

Yan C, Liu W, Li R, Liu G, Wang Y. 2025. VqERF1B-VqERF062-VqNSTS2 transcriptional cascade enhances stilbene biosynthesis and resistance to powdery mildew in grapevine. Plant Biotechnology Journal, https://doi.org/10.1111/pbi.70041

Yan C, Yang N, Li R, Wang X, Xu Y, Zhang C, Wang X, Wang Y. 2023. Alfin-like transcription factor VqAL4 regulates a stilbene synthase to enhance powdery mildew resistance in grapevine. Molecular Plant Pathology24, 123–141.

Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols2, 1565–1572.

Zang Z, Lv Y, Liu S, Yang W, Ci J, Ren X, Wang Z, Wu H, Ma W, Jiang L. 2020. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicumFrontiers in Plant Science11, 850.

Zang Z, Wang Z, Zhao F, Yang W, Ci J, Ren X, Jiang L, Yang W. 2021. Maize ethylene response factor ZmERF061 is required for resistance to Exserohilum turcicumFrontiers in Plant Science12, 630413.

Zeng Q, Sun Q, Hou X, Chen L, Zhang R, Bai X, Liu X, Wang X, Zhang L, Li B. 2025. Comparative transcriptomic analysis of Chinese cabbage’s defense responses to Alternaria brassicaeJournal of Integrative Agriculture24, 3895–3908.

Zhang M, Zhang S. 2022. Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology64, 301–341.

Zhang X, Wu Y, Li Z, Song C, Wang X. 2021. Advancements in plant regeneration and genetic transformation of grapevine (Vitis spp.). Journal of Integrative Agriculture20, 1407–1434.

Zhang Y, Yan H, Wei X, Zhang J, Wang H, Liu D. 2017. Expression analysis and functional characterization of a pathogen-induced thaumatin-like gene in wheat conferring enhanced resistance to Puccinia triticinaJournal of Plant Interactions12, 332–339.

Zhang Y, Zhang L, Ma H, Zhang Y, Zhang X, Ji M, van Nocker S, Ahmad B, Zhao Z, Wang X. 2021. Overexpression of the apple (Malus×domesticaMdERF100 in Arabidopsis increases resistance to powdery mildew. International Journal of Molecular Sciences22, 5713.

Zhang Z, Chen C, Jiang C, Lin H, Zhao Y, Guo Y. 2025. The homeodomain transcription factor VvOCP3 negatively regulates white rot resistance in grape. Journal of Integrative Agriculture24, 3451–3464.

Zhao Y, Chang X, Qi D, Dong L, Wang G, Fan S, Jiang L, Cheng Q, Chen X, Han D. 2017. A novel soybean ERF transcription factor, GmERF113, increases resistance to Phytophthora sojae infection in soybean. Frontiers in Plant Science8, 299.

Zhu Y, Li Y, Zhang S, Yao J, Luo Q, Sun F, Wang X. 2019. Genome-wide identification and expression analysis reveal the potential function of ethylene responsive factor gene family in response to Botrytis cinerea infection and ovule development in grapes (Vitis vinifera L.). Plant Biology (Stuttg), 21, 571–584.

Zhu Y, Zhang X, Zhang Q, Chai S, Yin W, Gao M, Li Z, Wang X. 2022. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Molecular Plant Pathology23, 1415–1432.

Zhu Z, Shi J, Xu W, Li H, He M, Xu Y, Xu T, Yang Y, Cao J, Wang Y. 2013. Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. Journal of Plant Physiology170, 923–933.

[1] LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1291-1307.
[2] SHI Bei-bei, WANG Juan, GAO Hai-feng, ZHANG Xiao-juan, WANG Yang, MA Qing. The TaFIM1 gene mediates wheat resistance against Puccinia striiformis f. sp. tritici and responds to abiotic stress[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1849-1857.
[3] WANG Xiao-dong, BI Wei-shuai, GAO Jing, YU Xiu-mei, WANG Hai-yan, LIU Da-qun. Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2468-2476.
[4] WU Shi-wen, WANG Hong-wei, YANG Zai-dong , KONG Ling-rang. Expression Comparisons of Pathogenesis-Related (PR) Genes in Wheat in Response to Infection/Infestation by Fusarium, Yellow dwarf virus (YDV) Aphid-Transmitted and Hessian Fly[J]. >Journal of Integrative Agriculture, 2014, 13(5): 926-936.
[5] ZHANG Yi-ming, NI Xi-lu, MA Hui-qin , Wenping Qiu. Characterization of NPR1 Genes from Norton and Cabernet Sauvignon Grapevine[J]. >Journal of Integrative Agriculture, 2013, 12(7): 1152-1161.
No Suggested Reading articles found!