Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (24): 5216-5233.doi: 10.3864/j.issn.0578-1752.2025.24.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of One-Time Side Deep Application Ratios of Controlled-Release Nitrogen Fertilizer and Common Urea to Rice Yield, Nitrogen Fertilizer Efficiency and Carbon Emission Reduction

GUO Song1,2(), HAN Lei1, WANG Yuan3, WANG ZiJun1, QIAN ZiHui3, LU JiaMing3, ZHAO Can3, WANG WeiLing3, XU Ke3, ZHANG HongCheng3, YANG FengPing1,*(), HUO ZhongYang3,*()   

  1. 1 College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu
    2 Xuanwei Meteorological Bureau, Xuanwei 655400, Yunnan
    3 Yangzhou University/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou 225009, Jiangsu
  • Received:2025-01-06 Accepted:2025-04-27 Online:2025-12-22 Published:2025-12-22
  • Contact: YANG FengPing, HUO ZhongYang

Abstract:

【Objective】This study aimed to establish an one-time side-deep application technology of slow/controlled-release nitrogen (N) fertilizer with high yield, high-N efficiency and low-carbon emission, so as to provide a new way for green and simplified ecological cultivation of rice in the middle and lower reaches of the Yangtze River. 【Method】The late-maturing medium japonica rice of Nanjing 9108 and Taixiangjing 1402 with high-yield, high-quality and similar growth period were selected in this study. The controlled-release N fertilizer with resin-coated urea (N 43%, the hydrostatic controlled-release cycle was 100 d) and common urea (46% N) were used as N fertilizer. Five different application ratios of controlled-release N fertilizer rate to common urea rate were set for different treatments of 100%﹕0 (S1), 80%﹕20% (S2), 60%﹕40% (S3), 50%﹕50% (S4) and 40%﹕60% (S5). The N fertilizer as base fertilizer was applied using the one-time side-deep application. Conventional N fertilization (CK) and no N fertilization (0N) control treatments were also included. The effect of different treatments on rice yield, N absorption and utilization efficiency, and greenhouse gas emissions were investigated. 【Result】(1) Compared with CK treatment, the rice yield under S1 treatment was significantly reduced, S2 treatment had no significant difference, S3 and S4 treatments were significantly increased, and S4 treatment was significantly higher than S3 treatment. The yield of Nanjing 9108 under S3 and S4 treatments increased by 2.2%-3.2% and 3.6%-5.4% than that under CK, respectively, while the yield of Taixiangjing 1402 under S3 and S4 treatments increased by 0.9%-3.4% and 3.1%-5.0%, respectively. The most important thing was that there was a consistent law between years and varieties. (2) Compared with CK treatment, the N uptake under S1-S5 treatments decreased significantly at tillering stage and jointing stage (except S4 treatment), but it increased significantly at heading stage and maturity stage (except S1 treatment). The N accumulation under S1-S5 treatments at seeding-tillering stage. However, it increased significantly at tillering-jointing stage and jointing-heading stage decreased significantly compared with CK treatment. Finally, the N agronomic efficiency, N uptake efficiency, and N partial factor productivity under S1-S5 treatments were significantly higher than that under CK (except S1 treatment); among them, that of Nanjing 9108 decreased by 3.0%-14.7%, 11.6%-23.2%, and 0.4%-3.7%, respectively, and Taixiangjing 1402 decreased by 2.3%-14.8%, 11.3%-24.6%, and 0.8%-5.0%, respectively. The increase under S4 treatment was the largest, followed by S3. (3) Compared with CK treatment, the accumulation of CH4 emissions of S1-S5 treatments at tillering-jointing stage, heading-maturity stage, and the whole growth period decreased significantly. Among them, Nanjing 9108 decreased by 48.0%-64.1%, 55.1%-68.7%, and 26.8%-35.6, respectively, and Taixiangjing 1402 decreased by 42.4%-49.2%, 46.4%-61.9%, and 24.9%-37.5%, respectively. The increase under S4 treatment was the largest, followed by S3. The accumulation of N2O emissions of S1-S5 treatments at transplanting-tillering stage, tillering-jointing stage, and the whole growth period decreased significantly compared with CK treatment. Among them, Nanjing 9108 decreased by 42.9%-60.8%, 40.8%-73.0%, and 33.9%-58.9%, respectively, and Taixiangjing 1402 decreased by 24.5%-53.3%, 39.5%-57.6%, and 29.9%-30.7%, respectively. The increase under S5 treatment was the largest. Finally, the GWP (Global Warming Potential) and GHGI (Greenhouse Gas Emission Intensity) of S1-S5 treatments decreased significantly compared with CK treatment, among which Nanjing 9108 decreased by 26.7%-35.3% and 25.3%-37.9%, respectively, and Taixiangjing decreased by 26.6%-37.9% and 28.1%-40.4%, respectively. The largest decrease was under S3 treatment, followed by S4 treatment. 【Conclusion】The combined application ratios of slow/controlled-release N fertilizer to common urea was 50%-60%:50%-40% at one-time with using the side-deep application, which had better high-yield, high-N efficiency and low-carbon emission outcome. It could be used as a light and simplified N application technology for high-yield, high-efficiency, green and low-carbon rice in the middle and lower reaches of the Yangtze River.

Key words: rice, controlled-release nitrogen fertilizer, one-time fertilization technology, nitrogen fertilizer use efficiency, greenhouse gas emission reduction

Table 1

Test soil type and content of nutrients"

年份
Year
土壤类型
Soil type
pH 有机质
Organic matter
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
碱解氮
Alkaline nitrogen decomposition (mg·kg-1)
速效磷
Quick-acting phosphorus (mg·kg-1)
速效钾
Quick-acting potassium (mg·kg-1)
2022 底黑勤泥土
Bottom black soil
7.11 25.3 1.79 113.8 8.23 110.5
2023 底黑勤泥土
Bottom black soil
7.16 23.6 1.54 104.9 7.57 113.8

Table 2

Fertilizer types and application rate for treatments with different ratios of controlled-release N fertilizer to common urea in basal N fertilizer"

