Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
SsBMR1 as a putative ABC transporter is required for pathogenesis by promoting antioxidant export and antifungal resistance in Sclerotinia sclerotiorum

Yijuan Ding1, 2, 3*, Yaru Chai4, 5*, Sen Li1, 2, 3, Zhaohui Wu1, 2, 3, Minghong Zou1, 2, 3, Ling Zhang1, 2, 3, Rana Kusum1, 2, 3, Wei Qian1, 2, 3#

1 Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China

2 Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China

3 Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China

4 Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China

5 College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China

Highlights:

1: Silencing the SsBMR1 gene in Sclerotinia sclerotiorum significantly reduces fungal growth, infection, sclerotia formation, and virulence.

2: HIGS of SsBMR1 enhances plant resistance, providing a potential target for managing Sclerotinia stem rot (SSR) disease in dicotyledons.

3: SsBMR1 is involved in antioxidant and toxin transport, influencing fungal defense mechanisms and resistance to plant antifungal substances and fungicides.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

核盘菌(Sclerotinia sclerotiorum是一种具有广泛寄主范围的植物病原真菌,能够侵染包括十字花科、茄科和豆科在内的多种双子叶植物,引起菌核病(Sclerotinia Stem Rot, SSR在全球范围内对农业生产造成巨大经济损失ABC转运蛋白(ATP-binding cassette, ABC)是一类膜结合蛋白超家族,广泛参与药物外排或物质运输,在核盘菌的生长发育和致病性中可能发挥关键作用。然而,核盘菌中ABC转运蛋白基因的表达模式和功能尚未得到充分研究。利用保守结构域序列信息,我们从核盘菌中鉴定到了33个编码ABC转运蛋白的基因,随后通过转录组数据,本研究鉴定到一个核盘菌在侵染寄主植物过程中高表达的ABC转运蛋白基因SsBMR1通过基因沉默技术,发现沉默SsBMR1基因显著降低了核盘菌菌丝生长、侵染垫形成、菌核形成以及致病性。此外,SsBMR1的寄主诱导基因沉默(Host-Induced Gene Silencing, HIGS)显著增强了植物的菌核病抗性。转录组和代谢组学分析表明,SsBMR1可能参与抗氧化剂和毒素的运输,从而调节核盘菌的防御机制和细胞应激反应实验结果显示,与野生型菌株相比,SsBMR1基因沉默转化子对外源氧化应激的响应能力减弱,抗氧化剂谷胱甘肽的外排能力降低。此外,耐受性实验进一步证实了SsBMR1在赋予核盘菌对植物植保素(camalexin 和 brassinin)以及部分杀菌剂耐受性中的关键作用。在叶片上体外喷施植保素SsBMR1基因沉默转化子表现出更强的致病性抑制。综上所述SsBMR1可能通过促进抗氧化剂的外排和对抗真菌剂的抗性,显著增强核盘菌的致病性。本研究为开发新的菌核病防控技术提供了重要的理论依据,特别是在生物防治和绿色防控策略方面具有重要意义。



Abstract  

The plant pathogenic fungus Sclerotinia sclerotiorum is the causative agent of Sclerotinia stem rot (SSR) disease in most dicotyledons. Among the various proteins involved in drug efflux or substance transport, ATP-binding cassette (ABC) transporters constitute a superfamily of membrane-bound proteins that may play a crucial role in the survival of S. sclerotiorum. However, the expression patterns and functions of ABC transporter genes in S. sclerotiorum remain largely uncharacterized. This study characterized a highly expressed S. sclerotiorum ABC transporter gene during inoculation on host plants, SsBMR1. Silencing SsBMR1 resulted in a significant reduction in hyphal growth, infection cushion development, sclerotia formation, and virulence. Moreover, host-induced gene silencing (HIGS) of SsBMR1 significantly enhanced plant resistance. Transcriptome and metabolomics analyses suggested that SsBMR1 is involved in antioxidant and toxin transport, thereby influencing fungal defense and cell rescue mechanisms. In comparison to the wild-type strain, SsBMR1 gene-silenced transformants exhibited a diminished response to extracellar oxidative stress and a decreased exporting of antioxidant glutathione. Tolerance assays further demonstrated the crucial role of SsBMR1 in conferring resistance to the plant antifungal substances, camalexin and brassinin, as well as certain fungicides. Furthermore, SsBMR1 gene-silenced transformants showed enhanced repression on virulence when sprayed with camalexin and brassinin on the leaves. Thus, SsBMR1 likely contributes to virulence by facilitating the export of antioxidant and providing resistance against antifungal agents. The findings of this study provide valuable insights that could contribute to the development of novel management techniques for SSR.

