Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Species-specific evolution of lepidopteran TspC5 tetraspanins associated with dominant resistance to Bacillus thuringiensis toxin Cry1Ac

Chenyang Wang, Yinuo Zhang, Qiming Sun, Lin Li, Fang Guan, Yazhou He, Yidong Wu#

College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

Bt蛋白是苏云金芽孢杆菌Bacillus thuringiensis(Bt)在生长阶段产生的杀虫蛋白,已被广泛应用于转基因作物中,有效控制了多种重要的鳞翅目和鞘翅目害虫。然而,这些害虫Bt蛋白的抗性进化对转基因作物的长期可持续性构成了挑战棉铃虫Helicoverpa armigera是一种重要的鳞翅目农业害虫。之前的研究发现棉铃虫一个四次跨膜蛋白基因HarmTspC5HaTSPAN1L31S突变赋予了棉铃虫Bt蛋白Cry1Ac的显性抗性。然而,L31S突变在其他鳞翅目物种中的作用尚不明确。本研究的分析表明,鳞翅目昆虫TspC5基因的进化具有物种特异性。为探究鳞翅目昆虫TspC5基因赋予Cry1Ac显性抗性中的作用,本研究基于piggyBac遗传转化系统构建了四个转基因棉铃虫品系这些品系表达了携带L31S同源突变的TspC5蛋白,它们分别来自与棉铃虫近缘美洲棉铃虫Helicoverpa zea烟青虫Helicoverpa assulta烟芽夜蛾Heliothis virescens,以及相对远缘小菜蛾Plutella xylostella生物测定显示,与背景品系SCD相比,表达HzeaTspC5-L31SHassTspC5-L31S或HvirTspC5-L31S的转基因品系对Cry1Ac表现出显著抗性,抗性倍数分别为10.0倍、21.4倍和81.1倍,而表达PxylTspC5-L27S的品系Cry1Ac仍然敏感。此外,三个转基因品系的Cry1Ac抗性表型常染色体显性的方式遗传,并与外源TspC5突变体紧密连锁。这些发现揭示了棉铃虫近缘物种的TspC5基因在介导Cry1Ac显性抗性的保守作用,并为评估与四次跨膜蛋白突变相关的抗性风险和制定适应性抗性治理策略提供了重要依据



Abstract  

Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have proven to be highly effective in managing some key pests. However, the evolution of resistance by the target pests threatens the sustainability of Bt crops. The L31S mutation in a tetraspanin encoded by HarmTspC5 (previously known as HaTSPAN1has been shown to confer dominant resistance to the Bt protein Cry1Ac in Helicoverpa armigera, a globally damaging lepidopteran pest. However, the broader implications of the L31S mutation in the tetraspanins of other lepidopteran species remain unclear. The evolutionary analyses in this study indicate that TspC5s have evolved in a species-specific manner among the lepidopteran insects. To investigate the role of TspC5s in conferring dominant resistance to Cry1Ac, we used the piggyBac-based transformation system to generate four transgenic H. armigera strains that express exogenous TspC5 variants from three phylogenetically close species (Helicoverpa zea, Helicoverpa assulta and Heliothis virescensand one phylogenetically distant species (Plutella xylostella). In comparison with the background SCD strain of H. armigerathe transgenic strains expressing HzeaTspC5-L31S, HassTspC5-L31S, or HvirTspC5-L31S exhibited significant resistance to Cry1Ac (10.0-, 21.4-, and 81.1-fold, respectively), whereas the strain expressing PxylTspC5-L27S remained susceptible. Furthermore, the Cry1Ac resistanphenotypes followed an autosomal dominant inheritance pattern and were closely linked to the introduced mutant TspC5s. These findings reveal the conserved role of TspC5s from Helicoverpa and Heliothis species in mediating the dominant resistance to Cry1Acand they provide crucial insights for assessing resistance risks related to mutant tetraspanins and devising adaptive resistance management strategies for these major lepidopteran pests.

Keywords:  tetraspanin              Bt resistance              Cry1Ac              piggyBac system              Helicoverpa armigera  
Online: 24 September 2024  
Fund: 

This research was primarily funded by a grant from the National Natural Science Foundation of China (31930093). Additional support was provided by the Natural Science Foundation of Jiangsu Province, China (BK20230983), and the Project of Fund for Stable Support to Agricultural Sci-Tech Renovation, China (xjnkywdzc-2022004).

