Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Identification and characterization of a plasmid co-harboring blaCTX-M-55 and blaTEM-141 in Escherichia albertii from broiler in China
Weiqi Guo1, 3, Di Wang1, 3, Xinyu Wang1, Zhiyang Wang1, Hong Zhu1, Jiangang Hu1, Beibei Zhang1, Jingjing Qi1, Mingxing Tian1, Yanqing Bao1, Na Li3, Wanjiang Zhang2*, Shao-hui Wang1*

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China

2 Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China

3 College of Veterinary medicine, Xinjiang Agricultural University, Xinjiang, Urumqi 8300522, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  抗生素的不合理使用导致细菌耐药性日趋严重,已成为全球严重的公共卫生问题。产超广谱β-内酰胺酶(ESBL)细菌因具有耐药性强、耐药谱广、散播快等特点,倍受关注。为了解肉鸡中阿尔伯蒂埃希氏菌的耐药特征及耐药质粒携带情况,本研究从养禽场采集50份病鸡脾脏和肝脏样品,通过选择性培养基、PCR方法分离鉴定阿尔伯蒂埃希氏菌。然后测定阿尔伯蒂埃希氏菌分离株的耐药性及耐药基因,并对多重耐药分离株进行接合试验全基因组测序分析耐药基因的可转移性及耐药质粒特征。经过选择性培养基分离、PCR检测共鉴定4株阿尔伯蒂埃希氏菌。药物敏感性敏结果显示,4株分离株对四环素类、氯霉素类、β-内酰胺类、氨基糖苷类、多粘菌素B、磺胺类、喹诺酮类等7类抗生素具有耐药性。其中,EA04菌株携带ESBL基因blaCTX-MblaTEM。基于ST4638型阿尔伯蒂埃希氏菌的核心基因组多位点序列分型(cgMLST)构建系统进化树,推断EA04菌株与人源阿尔伯蒂埃希氏菌分离株处于相近进化分支。全基因组测序表明,ESBL基因blaCTX-M-55blaTEM-141共存于大小约为75 kbIncFII型质粒pEA04.2比较基因组分析表明,blaCTX-M-55blaTEM-141基因位于IS15-blaCTX-M-55-wbuC-blaTEM-141-IS26区域,其他多种细菌中发现高度同源序列接合试验显示,质粒pEA04.2可转移至大肠杆菌EC600,并介导对第三代头孢菌素类抗生素产生耐药性。本研究分离到一株多重耐药阿尔伯蒂埃希氏菌,并首次揭示了阿尔伯蒂埃希氏菌携带的blaCTX-M-55blaTEM-141基因位于可转移质粒pEA04.2IS15-blaCTX-M-55-wbuC-blaTEM-141-IS26区域中,可导致其对第三代头孢菌素药物产生耐药性。研究结果表明,鸡可能会作为多重耐药阿尔伯蒂埃希氏菌的储藏库,从而增加了耐药基因在人类、动物和环境之间横向传播的风险,具有潜在的公共卫生学意义。

Abstract  The inappropriate use of cephalosporins lead to the occurrence and global spread of bacteria resistant to these antimicrobials. In this study, we isolated four Escherichia albertii (E. albertii) strains from broilers in Eastern China. The antimicrobial susceptibility and genomic characterization of these E. albertii isolates were determined. Our results revealed that these four E. albertii isolates exhibited resistance to tetracyclines, chloramphenicol, β-lactams, aminoglycosides, polymyxin B, sulfonamides, quinolones, and other antimicrobials. Among them, EA04 isolate was multidrug resistant and harbored extended-spectrum β-lactamases (ESBL) genes blaCTX-M and blaTEM. Whole genome sequencing and core-genome Multilocus sequence typing (cgMLST) based on all ST4638 E. albertii for EA04 inferred highly probable epidemiological links between selected human isolates. Additionally, the ESBL genes blaTEM-141 and blaCTX-M-55 were coexistent in an approximately 75 kb IncFII plasmid pEA04.2 in EA04. Comparative analysis indicated that genes blaTEM-141 and blaCTX-M-55 were located in IS15-blaCTX-M-55-wbuC-blaTEM-141-IS26 region, which similar structures were identified in various bacteria. Furthermore, the plasmid pEA04.2 could be transferable to Escherichia coli EC600 and lead to the resistance to third-generation cephalosporins. These results suggested that chicken potentially serve as a reservoir for multidrug resistant E. albertii, which increases the risk of horizontal transfer of antimicrobial resistance between humans, animals and environment.
Keywords:  Escherichia albertii              antimicrobial resistance              plasmid              whole genome sequencing  
Online: 19 January 2024  
About author:  Weiqi, GUO, E-mail: gwq981124@163.com; #Correspondence Shaohui Wang, Tel: +86-15821927863, E-mail: shwang@shvri.ac.cn; Wan-jiang Zhang, Tel: +86-18686862997, E-mail: zhangwanjiang@caas.cn