Keywords:  ABC transporter       antifungal resistance              glutathione              pathogenesis              Sclerotinia sclerotiorum  
Online: 17 February 2025  
Fund: 

This study received financial support from the Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0355), Fundamental Research Funds for the Central Universities (SWU120075), and the National Natural Science Foundation of China (32372077).

About author:  Yijuan Ding, E-mail: dding1989@163.com;Yaru Chai, E-mail: cyr2310326815@163.com; #Correspondence Wei Qian, Tel: +86-23-68250701, Fax: +86-23-68250701, E-mail: qianwei666@hotmail.com * indicates the authors who contributed equally to this study

Cite this article: 

Yijuan Ding, Yaru Chai, Sen Li, Zhaohui Wu, Minghong Zou, Ling Zhang, Rana Kusum, Wei Qian. 2025. SsBMR1 as a putative ABC transporter is required for pathogenesis by promoting antioxidant export and antifungal resistance in Sclerotinia sclerotiorum. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.02.014

Amselem J, Cuomo C, Kan JALV, Kan M, Benito EP, Couloux A, Coutinho P M, Vries R P D, Dyer P S, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer K M, Pradier J M, Quévillon E, Sharon A, Simon A, Have A T, Tudzynski B, TudzynskiN P, Wincker P, Andrew M, Anthouard V, Beever R E, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin E G, Silva C D, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett B J, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes D M, Talbot N J, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins J A, Lebrun M H, Dickman M. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 7, e1002230.

Baral B. 2017. Chapter Four - evolutionary trajectories of entomopathogenic fungi ABC transporters. Advances in Genetics, 117–154.

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735–743.

Derbyshire M C, Newman T E, Khentry Y, Owolabi Taiwo A. 2022. The evolutionary and molecular features of the broad-host-range plant pathogen Sclerotinia sclerotiorum. Molecular Plant Pathology, 23, 1075–1090.

Ding L N, Li T, Guo X J, Li M, Liu X Y, Cao J, Tan X L. 2021. Sclerotinia stem rot resistance in rapeseed: Recent progress and future prospects. Journal of Agricultural and Food Chemistry, 69, 2965–2978.

El-Awady R, Saleh E, Hashim A, Soliman N, Dallah A, Elrasheed A, Elakraa G. 2017. The role of eukaryotic and prokaryotic ABC transporter family in failure of chemotherapy. Frontiers in Pharmacology, 7, 535.

Engle K, Kumar G. 2022. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. European Journal of Medicinal Chemistry, 239, 114542. 

Fachin A L, Ferreira-Nozawa M S, Maccheroni W, Martinez-Rossi N M. 2006. Role of the ABC transporter TruMDR2 in terbinaffne, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. Journal of Medical Microbiology, 55, 1093–1099.

Finn R D, Clements J, Eddy S R. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 39, W29–37.

Finn R D, Coggill P, Eberhardt R Y, Eddy S R, Mistry J, Mitchell A L, Potter S C, Punta M, Qureshi M, Sangrador-Vegas A, Salazar G A, Tate J, Bateman A. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 44, D279–285.

Godoy G, Steadman J R, Dickman M B, Dam R. 1990. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiological and Molecular Plant Pathology, 37, 179–191.

Gupta A, Chattoo B B. 2008. Functional analysis of a novel ABC transsporter ABC4 from Magnaporthe grisea. FEMS Microbiology Letters, 278, 2228.