处理
Treatment
控释氮肥与普通尿素配比
Ratio of controlled-release N to urea
施肥方式
Fertilizer application
施氮量 Fertilizer application rate (kg·hm-2)
基肥中控释氮肥 Controlled-release N 基肥中普通氮肥 Urea
0N / / / /
CK 0:35% 撒施Sprinkle 0 94.5
S1 100%:0 侧深施Side deep application 270 0
S2 80%:20% 侧深施Side deep application 216 54
S3 60%:40% 侧深施Side deep application 162 108
S4 50%:50% 侧深施Side deep application 135 135
S5 40%:60% 侧深施Side deep application 108 162

Fig. 1

Actual rice yield under different treatments in 2022 and 2023 Treatments are the same as those given in Table 2. The error line indicates the SD. Values followed by different lowercase letters in the same variety and year indicate significantly different at 0.05 probability level"

Table 3

Rice nitrogen uptake in main growth period under different treatments in 2022 (kg·hm-2)"

品种 Cultivar 处理 Treatment 分蘖盛期 Tillering stage 拔节期 Jointing stage 抽穗期 Heading stage 成熟期 Mature stage
南粳9108 Nanjing9108 0N 9.31±0.02g 19.99±0.92f 62.76±1.05g 107.01±1.77f
CK 63.27±0.42a 103.18±0.98a 151.98±1.13e 192.82±0.14d
S1 27.30±0.12f 91.59±0.59e 146.40±0.50f 190.71±0.87e
S2 40.67±0.18e 94.36±1.18d 157.39±0.11d 202.81±0.46c
S3 49.67±0.54c 100.70±0.46b 167.69±0.18b 209.82±0.75b
S4 52.60±0.04b 102.42±0.24a 171.80±0.03a 212.70±0.39a
S5 47.72±0.24d 96.03±0.21c 163.75±0.19c 203.52±0.43c
泰香粳1402 Taixiangjing1402 0N 14.73±0.23g 25.40±0.04f 63.83±0.53g 109.59±0.30g
CK 78.94±0.41a 112.51±0.25a 148.62±0.89e 185.21±0.61e
S1 35.81±0.32f 97.05±0.02e 146.20±0.46f 182.95±0.32f
S2 43.31±0.15e 100.75±0.17d 157.70±0.52d 193.76±0.12c
S3 49.29±0.17d 106.58±0.16c 164.09±0.58c 198.47±0.11b
S4 56.00±0.39b 112.21±0.55a 174.04±0.61a 203.86±0.45a
S5 53.26±0.08c 108.57±1.18b 170.11±0.40b 191.22±0.18d

Table 4

Nitrogen accumulation under different treatments during rice main growth reproductive stages in 2022 (kg·hm-2)"

品种
Cultivar
处理
Treatment
播种期—分蘖盛期
Seeding-tillering stage
分蘖盛期—拔节期
Tillering-jointing stage
拔节期—抽穗期
Jointing-heading stage
抽穗期—成熟期
Heading-mature stage
南粳9108 Nanjing9108 0N 9.31±0.02g 10.68±0.90f 42.77±0.13e 44.25±0.17a
CK 63.27±0.42a 39.91±1.40e 48.80±2.11d 40.84±1.14bc
S1 27.30±0.12f 64.29±0.71a 54.82±0.09c 44.31±0.87a
S2 40.67±0.18e 53.69±1.00b 63.03±1.29b 45.42±0.86a
S3 49.67±0.54c 51.03±0.07bc 66.99±1.28a 42.13±1.15b
S4 52.60±0.04b 49.82±0.28cd 69.37±3.21a 40.94±0.39bc
S5 47.72±0.24d 48.32±0.45d 67.72±1.40a 39.77±0.43c
泰香粳1402 Taixiangjing1402 0N 14.73±0.23f 10.68±0.27e 38.43±1.49d 45.76±0.30a
CK 78.94±0.41a 33.57±0.66d 36.12±0.65d 36.59±0.01b
S1 35.81±0.32e 61.24±0.34a 49.15±0.44c 36.75±0.72b
S2 43.31±0.15d 57.45±0.32b 56.95±0.69b 36.06±0.12b
S3 49.29±0.17c 57.29±1.32b 57.52±0.74b 34.37±0.11c
S4 56.00±0.39b 56.21±0.16b 61.83±1.16a 29.82±0.45d
S5 53.26±3.08b 55.31±0.10c 61.53±1.18a 21.11±0.18e

Table 5

Nitrogen use efficiency of rice under different treatments in 2022"

处理
Treatment
南粳9108 Nanjing9108 泰香粳1402 Taixiangjing1402
氮素农学利用率
NAUE (kg·kg-1)
氮素吸收利用率
NUE (%)
氮素偏生产力
NPP (kg·kg-1)
氮素农学利用率
NAUE (kg·kg-1)
氮素吸收利用率
NUE (%)
氮素偏生产力
NPP (kg·kg-1)
0N / / / / / /
CK 11.52±0.03e 31.78±0.60d 36.12±0.10d 12.01±0.04d 28.01±0.11e 35.03±0.02d
S1 11.05±0.04f 31.74±0.98d 35.24±0.01e 10.81±0.05e 27.17±0.10f 33.82±0.01e
S2 11.87±0.02d 35.48±0.49c 36.28±0.09d 12.28±0.02c 31.17±0.16c 35.32±0.02c
S3 12.68±0.02b 38.08±0.38b 36.89±0.00b 12.48±0.06b 32.92±0.15b 35.48±0.02b
S4 13.21±0.01a 39.14±0.80a 37.45±0.01a 13.79±0.07a 34.91±0.06a 36.77±0.07a
S5 12.31±0.01c 35.74±0.82c 36.54±0.01c 12.32±0.03c 30.23±0.04d 35.35±0.01c

Fig. 2

CH4 and N2O emission fluxes variation characteristics under different treatments in 2022 The error line indicates the SD"

Table 6

CH4 and N2O emission accumulation under different treatments during rice main growth reproductive stages in 2022"