Cite this article: 

Weiqi Guo, Di Wang, Xinyu Wang, Zhiyang Wang, Hong Zhu, Jiangang Hu, Beibei Zhang, Jingjing Qi, Mingxing Tian, Yanqing Bao, Na Li, Wanjiang Zhang, Shao-hui Wang. 2024. Identification and characterization of a plasmid co-harboring blaCTX-M-55 and blaTEM-141 in Escherichia albertii from broiler in China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2023.12.038

Albert M J, Alam K, Islam M, Montanaro J, Rahaman A S, Haider K, Hossain M A, Kibriya A K, Tzipori S. 1991. Hafnia alvei, a probable cause of diarrhea in humans. Infection and Immunity, 59, 1507-1513.

Albert M J, Faruque S M, Ansaruzzaman M, Islam M M, Haider K, Alam K, Kabir I, Robins-Browne R. 1992. Sharing of virulence-associated properties at the phenotypic and genetic levels between enteropathogenic Escherichia coli and Hafnia alvei. Journal of Medical Microbiology, 37, 310-314.

Alikhan N-F, Petty N K, Ben Zakour N L, Beatson S A. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 12, 402.

Bhatt S, Egan M, Critelli B, Kouse A, Kalman D, Upreti C. 2019. The Evasive Enemy: Insights into the Virulence and Epidemiology of the Emerging Attaching and Effacing Pathogen Escherichia albertii. Infection and Immunity, 87, e00254-18.

Bonomo R A. 2017. β-Lactamases: A Focus on Current Challenges. Cold Spring Harbor Perspectives in Medicine, 7, a025239.

Bush K, Bradford P A. 2016. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harbor Perspectives in Medicine, 6, a025247.

Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy, 58, 3895-3903.

Castanheira M, Simner P J, Bradford P A. 2021. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrobal Resistance, 3, dlab092.

Chen L, Zheng D, Liu B, Yang J, Jin Q. 2016. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Research44, D694-697.

de Jesus Bertani A M, Vieira T, Reis A D, dos Santos C A, de Almeida E A, Camargo C H, Casas M R T. 2023. Whole genome sequence analysis of the first reported isolate of Salmonella Agona carrying blaCTX-M-55 gene in Brazil. Scientific Reports, 13, 2299.

Goldstein E. 2021. Rise in the prevalence of resistance to extended-spectrum cephalosporins in the USA, nursing homes and antibiotic prescribing in outpatient and inpatient settings. Journal of Antimicrobial Chemotherapy, 76, 2745-2747.

Guo L-l, Zhang J-m, Xu C-g, Ren T, Zhang B, Chen J-d, Liao M. 2012. Detection and Characterization of β-Lactam Resistance in Haemophilus parasuis Strains from Pigs in South China. Journal of Integrative Agriculture11, 116-121.

Hinenoya A, Ichimura H, Yasuda N, Harada S, Yamada K, Suzuki M, Iijima Y, Nagita A, Albert M J, Hatanaka N, Awasthi S P, Yamasaki S. 2019. Development of a specific cytolethal distending toxin (cdt) gene (Eacdt)–based PCR assay for the detection of Escherichia albertii. Diagnostic Microbiology and Infectious Disease, 95, 119-124.

Hu G, Hu H, Liu B, Yuan L, Liu J, Pan Y, Wu H, Chen Y. 2012. Characterization of blaCTX-M Gene in One Klebsiella pneumoniae Isolate from Sick Chickens in China. Journal of Integrative Agriculture, 11, 1714-1720.

Huys G, Cnockaert M, Janda J M, Swings J. 2003. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. International Journal of Systematic and Evolutionary Microbiology, 53, 807-810.

Ingle D J, Valcanis M, Kuzevski A, Tauschek M, Inouye M, Stinear T, Levine M M, Robins-Browne R M, Holt K E. 2016. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microbial Genomics, 2, e000064.