Hamid M I, Zeng F, Cheng J, Jiang D, Fu Y. 2013. Disruption of heat shock factor 1 reduces the formation of conidia and thermotolerance in the mycoparasitic fungus Coniothyrium minitans. Fungal Genetics and Biology, 53, 42–49.

Hossain M M, Sultana F, Li W, Tran L P, Mostofa M G. 2023. Sclerotinia sclerotiorum (Lib.) de Bary: Insights into the pathogenomic features of a global pathogen. Cells, 12, 1063.

Hulvey J, Popko J T, Sang H, Berg A, Jung G. 2012. Overexpression of ShCYP51B and ShatrD in Sclerotinia homoeocarpa isolates exhibiting practical field resistance to a demethylation inhibitor fungicide. Applied and Environmental Microbiology, 7, 6674–6682. 

Ishikawa T, Saito H, Hirano H, Inoue Y, Ikegami Y. 2012. Human ABC transporter ABCG2 in cancer chemotherapy: drug molecular design to circumvent multidrug resistance. Methods in molecular biology, 910, 267–278.

Jahan R, Siddique S S, Jannat R, Hossain M M. 2022. Cosmos white rot: First characterization, physiology, host range, disease resistance, and chemical control. Journal of Basic Microbiology, 62, 911–929.

Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics, 30, 1236–1240.

Kabbage M, Williams B, Dickman M B. 2013. Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathogens, 9, e1003287.

Kabbage M, Yarden O, Dickman M B. 2015. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. Plant Science, 233, 53–60.

Kim D, Landmead B, Salzberg S L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360.

Kim H J, Chen C, Kabbage M, Dickman M B. 2011. Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases. Applied and Environmental Microbiology, 77,7721–7729.

Kiriyama K, Hara K Y, Kondo A. 2012. Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter. Applied Microbiology and Biotechnology, 96, 1021–1027.

Kovalchuk A, Driessen A J M. 2010. Phylogenetic analysis of fungal ABC transporters. BMC Genomics, 11, 177.

Laman Trip D S, Youk H. 2020. Yeasts collectively extend the limits of habitable temperatures by secreting glutathione. Nature Microbiology, 5, 943–954.

Letunic I, Doerks T, Bork P. 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Research, 40, D302–305.

Liang X F, Rollins J A. 2018. Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology, 108, 1128–1140.

Liao Y, Smyth G K, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923–930.

Liu E, Page J E. 2008. Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods, 4, 5.

Liu T, Sun L, Zhang Y, Wang Y, Zheng J. 2022. Imbalanced GSH/ROS and sequential cell death. Journal of Biochemical and Molecular Toxicology, 36, e22942.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.

Mei J, Shao C, Yang R, Feng Y, Gao Y, Ding Y, Li J, Qian W. 2020. Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theoretical and Applied Genetics, 133, 1313–1319.

Moreno A, Banerjee A, Prasad R, Falson P. 2019. PDR-like ABC systems in pathogenic fungi. Microbiological Research, 170, 417–425.

Niimi M, Tanabe K, Wada S, Yamazaki A, Uehara Y, Niimi K, Lamping E, Holmes A R, Monk B C, Cannon R D. 2005. ABC transporters of pathogenic fungi: recent advances in functional analyses. Nihon Ishinkin Gakkai Zasshi, 46, 249–260.

Oliveira M C, Dos Santos G Q, Teixeira J A, Correia H L N, da Silva L L, de Araújo E F, de Queiroz M V. 2022. The AbcCl1 transporter of Colletotrichum lindemuthianum acts as a virulence factor involved in fungal detoxification during common bean (Phaseolus vulgaris) infection. Brazilian Journal of Microbiology, 53, 1121–1132.

Pant P, Kaur J. 2024. Control of Sclerotinia sclerotiorum via an RNA interference (RNAi)-mediated targeting of SsPac1 and SsSmk1. Planta, 14, 259:153.

Partridge D E, Sutton T B, Jordan D L. 2006. Effect of environmental factors and pesticides on mycoparasitism of Sclerotinia minor by Coniothyrium minitans. Plant Disease, 90, 1407–1412.