气体
类型
Gas
品种
Cultivar
处理
Treatment
移栽—分蘖盛期
Transplanting-
tillering stage
分蘖盛期—拔节期
Tillering-jointing stage
拔节期—抽穗期
Jointing-heading stage
抽穗期至成熟期
Heading-mature stage
全生育期
Whole growth
period
CH4
(kg·hm-2)
南粳9108
Nanjing9108
0N 15.18±0.09d 45.31±0.44f 37.76±0.89e 25.58±0.46b 123.82±0.78f
CK 153.43±0.09c 249.02±0.12a 60.98±0.36b 49.25±0.68a 512.68±0.53a
S1 172.39±1.08b 129.39±0.96b 57.85±1.24c 15.70±2.01c 375.34±0.65b
S2 170.23±3.23b 104.23±1.14c 65.84±0.23a 16.24±0.62c 356.53±2.94d
S3 173.29±1.00b 89.44±0.46e 45.37±0.14d 22.14±1.74b 330.23±1.33e
S4 181.39±1.49a 98.27±0.40d 57.04±0.65c 16.89±1.45c 353.60±1.90d
S5 182.88±0.05a 104.81±0.67c 65.12±0.23a 15.42±0.98c 368.24±0.49c
泰香粳1402
Taixiangjing1402
0N 26.48±0.03f 65.05±0.38f 14.15±0.51f 10.36±0.02d 116.03±0.93g
CK 207.95±0.86b 180.74±1.19a 102.00±0.96a 29.25±0.08a 519.94±2.92a
S1 195.88±0.53c 90.39±0.36e 53.40±1.00c 15.05±0.20b 354.72±1.69d
S2 206.44±2.18b 95.63±1.13d 47.28±1.30d 15.68±0.31b 365.03±4.91c
S3 175.76±0.27e 91.81±0.97e 45.80±0.42e 11.65±0.68c 325.01±0.14f
S4 184.53±0.99d 104.14±0.39b 45.30±0.84e 11.16±0.07c 345.13±0.32e
S5 216.01±0.20a 99.16±0.48c 60.29±0.38b 15.06±0.24b 390.53±0.54b
N2O
(g·hm-2)
南粳9108
Nanjing9108
0N 31.50±0.21f 277.09±0.60g 184.61±0.61g 356.39±1.03g 849.59±2.46g
CK 709.91±0.65a 1815.20±3.19a 659.17±0.71b 294.83±0.14d 3479.11±3.27a
S1 405.07±3.22b 1073.82±1.33b 694.06±8.69a 438.49±1.64a 2611.43±12.23b
S2 369.31±1.57c 714.76±4.05c 618.23±11.60c 415.24±0.75b 2117.54±14.83c
S3 333.61±1.54d 647.75±2.25d 533.56±7.94d 326.95±6.52c 1841.86±2.37d
S4 278.48±0.63e 518.96±0.72e 424.92±2.25e 248.27±4.08e 1470.64±3.18e
S5 281.01±7.03e 495.59±2.76f 378.36±4.60f 274.89±0.79f 1429.85±4.39f
泰香粳1402
Taixiangjing1402
0N 48.24±0.59g 255.24±0.71g 129.22±0.48g 301.78±1.00e 734.48±1.37g
CK 807.25±0.38a 2178.88±3.27a 1023.36±1.18a 739.53±5.13a 4749.03±6.84a
S1 609.20±0.95b 1318.63±2.60b 804.79±4.17b 597.31±16.25bc 3329.93±22.06b
S2 407.48±0.63e 937.60±0.36f 651.38±9.48f 566.26±1.99c 2562.72±8.49e
S3 499.65±0.63d 923.07±5.13d 668.38±12.10e 606.17±4.35b 2697.26±10.69d
S4 553.25±1.39c 970.08±5.79c 801.88±1.12c 573.66±11.76c 2898.87±6.24c
S5 376.69±2.02f 942.52±2.43e 695.08±1.37d 512.24±3.72d 2526.53±0.63f

Table 7

GWP and GHGI under different treatments in 2022"

处理
Treatment
南粳9108 Nanjing9108 泰香粳1402 Taixiangjing1402
温室气体增温潜势
GWP (kg CO2-eq·hm-2)
温室气体排放强度
GHGI (kg·kg-1)
温室气体增温潜势
GWP (kg CO2-eq·hm-2)
温室气体排放强度
GHGI (kg·kg-1)
0N 4473. 41±27.30f 0.69±0.00g 4172.64±32.09f 0.68±0.01g
CK 18509.80±17.06a 1.90±0.00a 19150.21±101.47a 2.03±0.01a
S1 13571.01±25.83b 1.42±0.00b 13092.81±50.64c 1.43±0.01c
S2 12778.59±95.26d 1.31±0.01d 13205.57±169.63c 1.39±0.00d
S3 11798.83±44.59e 1.18±0.00f 11886.57±8.17e 1.21±0.00f
S4 12478.14±65.58d 1.24±0.01e 12632.92±8.85d 1.27±0.01e
S5 12963.39±15.29c 1.31±0.00c 14061.20±18.52b 1.46±0.00b

Table 8

GWP and GHGI reduction efficiencies under different application measures of slow/controlled release nitrogen fertilizers"