About author:  Chenyang Wang, E-mail: cywang@stu.njau.edu.cn; #Correspondence Yidong Wu, E-mail: wyd@njau.edu.cn

Cite this article: 

Chenyang Wang, Yinuo Zhang, Qiming Sun, Lin Li, Fang Guan, Yazhou He, Yidong Wu. 2024. Species-specific evolution of lepidopteran TspC5 tetraspanins associated with dominant resistance to Bacillus thuringiensis toxin Cry1Ac. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.09.022

Álvarez-Carretero S, Kapli P, Yang Z. 2023. Beginner's guide on the use of PAML to detect positive selection. Molecular Biology and Evolution40, msad041.

Carpenter J E. 2010. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nature Biotechnology28, 319–321.

Carrière Y, Crickmore N, Tabashnik B E. 2015. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nature Biotechnology, 33, 161–168.

Chen X, Palli S R. 2021. Hyperactive piggyBac transposase-mediated germline transformation in the fall armyworm, Spodoptera frugiperdaJournal of Visualized Experiments, 175, e62714.

van Deventer S J, Dunlock V E, van Spriel A B. 2017. Molecular interactions shaping the tetraspanin web. Biochemical Society Transactions45, 741–750.

van Dijk E L, Auger H, Jaszczyszyn Y, Thermes C. 2014. Ten years of next-generation sequencing technology. Trends in Genetics30, 418–426.

Fabrick J A, Wu Y D. 2023. Mechanisms and molecular genetics of insect resistance to insecticidal proteins from Bacillus thuringiensis. Advances in Insect Physiology, 65, 123-183. 

Fraser M J, Ciszczon T, Elick T, Bauser C. 1996. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Molecular Biology5, 141–151.

Garcia-España A, Chung P J, Sarkar I N, Stiner E, Sun T T, Desalle R. 2008. Appearance of new tetraspanin genes during vertebrate evolution. Genomics91, 326–334.

Gregory M, Alphey L, Morrison N I, Shimeld S M. 2016. Insect transformation with piggyBac: Getting the number of injections just right. Insect Molecular Biology25, 259–271.

Guan F, Dai X G, Hou B F, Wu S W, Yang Y H, Lu Y H, Wu K M, Tabashnik B E, Wu Y D. 2023b. Refuges of conventional host plants counter dominant resistance of cotton bollworm to transgenic Bt cotton. iScience26, 106768

Guan F, Dai X G, Yang Y H, Tabashnik B E, Wu Y. 2023a. Population genomics of nonrecessive resistance to Bt toxin Cry1Ac in Helicoverpa armigera from northern China. Journal of Economic Entomology116, 310–320.

Guan F, Hou B F, Dai X G., Liu S T, Liu J J, Gu Y, Jin L, Yang Y H, Fabrick J A, Wu Y D. 2021. Multiple origins of a single point mutation in the cotton bollworm tetraspanin gene confers dominant resistance to Bt cotton. Pest Management Science77, 1169–1177.

Guo B F, Guo Y, Hong H L, Qiu L J. 2016. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method. Frontiers in Plant Science7, 1009.

Huang S F, Tian H Z, Chen Z L, Yu T, Xu A L. 2010. The evolution of vertebrate tetraspanins: Gene loss, retention, and massive positive selection after whole genome duplications. BMC Evolutionary Biology, 10, 306.

Huang S F, Yuan S C, Dong M L, Su J, Yu C L, Shen Y, Xie X J, Yu Y H, Yu X S, Chen S W, Zhang S C, Pontarotti P, Xu A L. 2005. The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics86, 674–684.

Ji J B, Braam J. 2010. Restriction site extension PCR: A novel method for high-throughput characterization of tagged DNA fragments and genome walking. PLoS ONE5, e10577.

Jin L, Wang J, Guan F, Zhang J P, Yu S, Liu S Y, Xue Y Y, Li L L, Wu S W, Wang X L, Yang Y H, Abdelgaffar H, Jurat-Fuentes J L, Tabashnik B E, Wu Y D. 2018. Dominant point mutation in a tetraspanin gene associated with field-evolved resistance of cotton bollworm to transgenic Bt cotton. Proceedings of the National Academy of Sciences of the United States of America115, 11760–11765.