Jia B, Raphenya A R, Alcock B, Waglechner N, Guo P, Tsang K K, Lago B A, Dave B M, Pereira S, Sharma A N, Doshi S, Courtot M, Lo R, Williams L E, Frye J G, Elsayegh T, Sardar D, Westman E L, Pawlowski A C, Johnson T A, Brinkman F S, Wright G D, McArthur A G. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research, 45, D566-d573.

Jolley K A, Maiden M C J. 2010. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 11, 595.

Kiratisin P, Apisarnthanarak A, Saifon P, Laesripa C, Kitphati R, Mundy L M. 2007. The emergence of a novel ceftazidime-resistant CTX-M extended-spectrum β-lactamase, CTX-M-55, in both community-onset and hospital-acquired infections in Thailand. Diagnostic Microbiology and Infectious Disease, 58, 349-355.

Leszczyńska K, Święcicka I, Daniluk T, Lebensztejn D, Chmielewska-Deptuła S, Leszczyńska D, Gawor J, Kliber M. 2023. Escherichia albertii as a Potential Enteropathogen in the Light of Epidemiological and Genomic Studies. Genes (Basel), 14, 1384.

Li Q, Wang H, Xu Y, Bai X, Wang J, Zhang Z, Liu X, Miao Y, Zhang L, Li X, Zou N, Yan G, Chen X, Zhang J, Fu S, Fan R, Xu J, Li J, Xiong Y. 2018a. Multidrug-Resistant Escherichia albertii: Co-occurrence of β-Lactamase and MCR-1 Encoding Genes. Frontiers in Microbiology, 9, 258.

Li X, Xie Y, Liu M, Tai C, Sun J, Deng Z, Ou H Y. 2018b. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Research, 46, W229-w234.

Lima M P, Yamamoto D, Santos A C M, Ooka T, Hernandes R T, Vieira M A M, Santos F F, Silva R M, Hayashi T, Gomes T A T. 2019. Phenotypic characterization and virulence-related properties of Escherichia albertii strains isolated from children with diarrhea in Brazil. Pathogens and Disease, 77, ftz014.

Lv L, Partridge S R, He L, Zeng Z, He D, Ye J, Liu J H. 2013. Genetic characterization of IncI2 plasmids carrying blaCTX-M-55 spreading in both pets and food animals in China. Antimicrobial Agents and Chemotherapy, 57, 2824-2827.

MacVane S H. 2017. Antimicrobial Resistance in the Intensive Care Unit: A Focus on Gram-Negative Bacterial Infections. Journal of Intensive Care Medicine, 32, 25-37.

Norizuki C, Kawamura K, Wachino J I, Suzuki M, Nagano N, Kondo T, Arakawa Y. 2018. Detection of Escherichia coli Producing CTX-M-1-Group Extended-Spectrum β-Lactamases from Pigs in Aichi Prefecture, Japan, between 2015 and 2016. Japanese Journal of Infectious Diseases, 71, 33-38.

Oaks J L, Besser T E, Walk S T, Gordon D M, Beckmen K B, Burek K A, Haldorson G J, Bradway D S, Ouellette L, Rurangirwa F R, Davis M A, Dobbin G, Whittam T S. 2010. Escherichia albertii in wild and domestic birds. Emerging Infectious Diseases, 16, 638-646.

Partridge S R, Kwong S M, Firth N, Jensen S O. 2018. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clinical Microbiology Reviews, 31, e00088-17.Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30, 2068-2069.

Sonnevend Á, Alali W Q, Mahmoud S A, Ghazawi A, Bharathan G, Melegh S, Rizvi T A, Pál T. 2022. Molecular Characterization of MCR-1 Producing Enterobacterales Isolated in Poultry Farms in the United Arab Emirates. Antibiotics (Basel), 11, 305.

Sullivan M J, Petty N K, Beatson S A. 2011. Easyfig: a genome comparison visualizer. Bioinformatics, 27, 1009-1010.

Walker B J, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo C A, Zeng Q, Wortman J, Young S K, Earl A M. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE9, e112963.

Wang W, Wang Y, Jin Y, Song W, Lin J, Zhang, Tong X, Tu J, Li R, Li T. 2023. Characterization of a blaCTX-M-3, blaKPC-2 and blaTEM-1B co-producing IncN plasmid in Escherichia coli of chicken origin. Journal of Integrative Agriculture, 22, 320-324.

No related articles found!
No Suggested Reading articles found!