序号
No.
肥料类型
Fertilizer types
施氮方式
N application
method
氮肥运筹
N fertilizer operation
GWP降幅
GWP reduction (%)
GHGI降幅
GHGI reduction (%)
文献来源
Literature
sources
1 单一缓控释氮肥 Single slow/controlled release N fertilizer
硫包衣控释尿素
CRS
撒施SK 一次性施入One-time 20.7 22.7 王飞飞等
WANG F F, et al[49]
聚氨酯包衣尿素
CRT
撒施SK 一次性施入One-time 36.0 38.6 王飞飞等
WANG F F, et al [49]
脲甲醛缓释氮
CRUF
撒施SK 一次性施入One-time 34.5 34.1 王飞飞等
WANG F F, et al [49]
树脂包膜尿素
CRP
撒施SK 一次性施入One-time 29.6 27.3 王飞飞等
WANG F F, et al [49]
树脂包衣控释氮肥
CRN
撒施SK 早/晚稻,一次性施入
Early/late rice, one-time
21.1 32.9 郭晨
GUO C[46]
控释掺混肥 CRBF 撒施SK 一次性施入One-time 20.37 22.9 孟轶 MENG Y[50]
缓释氮专用肥
SRN
撒施SK 一次性施入One-time P>0.05 8.9 康治东等
KANG Z D, et al[51]
控失尿素
LCU
撒施SK 一次性施入One-time 4.5 / 张阳阳
ZHANG Y Y[52]
FeⅢ-单宁酸纳米改性
水基包膜尿素 NWU
撒施SK 一次性施入One-time 12.5 / 张阳阳
ZHANG Y Y[52]
控释尿素
CRU
土层混施SM 早/晚稻,基肥:分蘖肥=90:60
Early/late rice, base:tillering = 90:60
10.19 19.6 田昌等
TIAN C, et al [26]
2 单一缓控释氮肥减量 Single slow/controlled release N fertilizer reduction
-10%控释尿素
-10% CRU
土层混施SM 早/晚稻,基肥:分蘖肥=81:54
Early/late rice, base:tillering = 81:54
21.7 33.0 田昌等
TIAN C, et al [26]
-20%控释尿素
-20% CRU
土层混施SM 早/晚稻, 基肥:分蘖肥=72:48
Early/late rice, base:tillering = 72:48
22.9 29.5 田昌等
TIAN C, et al [26]
-30%控释尿素
-30% CRU
土层混施SM 早/晚稻, 基肥:分蘖肥=63:42
Early/late rice, base:tillering = 63:42
32.5 36.4 田昌等
TIAN C, et al [26]
-20%缓释氮专用肥
-20% SRN
撒施SK 一次性施入One-time 11.7 17.7 康治东等
KANG Z D, et al[51]
-40%缓释氮专用肥
-40% SRN
撒施SK 一次性施入One-time 16.1 12.4 康治东等
KANG Z D, et al[51]
3 缓控释氮肥结合灌溉 Slow/controlled release N fertilizer with irrigation
包膜控释尿素+间歇灌溉 CRU+IIG 撒施SK 早/稻,基肥:分蘖肥=120:60
Early/late rice, base:tillering = 120 : 60
P>0.05 P>0.05 宋春燕
SONG C Y[53]
-20%包膜控释尿素减量+间歇灌溉 -20%CRU+S+IIG 撒施SK 早/晚稻,基肥:分蘖肥=96:48
Early/late rice, base:tillering = 96:48
P>0.05 P>0.05 宋春燕
SONG C Y [53]
-20%包膜控释尿素减量+节水灌溉 -20%CRU+WSIG 撒施SK 早/晚稻, 基肥:分蘖肥=96:48
Early/late rice, base:tillering = 96:48
25.3 14.2 宋春燕
SONG C Y [53]
树脂包衣控释氮肥+薄浅湿晒节水灌溉 CRU+SI 撒施SK 早/晚稻, 基肥:分蘖肥=120:45/120:60
Early/late rice, base:tillering = 96:48/120:60
49.24 55.33 李健陵
LI J L,et al[54]
4 缓控释氮肥结合有机肥 Slow/controlled release N fertilizer with organic fertilizer
有机肥替代20%氮素+树脂包膜控释尿素 OF+SDCRU 侧深施肥SD 一次性施入One-time 28.69 35.93 余庆等
YU Q, et al [55]
减氮10%+有机肥替代20%氮素+树脂包膜控释尿素
-10%+OF+SDCRU
侧深施肥SD 一次性施入One-time 31.25 38.38 余庆等
YU Q, et al [55]
减氮20%+有机肥替代20%氮素+树脂包膜控释尿素
-20%+OF+SDCRU
侧深施肥SD 一次性施入One-time 34.41 35.94 余庆等
YU Q, et al [55]
[1]
MEINSHAUSEN M, JEFFERY L, GUETSCHOW J, ROBIOU DU PONT Y, ROGELJ J, SCHAEFFER M, HÖHNE N, DEN ELZEN M, OBERTHÜR S, MEINSHAUSEN N. National post-2020 greenhouse gas targets and diversity-aware leadership. Nature Climate Change, 2015, 5(12): 1098-1106.

doi: 10.1038/NCLIMATE2826
[2]
邵美红, 孙加焱, 阮关海. 稻田温室气体排放与减排研究综述. 浙江农业学报, 2011, 23(1): 181-187.
SHAO M H, SUN J Y, RUAN G H. Review on greenhouse gases emission and the reduction technology in rice fields. Acta Agriculturae Zhejiangensis, 2011, 23(1): 181-187. (in Chinese)
[3]
MASSON-DELMOTTE V. Climate change 2021: The physical science basis:Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
[4]
BURNEY J A, DAVIS S J, LOBELL D B. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 12052-12057.
[5]
WALLING E, VANEECKHAUTE C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. Journal of Environmental Management, 2020, 276: 111211.

doi: 10.1016/j.jenvman.2020.111211
[6]
ZHAO X, LIU S L, PU C, ZHANG X Q, XUE J F, ZHANG R, WANG Y Q, LAL R, ZHANG H L, CHEN F. Methane and nitrous oxide emissions under no-till farming in China: A meta-analysis. Global Change Biology, 2016, 22(4): 1372-1384.

doi: 10.1111/gcb.13185 pmid: 26661415
[7]
IPCC. Climate Change 2013-The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014.
[8]
张广斌, 马静, 徐华, 蔡祖聪. 中国稻田CH4排放量估算研究综述. 土壤学报, 2009, 46(5): 907-916.
ZHANG G B, MA J, XU H, CAI Z C. A review on the estimation of CH4 emissions from paddy fields in China. Acta Pedolocica Sinica, 2009, 46(5): 907-916. (in Chinese)
[9]
ZOU J W, HUANG Y, ZHENG X H, WANG Y S. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmospheric Environment, 2007, 41(37): 8030-8042.

doi: 10.1016/j.atmosenv.2007.06.049
[10]
PENG S B, BURESH R J, HUANG J L, ZHONG X H, ZOU Y B, YANG J C, WANG G H, LIU Y Y, HU R F, TANG Q Y, CUI K H, ZHANG F S, DOBERMANN A. Improving nitrogen fertilization in rice by sitespecific N management. A review. Agronomy for Sustainable Development, 2010, 30(3): 649-656.

doi: 10.1051/agro/2010002
[11]
蒋鹏, 徐富贤, 熊洪, 张林, 朱永川, 郭晓艺, 陈琳, 明静. 两种产量水平下减量施氮对杂交中稻产量和氮肥利用率的影响. 核农学报, 2020, 34(1): 147-156.