Jin L, Zhang H N, Lu Y H, Yang Y H, Wu K M, Tabashnik B E, Wu Y D. 2015. Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nature Biotechnology33, 169–174.

Jurat-Fuentes J L, Heckel D G, Ferré J. 2021. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensisAnnual Review of Entomology66, 121–140.

Kathage J, Qaim M. 2012. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proceedings of the National Academy of Sciences of the United States of America109, 11652–11656.

Kim A, Pyykko I. 2011. Size matters: Versatile use of PiggyBac transposons as a genetic manipulation tool. Molecular and Cellular Biochemistry354, 301–309.

Levy S, Shoham T. 2005. Protein-protein interactions in the tetraspanin web. Physiology20, 218–224.

Li L, Pang X R, Wang C Y, Yang Y H, Wu Y D. 2024. piggyBac-based transgenic Helicoverpa armigera expressing the T92C allele of the tetraspanin gene HaTSPAN1 confers dominant resistance to Bacillus thuringiensis toxin Cry1Ac. Pesticide Biochemistry and Physiology, 204, 106096.

Li L, Zuo Y Y, Shi Y, Yang Y H, Wu Y D. 2023. Overexpression of the F116V allele of CYP9A186 in transgenic Helicoverpa armigera confers high-level resistance to emamectin benzoate. Insect Biochemistry and Molecular Biology, 163, 104042.

Liu Y, Tabashnik B E. 1997. Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the diamondback moth. Applied and Environmental Microbiology63, 2218–2223.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods25, 402–408.

Lu Y H, Wu K M, Jiang Y Y, Guo Y Y, Desneux N. 2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature487, 362–365.

Mitra R, Fain-Thornton J, Craig N L. 2008. piggyBac can bypass DNA synthesis during cut and paste transposition. The EMBO Journal27, 1097–1109.

Nguyen L T, Schmidt H A, von Haeseler A, Minh B Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution32, 268–274

Ochman H, Gerber A S, Hartl D L. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics120, 621–623.

Park D, Kim D, Jang G, Lim J, Shin Y J, Kim J, Seo M S, Park S H, Kim J K, Kwon T H, Choi I Y. 2015. Efficiency to discovery transgenic loci in GM rice using next generation sequencing whole genome re-sequencing. Genomics & Informatics13, 81–85.

Polko J K, Temanni M R, van Zanten M, van Workum W, Iburg S, Pierik R, Voesenek L A, Peeters A J. 2012. Illumina sequencing technology as a method of identifying T-DNA insertion loci in activation-tagged Arabidopsis thaliana plants. Molecular Plant5, 948–950

Sanahuja G, Banakar R, Twyman R M, Capell T, Christou P. 2011. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnology Journal9, 283–300.

Tabashnik B E, Fabrick J A, Carrière Y. 2023. Global patterns of insect resistance to transgenic Bt crops: The first 25 years. Journal of Economic Entomology116, 297–309.

Tarrant J M, Robb L, van Spriel A B, Wright M D. 2003. Tetraspanins: Molecular organisers of the leukocyte surface. Trends in Immunology24, 610–617.

Todres E, Nardi J B, Robertson H M. 2000. The tetraspanin superfamily in insects. Insect Molecular Biology9, 581–590.

Wang C Y, Zhang Y N, Guan F, He Y Z, Wu Y D. 2024. Genome-wide identification and phylogenetic analysis of the tetraspanin gene family in lepidopteran insects and expression profiling analysis in Helicoverpa armigera. Insect Science, doi:10.1111/1744-7917.13402

Wang J, Zhang H N, Wang H D, Zhao S, Zuo Y Y, Yang Y H, Wu Y D. 2016. Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system. Insect Biochemistry and Molecular Biology76, 11–17.

Yang Y H, Yang Y J, Gao W Y, Guo J J, Wu Y H, Wu Y D. 2009. Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac. Bulletin of Entomological Research99, 175–181.

Yang Z H. 2002. Inference of selection from multiple species alignments. Current Opinion in Genetics & Development12, 688–694.

Yang Z H. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution24, 1586–1591.

No related articles found!
No Suggested Reading articles found!