Prasad R, Goffeau A. 2012. Yeast ATP-binding cassette transporters conferring multidrug resistance. Annual Review of Microbiology, 66, 39–63.

Priebe S, Kreisel C, Horn F, Guthke R, Linde J. 2015. FungiFun2: a comprehensive online resource for systematic analysis of gene lists from fungal species. Bioinformatics, 31, 445–446.

Ritchie M E, Phipson B, Wu D, Hu Y, Law C W, Shi W, Smyth G K. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research, 43, e47.

Rollins J A. 2003. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Molecular Plant-Microbe Interactions, 16, 785–795.

Roohparvar R, De Waard M A, Kema G H J, Zwiers L. 2007. MgMfs1, a major facilitator superfamily transporter from the fungal wheat pathogen Mycosphaerella graminicola, is a strong protectant against natural toxic compounds and fungicides. Fungal Genetics and Biology, 44, 378–388.

Sang H, Hulvey J, Popko J T, Lopes J, Swaminathan A, Chang T, Jung G. 2015. A pleiotropic drug resistance transporter is involved in reduced sensitivity to multiple fungicide classes in Sclerotinia homoeocarpa (F.T. Bennett). Molecular Plant Pathology, 16, 251–261.

Scheiber I F, Dringen R. 2011. Copper-treatment increases the cellular GSH content and accelerates GSH export from cultured rat astrocytes. Neuroscience Letters, 498, 42–46.

Schoonbeek H, Del Sorbo G, de Waard M A. 2001. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Molecular Plant-Microbe Interactions, 14, 562–571.

Schoonbeek H, Nistelrooy J, de Waard M. 2003.  Functional analysis of ABC transporter genes from Botrytis cinerea identifies BcatrB as a transporter of eugenol. European Journal of Plant Pathology, 109, 1003–1011.

Seifbarghi S, Borhan M H, Wei Y, Coutu C, Robinson S J, Hegedu D D. 2017. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genomics, 18, 266.

Shen S, Tang Y, Zhang C, Yin N, Mao Y, Sun F, Chen S, Hu R, Liu X, Shang G, Liu L, Lu K, Li J, Qu C. 2021. Metabolite profiling and transcriptome analysis provide insight into seed coat color in Brassica juncea. International Journal of Molecular Sciences, 22, 7215.

Singh Y, Nair A M, Verma P K. 2021. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. Plant Communications, 2, 100142.

Song T T, Zhao J, Ying S H, Feng M G. 2013. Differential contributions of five ABC transporters to mutidrug resistance, antioxidion and virulence of Beauveria bassiana, an entomopathogenic fungus. PLoS One, 8, e62179.

Stefanato F L, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet C G, Métraux J P, Schoonbeek H J. 2009. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant Journal, 58, 499–510.

Stergiopoulos I, Zwiers L H, Waard M A D. 2003. The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves. Molecular Plant-Microbe Interactions, 16, 689–698.

Sun C B, Suresh A, Deng Y Z, Naqvi N I. 2006. A multidrug resistance transporter in Magnaporthe is required for host penetration and for survival during oxidative stress. The Plant Cell, 18, 36863705.

Swagatika S, Tomar R S. 2021. ABC transporter Pdr5 is required for cantharidin resistance in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 553, 141–147.

Thorsen M, Jacobson T, Vooijs R, Navarrete C, Bliek T, Schat H, Tama´s M J. 2012. Glutathione serves an extracellular defence function to decrease arsenite accumulation and toxicity in yeast. Molecular Microbiology, 84, 1177–1188.

Tian B, Xie J, Fu Y, Cheng J, Li B O, Chen T, Zhao Y, Gao Z, Yang P, Barbetti M J, Tyler B M, Jiang D. 2020. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. ISME Journal, 14, 3120–3135.

Tian L, Li J, Xu Y, Qiu Y, Zhang Y, Li X. 2024. A MAP kinase cascade broadly regulates the lifestyle of Sclerotinia sclerotiorum and can be targeted by HIGS for disease control. Plant Journal, 118, 324344.