doi: 10.11869/j.issn.100-8551.2020.01.0147
JIANG P, XU F X, XIONG H, ZHANG L, ZHU Y C, GUO X Y, CHEN L, MING J. Effect of reduced nitrogen application on grain yield and nitrogen use efficiency of hybrid mid-season rice under two yield levels. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 147-156. (in Chinese)

doi: 10.11869/j.issn.100-8551.2020.01.0147
[12]
杨秉臻, 金涛, 陆建飞. 长江中下游地区近20年水稻生产与优势的变化. 江苏农业科学, 2018, 46(19): 62-67.
YANG B Z, JIN T, LU J F. Changes in rice production and dominance in the middle and lower reaches of the Yangtze River in the last 20 years. Jiangsu Agricultural Science, 2018, 46(19): 62-67. (in Chinese)
[13]
段然. 施肥方式对稻田氮素转化的影响及其微生物学机制[D]. 北京: 中国农业科学院, 2018.
DUAN R. Effect of different fertilizer application methods on nitrogen transformations in paddy soils and microbial mechanisms[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[14]
陈颖. 栽培措施对水稻产置和氮肥利用率的影响及其生理机制[D]. 扬州: 扬州大学, 2018.
CHEN Y. Effects of cultivation pattern on rice yield and nitrogen use efficiency and its physiological mechanism[D]. Yangzhou: Yangzhou University, 2018. (in Chinese)
[15]
魏海燕, 李宏亮, 程金秋, 张洪程, 戴其根, 霍中洋, 许轲, 郭保卫, 胡雅杰, 崔培媛. 缓释肥类型与运筹对不同穗型水稻产量的影响. 作物学报, 2017, 43(5): 730-740.
WEI H Y, LI H L, CHENG J Q, ZHANG H C, DAI Q G, HUO Z Y, XU K, GUO B W, HU Y J, CUI P Y. Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicle. Acta Agronomica Sinica, 2017, 43(5): 730-740. (in Chinese)

doi: 10.3724/SP.J.1006.2017.00730
[16]
程爽, 李绍平, 田晋钰, 邢志鹏, 胡雅杰, 郭保卫, 魏海燕, 高辉, 张洪程. 氮肥一次性基施对不同机直播水稻产量和品质的影响. 农业工程学报, 2020, 36(24): 1-10.
CHENG S, LI S P, TIAN J Y, XING Z P, HU Y J, GUO B W, WEI H Y, GAO H, ZHANG H C. Effects of one-time nitrogen basal application on the yield and quality of different direct-seeding rice crops by machine. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 1-10. (in Chinese)
[17]
宋文杰. 控释肥一次性侧深施对水稻生长、氮素利用和产量的影响[D]. 武汉: 长江大学, 2023.
SONG W J. Effects of one-time side deep application of controlled- release fertilizer on rice growth, nitrogen utilization and yield[D]. Wuhan: Yangtze University, 2023. (in Chinese)
[18]
陆喜瞻, 朱海滨, 张凯激, 许方甫, 朱盈, 李光彦, 刘国栋, 魏海燕, 胡群, 张洪程. 控释氮肥一次性减量基施和密植对机插粳稻产量、品质及经济效益的影响. 江苏农业学报, 2024, 40(8): 1400-1411.
LU X Z, ZHU H B, ZHANG K J, XU F F, ZHU Y, LI G Y, LIU G D, WEI H Y, HU Q, ZHANG H C. Effects of one--time base application with reduced amount of controlled-release nitrogen fertilizer and density increase on yield, quality and economic benefits of mechanized-transplanting japonica rice. Jiangsu Journal of Agricultural Sciences, 2024, 40(8): 1400-1411. (in Chinese)
[19]
蒋伟勤, 胡群, 俞航, 马会珍, 任高磊, 马中涛, 朱盈, 魏海燕, 张洪程, 刘国栋, 胡雅杰, 郭保卫. 优质食味粳稻控混肥一次性基施效应. 中国农业科学, 2021, 54(7): 1382-1396. doi: 10.3864/j.issn.0578-1752.2021.07.006.
JIANG W Q, HU Q, YU H, MA H Z, REN G L, MA Z T, ZHU Y, WEI H Y, ZHANG H C, LIU G D, HU Y J, GUO B W. Effect of one-time basal application of the mixed controlled-release nitrogen fertilizer in japonica rice with good taste quality. Scientia Agricultura Sinica, 2021, 54(7): 1382-1396. doi: 10.3864/j.issn.0578-1752.2021.07.006. (in Chinese)
[20]
朱从桦, 张玉屏, 向镜, 张义凯, 武辉, 王亚梁, 朱德峰, 陈惠哲. 侧深施氮对机插水稻产量形成及氮素利用的影响. 中国农业科学, 2019, 52(23): 4228-4239. doi: 10.3864/j.issn.0578-1752.2019.23.004.
ZHU C H, ZHANG Y P, XIANG J, ZHANG Y K, WU H, WANG Y L, ZHU D F, CHEN H Z. Effects of side deep fertilization on yield formation and nitrogen utilization of mechanized transplanting rice. Scientia Agricultura Sinica, 2019, 52(23): 4228-4239. doi: 10.3864/j.issn.0578-1752.2019.23.004. (in Chinese)
[21]
张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征. 作物学报, 2023, 49(4): 1039-1051.

doi: 10.3724/SP.J.1006.2023.22023
ZHANG C H, ZHANG Y, LI G H, YANG Z J, ZHA Y Y, ZHOU C Y, XU K, HUO Z Y, DAI Q G, GUO B W. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice. Acta Agronomica Sinica, 2023, 49(4): 1039-1051. (in Chinese)
[22]
郭松, 郭慧婷, 张裕梁, 钱紫慧, 王子君, 路佳明, 汪源, 赵灿, 王维领, 张洪程, 杨凤萍, 霍中洋. 侧深施控释氮肥运筹方式对水稻产量、NH3挥发和温室气体排放的影响. 作物学报, 2024, 50(6): 1525-1539.
GUO S, GUO H T, ZHANG Y L, QIAN Z H, WANG Z J, LU J M, WANG Y, ZHAO C, WANG W L, ZHANG H C, YANG F P, HUO Z Y. Effects of side deep placement of controlled release nitrogen management on rice yield, NH3, and greenhouse gas emissions. Acta Agronomica Sinica, 2024, 50(6): 1525-1539. (in Chinese)
[23]
王书伟, 林静慧, 吴正贵, 陈吉, 潘云俊, 盛雪雯. 氮肥深施对太湖地区稻田氨挥发的影响. 中国生态农业学报(中英文), 2021, 29(12): 2002-2012.
WANG S W, LIN J H, WU Z G, CHEN J, PAN Y J, SHENG X W. The effects of nitrogen fertilizer deep placement on the ammonia volatilization from paddy fields in the Taihu Lake region of China. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2002-2012. (in Chinese)
[24]
李玥, 李应洪, 赵建红, 孙永健, 徐徽, 严奉君, 谢华英, 马均. 缓控释氮肥对机插稻氮素利用特征及产量的影响. 浙江大学学报(农业与生命科学版), 2015, 41(6): 673-684.
LI Y, LI Y H, ZHAO J H, SUN Y J, XU H, YAN F J, XIE H Y, MA J. Effects of slow-and controlled-release nitrogen fertilizer on nitrogen utilization characteristics and yield of machine-transplanted rice. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 673-684. (in Chinese)
[25]
余婷, 翟壮, 高镜清, 蔡文倩. 种植模式协同秸秆管理对稻田温室气体排放的影响. 环境工程技术学报, 2024, 14(5): 1504-1512.
YU T, ZHAI Z, GAO J Q, CAI W Q. Effects of planting patterns and straw management on greenhouse gas emissions from paddy fields. Journal of Environmental Engineering Technology, 2024, 14(5): 1504-1512. (in Chinese)
[26]
田昌, 周旋, 黄思怡, 袁浩凌, 谢桂先, 刘强, 彭建伟. 控释尿素减施对稻田CH4和N2O排放及经济效益的影响. 生态环境学报, 2019, 28(11): 2223-2230.

doi: 10.16258/j.cnki.1674-5906.2019.11.011
TIAN C, ZHOU X, HUANG S Y, YUAN H L, XIE G X, LIU Q, PENG J W. Effects of controlled-release urea reduction on CH4 and N2O emissions and its economic benefits in double cropping paddy fields. Ecology and Environmental Sciences, 2019, 28(11): 2223-2230. (in Chinese)
[27]
易琼, 逄玉万, 杨少海, 卢钰升, 付弘婷, 李苹, 蒋瑞萍, 唐拴虎. 施肥对稻田甲烷与氧化亚氮排放的影响. 生态环境学报, 2013, 22(8): 1432-1437.
YI Q, PANG Y W, YANG S H, LU Y S, FU H T, LI P, JIANG R P, TANG S H. Methane and nitrous oxide emissions in paddy field as influenced by fertilization. Ecology and Environmental Sciences, 2013, 22(8): 1432-1437. (in Chinese)
[28]
张洪程, 吴桂成, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 端木银熙, 孙菊英, 赵品恒, 等. 粳型杂交水稻超高产形成规律与栽培途径的探讨. 杂交水稻, 2010, 25(S1): 346-353.
ZHANG H C, WU G C, DAI Q G, HUO Z Y, XU K, GAO H, WEI H Y, DUANMU Y X, SUN J Y, ZHAO P H, et al. Discussion on the formation law and cultivation methods of super-high yield of Japonica hybrid rice. Hybrid Rice, 2010, 25(S1): 346-353. (in Chinese)
[29]
王云翔. 不同缓释期氮肥与尿素一次配施对中、晚粳稻群体特征形成的影响[D]. 扬州: 扬州大学, 2023.
WANG Y X. Effect of one-time combined application of nitrogen fertilizer and urea at different slow-release stages on the formation of population characteristics of middle and late Japonica rice[D]. Yangzhou: Yangzhou University, 2023. (in Chinese)
[30]
邢晓鸣, 李小春, 丁艳锋, 王绍华, 刘正辉, 唐设, 丁承强, 李刚华, 魏广彬. 缓控释肥组配对机插常规粳稻群体物质生产和产量的影响. 中国农业科学, 2015, 48(24): 4892-4902. doi: 10.3864/j.issn.0578-1752.2015.24.004.
XING X M, LI X C, DING Y F, WANG S H, LIU Z H, TANG S, DING C Q, LI G H, WEI G B. Effects of types of controlled released nitrogen and fertilization modes on yield and dry mass production. Scientia Agricultura Sinica, 2015, 48(24): 4892-4902. doi: 10.3864/j.issn.0578-1752.2015.24.004. (in Chinese)
[31]
李玥. 缓控释氮肥及配施对机插稻氮素利用特征、产量及土壤理化性质的影响[D]. 雅安: 四川农业大学, 2016.
LI Y. Effects of slow and controlled release nitrogen fertilizer and its combined application on nitrogen utilization characteristics, yield and soil physical and chemical properties of machine- transplanted rice[D]. Yaan: Sichuan Agricultural University, 2016. (in Chinese)
[32]
李杰, 张洪程, 常勇, 龚金龙, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同种植方式水稻高产栽培条件下的光合物质生产特征研究. 作物学报, 2011, 37(7): 1235-1248.
LI J, ZHANG H C, CHANG Y, GONG J L, GUO Z H, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H. Characteristics of photosynthetic matter production under high-yield cultivation conditions of rice with different planting methods. Acta Agronomica Sinica, 2011, 37(7): 1235-1248. (in Chinese)

doi: 10.3724/SP.J.1006.2011.01235
[33]
ZHENG W K, ZHANG M, LIU Z G, ZHOU H Y, LU H, ZHANG W T, YANG Y C, LI C L, CHEN B C. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system. Field Crops Research, 2016, 197: 52-62.