Tsugawa H, Nakabayashi R, Mori T, Yamada Y, Takahashi M, Rai A, Sugiyama R, Yamamoto H, Nakaya T, Yamazaki M, Kooke R, Bac-Molenaar JA, Oztolan-Erol N, Keurentjes JJB, Arita M, Saito K. 2019. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nature Methods, 16, 295–298.

Víglaš J, Olejníková P. 2021. An update on ABC transporters of filamentous fungi - from physiological substrates to xenobiotics. Microbiological Research, 246, 126684.

Wang Y, Zhang X, Yang S, Yuan Y. 2018. Lignin involvement in programmed changes in peach-fruit texture indicated by metabolite and transcriptome analyses. Journal of Agricultural and Food Chemistry, 66, 12627–12640.

Wawrzycka D. 2011. The ABC transporters of Saccharomyces cerevisiae. Postepy Biochemii, 57, 324–332.

Westrick N M, Ranjan A, Jain S, Grau C R, Smith D L, Kabbage M. 2019. Gene regulation of Sclerotinia sclerotiorum during infection of Glycine max: on the road to pathogenesis. BMC Genomics, 20, 157.

Westrick N M, Smith D L, Kabbage M. 2021. Disarming the host: detoxification of plant defense compounds during fungal necrotrophy. Frontiers in Plant Science, 12, 651716.

Williams B, Kabbage M, Kim H-J, Britt R, Dickman M B. 2011. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathogens, 7, e1002107.

Wise A A, Liu Z, Binns A N. 2006. Three methods for the introduction of foreign DNA into Agrobacterium. Methods in molecular biology, 343, 43–53.

Wu J, Yin S, Lin L, Liu D, Ren S, Zhang W, Meng W, Chen P, Sun Q, Fang Y, Wei C, Wang Y. 2022. Host-induced gene silencing of multiple pathogenic factors of Sclerotinia sclerotiorum confers resistance to Sclerotinia rot in Brassica napus, The Crop Journal, 10, 661671.

Wytinck N, Ziegler D J, Walker P L, Sullivan D S, Biggar K T, Khan D, Sakariyahu S K, Wilkins O, Whyard S, Belmonte M F. 2022. Host induced gene silencing of the Sclerotinia sclerotiorum ABHYDROLASE-3 gene reduces disease severity in Brassica napus. PLoS One, 17, e0261102.

Xu Y, Tan J, Lu J, Zhang Y, Li X. 2024. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea. Plant Biotechnology Journal, 22, 262277.

Yin N W, Wang S X, Jia L D, Zhu M C, Yang J, Zhou B J, Yin J M, Lu K, Wang R, Li J N, Qu C M. 2019.  Identification and characterization of major constituents in different-colored rapeseed petals by UPLC-HESI-MS/MS. Journal of Agricultural and Food Chemistry, 67, 11053–11065.

Yin W, Xiang D, Wang T, Zhang Y, Pham C V, Zhou S, Jiang G, Hou Y, Zhu Y, Han Y, Qiao L, Tran P H, Duan W. 2021. The inhibition of ABCB1/MDR1 or ABCG2/BCRP enables doxorubicin to eliminate liver cancer stem cells. Scientific Reports, 11, 10791.

Yu Y, Xiao J, Zhu W, Yang Y, Mei J, Bi C, Qian W, Qing L, Tan W. 2017. Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum. Molecular Plant Pathology, 18, 1052–1061.

Zhang Y, Zhang Z, Zhang X, Zhang H, Sun X, Hu C, Li S. 2012. CDR4 is the major contributor to azole resistance among four Pdr5p-like ABC transporters in Neurospora crassa. Fungal Biology, 116, 848–854.

Zhang Z, Chen Y, Li B, Chen T, Tian S. 2020. Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi. Computational and Structural Biotechnology Journal, 18, 33443349.

Zwiers L H, Stergiopoulos I, Nistelrooy J G M V, Waard M A D. 2002. ABC Transporters and azole susceptibility in laboratory strains of the wheat pathogen Mycosphaerella graminicola. Antimicrobial Agents and Chemotherapy, 46, 3900–3906.

No related articles found!
No Suggested Reading articles found!