doi: 10.1016/j.fcr.2016.08.004
[34]
付月君, 王昌全, 李冰, 尹斌, 张敬昇. 控释氮肥与尿素配施对单季稻产量及氮肥利用率的影响. 土壤, 2016, 48(4): 648-652.
FU Y J, WANG C Q, LI B, YIN B, ZHANG J S. Effects of combined application of controlled-release nitrogen fertilizer and urea on rice (Oryza sativa L.) yield and nitrogen use efficiency. Soils, 2016, 48(4): 648-652. (in Chinese)
[35]
黄巧义, 张木, 黄旭, 唐拴虎, 张发宝, 逄玉万, 易琼, 李苹, 付弘婷. 聚脲甲醛缓释氮肥一次性基施在双季稻上的应用效果. 中国农业科学, 2018, 51(20): 3996-4006. doi: 10.3864/j.issn.0578-1752.2018.20.017.
HUANG Q Y, ZHANG M, HUANG X, TANG S H, ZHANG F B, PANG Y W, YI Q, LI P, FU H T. Effect of one-off application of poly urea-formaldehyde fertilizer under reduced N rate on double cropping rice. Scientia Agricultura Sinica, 2018, 51(20): 3996-4006. doi: 10.3864/j.issn.0578-1752.2018.20.017. (in Chinese)
[36]
黄见良, 邹应斌, 彭少兵, BURESH R J. 水稻对氮素的吸收、分配及其在组织中的挥发损失. 植物营养与肥料学报, 2004, 10(6): 579-583.
HUANG J L, ZOU Y B, PENG S B, BURESH R J. Nitrogen uptake, distribution by rice and its losses from plant tissues during. Plant Nutrition and Fertilizing Science, 2004, 10(6): 579-583. (in Chinese)
[37]
吕腾飞, 谌洁, 马鹏, 代邹, 杨志远, 徐徽, 郑传刚, 马均. 氮肥缓速配施对机插杂交稻氮素利用特征的影响. 中国农业科学, 2021, 54(7): 1410-1423. doi: 10.3864/j.issn.0578-1752.2021.07.008.
T F, CHEN J, MA P, DAI Z, YANG Z Y, XU H, ZHENG C G, MA J. Effects of combined application of slow release nitrogen fertilizer and urea on the nitrogen utilization characteristics in machine- transplanted hybrid rice. Scientia Agricultura Sinica, 2021, 54(7): 1410-1423. doi: 10.3864/j.issn.0578-1752.2021.07.008. (in Chinese)
[38]
李敏, 郭熙盛, 叶舒娅, 刘枫, 袁嫚嫚, 黄义德. 硫膜和树脂膜控释尿素对水稻产量、光合特性及氮肥利用率的影响. 植物营养与肥料学报, 2013, 19(4): 808-815.
LI M, GUO X S, YE S Y, LIU F, YUAN M M, HUANG Y D. Effects of sulfur-and polymer-coated controlled release urea on yield, photosynthetic characteristics and nitrogen fertilizer efficiency of rice. Journal of Plant Nutrition and Fertilizer, 2013, 19(4): 808-815. (in Chinese)
[39]
彭碧琳, 李妹娟, 胡香玉, 钟旭华, 唐湘如, 刘彦卓, 梁开明, 潘俊峰, 黄农荣, 傅友强, 胡锐. 轻简氮肥管理对华南双季稻产量和氮肥利用率的影响. 中国农业科学, 2021, 54(7): 1424-1438. doi: 10.3864/j.issn.0578-1752.2021.07.009.
PENG B L, LI M J, HU X Y, ZHONG X H, TANG X R, LIU Y Z, LIANG K M, PAN J F, HUANG N R, FU Y Q, HU R. Effects of simplified nitrogen managements on grain yield and nitrogen use efficiency of double-cropping rice in South China. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438. doi: 10.3864/j.issn.0578-1752.2021.07.009. (in Chinese)
[40]
马丽, 张雪儿, 张如梦, 衡继璇, 熊启中, 郝杏中, 陈骏, 喻海峰, 王孝忠, 柴如山, 景建元, 罗来超, 张卫峰. 不同施肥方式与新型肥料匹配对巢湖流域水稻品质、经济效益及氮肥利用率的影响. 安徽农业大学学报, 2024, 51(4): 669-676.
MA L, ZHANG X E, ZHANG R M, HENG J X, XIONG Q Z, HAO X Z, CHEN J, YU H F, WANG X Z, CHAI R S, JING J Y, LUO L C, ZHANG W F. Effects of different fertilization methods and new fertilizer matching on rice quality, economic benefits and nitrogen efficiency in Chaohu lake basin. Journal of Anhui Agricultural University, 2024, 51(4): 669-676. (in Chinese)
[41]
张惠, 杨正礼, 罗良国, 张晴雯, 易军, 杨世琦, 陈媛媛, 王明. 黄河上游灌区稻田N2O排放特征. 生态学报, 2011, 31(21): 6606-6615.
ZHANG H, YANG Z L, LUO L G, ZHANG J W, YI J, YANG S Q, CHEN Y Y, WANG M. The feature of N2O emission from a paddy field in irrigation area of the Yellow River. Acta Ecologica Sinica, 2011, 31(21): 6606-6615. (in Chinese)
[42]
吴家梅, 纪雄辉, 彭华, 谢运河, 官迪, 田发祥, 朱坚, 霍莲杰. 不同有机肥对稻田温室气体排放及产量的影响. 农业工程学报, 2018, 34(4): 162-169.
WU J M, JI X H, PENG H, XIE Y H, GUAN D, TIAN F X, ZHU J, HUO L J. Effects of different organic fertilizers on greenhouse gas emissions and yield in paddy soils. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 162-169. (in Chinese)
[43]
李熠凡, 李烙布, 李伏生. 不同灌溉施氮模式对稻田甲烷和氧化亚氮排放的影响. 灌溉排水学报, 2021, 40(12): 44-53.
LI Y F, LI L B, LI F S. CH4 and N2O emissions from rice field as affected by different combinations of irrigation and nitrogen fertilization. Journal of Irrigation and Drainage, 2021, 40(12): 44-53. (in Chinese)
[44]
彭世彰, 李道西, 徐俊增, 丁加丽, 何岩, 郁进元. 节水灌溉模式对稻田CH4排放规律的影响. 环境科学, 2007, 28(1): 9-13.
PENG S Z, LI D X, XU J Z, DING J L, HE Y, YU J Y. Effect of water-saving irrigation on the law of CH4 emission from paddy field. Environmental Science, 2007, 28(1): 9-13. (in Chinese)
[45]
李晶, 王明星, 陈德章. 水稻田甲烷的减排方法研究及评价. 大气科学, 1998, 22(3): 354-362.
LI J, WANG M X, CHEN D Z. Study and evaluation of methane emission reduction methods in paddy fields. Chinese Journal of Atmospheric Sciences, 1998, 22(3): 354-362. (in Chinese)
[46]
郭晨. 缓/控释尿素施用对作物产量、氮肥利用率及温室气体排放的影响[D]. 武汉: 华中农业大学, 2018.
GUO C. Effects of slow/controlled release urea application on crop yield, nitrogen use efficiency and greenhouse gas emission[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[47]
张怡, 吕世华, 马静, 徐华, 袁江, 董瑜皎. 控释肥料对覆膜栽培稻田N2O排放的影响. 应用生态学报, 2014, 25(3): 769-775.
ZHANG Y, S H, MA J, XU H, YUAN J, DONG Y J. Effect of controlled release fertilizer on nitrous oxide emission from paddy field under plastic film mulching cultivation. Chinese Journal of Applied Ecology, 2014, 25(3): 769-775. (in Chinese)
[48]
纪洋, 张晓艳, 马静, 李小平, 徐华, 蔡祖聪. 控释肥及其与尿素配合施用对水稻生长期N2O排放的影响. 应用生态学报, 2011, 22(8): 2031-2037.
JI Y, ZHANG X Y, MA J, LI X P, XU H, CAI Z C. Effects of applying controlled-release fertilizer and its combination with urea on nitrous oxide emission during rice growth period. Chinese Journal of Applied Ecology, 2011, 22(8): 2031-2037. (in Chinese)
[49]
王飞飞, 陈春, 李凡, 郭新亚, 史玉良, 陈卫军. 不同控释氮肥对稻田温室气体排放和水稻产量的影响. 核农学报, 2025, 39(4): 839-845.

doi: 10.11869/j.issn.1000-8551.2025.04.0839
WANG F F, CHEN C, LI F, GUO X Y, SHI Y L, CHEN W J. Effect of controlled-release nitrogen fertilizers on greenhouse gas emissions and yield from rice fields. Journal of Nuclear Agricultural Sciences, 2025, 39(4): 839-845. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2025.04.0839
[50]
孟轶. 一次性基施控释掺混肥对水稻产量、稻米品质和温室气体排放的影响[D]. 扬州: 扬州大学, 2024.
MENG Y. Effects of one-time basal application of controlled-release mixed fertilizer on rice yield, rice quality and greenhouse gas emission[D]. Yangzhou: Yangzhou University, 2024. (in Chinese)
[51]
康治东, 徐飞, 卢恒, 钟自勉, 章力干, 李硕. 缓释氮肥减量替代对水稻产量和稻田温室气体排放的影响. 中国生态农业学报(中英文), 2025, 33(7): 1383-1393.
KANG Z D, XU F, LU H, ZHONG Z M, ZHANG L G, LI S. Effects of slow-release nitrogen fertilizer reduction substitution on rice yield and greenhouse gas emissions in paddy fields. Chinese Journal of Eco-Agriculture, 2025, 33(7): 1383-1393. (in Chinese)
[52]
张阳阳. 缓控释肥与秸秆配施对土壤酶活性、NH3挥发和温室气体排放的影响[D]. 郑州: 河南农业大学, 2022.
ZHANG Y Y. Effects of slow and controlled release fertilizer combined with straw on soil enzyme activity, NH3 volatilization and greenhouse gas emission[D]. Zhengzhou: Henan Agricultural University, 2022. (in Chinese)
[53]
宋春燕. 节水减氮及秸秆还田对双季稻温室气体排放和产量的综合影响[D]. 北京: 中国农业科学院, 2023.
SONG C Y. Comprehensive effects of water saving, nitrogen reduction and straw amendment on greenhouse gas emissions and rice yield from double rice system[D]. Beijing: Chinese Academy of Agricultural Sciences, 2023. (in Chinese)
[54]
李健陵, 李玉娥, 周守华, 苏荣瑞, 万运帆, 王斌, 蔡威威, 郭晨, 秦晓波, 高清竹, 刘硕. 节水灌溉、树脂包膜尿素和脲酶/硝化抑制剂对双季稻温室气体减排的协同作用. 中国农业科学, 2016, 49(20): 3958-3967. doi: 10.3864/j.issn.0578-1752.2016.20.010.
LI J L, LI Y E, ZHOU S H, SU R R, WAN Y F, WANG B, CAI W W, GUO C, QIN X B, GAO Q Z, LIU S. Synergistic effects of water- saving irrigation, polymer-coated nitrogen fertilizer and urease/ nitrification inhibitor on mitigation of greenhouse gas emissions from the double rice cropping system. Scientia Agricultura Sinica, 2016, 49(20): 3958-3967. doi: 10.3864/j.issn.0578-1752.2016.20.010. (in Chinese)
[55]
余庆, 冯涛, 丁紫娟, 柯娜, 段洪波, 聂江文, 朱波, 蒋梦蝶, 刘章勇. 有机肥与控释尿素减氮配施对再生稻田温室气体排放的影响. 农业环境科学学报, 2025, 44(6): 1675-1686.
YU Q, FENG T, DING Z J, KE N, DUAN H B, NIE J W, ZHU B, JIANG M D, LIU Z Y. Effects of organic fertilizer and controlled-release urea with reduced nitrogen on greenhouse gas emissions from ratoon rice paddies. Journal of Agro-Environment Science, 2025, 44(6): 1675-1686. (in Chinese)
[1] WANG AiDong, LI RuiJie, FENG XiangQian, HONG WeiYuan, LI ZiQiu, ZHANG XiaoGuo, WANG DanYing, CHEN Song. Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation [J]. Scientia Agricultura Sinica, 2025, 58(9): 1719-1734.
[2] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[5] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[6] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[7] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[8] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[9] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[10] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[11] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[12] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[13] ZHUANG LiHua, LUO Lei, ZHAO ChunFang, WANG JiZhong, ZHANG YaDong, HE Lei. Identification and Gene Mapping of Rice Grain Shape Mutant sgd13 [J]. Scientia Agricultura Sinica, 2025, 58(24): 5097-5109.
[14] CHEN JunQuan, MA ChiYuan, HU Xin, LI Duo, GUO YanQi, LIU Can, ZHOU Kai, ZHENG TaiHui. Effects of Incorporation of Inorganic-Organic Fertilizers on Soil Fertility, Ecological Stoichiometric Characteristics, and Yields of Rice Cropping System in the Red Soil Region of China [J]. Scientia Agricultura Sinica, 2025, 58(23): 4952-4966.
[15] LIU ChunLei, WANG Juan. Genetic Variation Analysis of New Germplasm with Combined High Yield and Salt Tolerance Developed from Derivative Materials of Pokkali [J]. Scientia Agricultura Sinica, 2025, 58(20): 4117-4130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!