Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (24): 5201-5215.doi: 10.3864/j.issn.0578-1752.2025.24.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Crop Rotation Systems on Soil Readily Oxidized Organic Carbon and Carbon Pool Activity Differences

MA HeXiao1(), GE GuoLong1, ZHANG XiangQian2,3,*(), LU ZhanYuan1,2, WANG ManXiu1, RONG MeiRen2,3, SHI JingJing1, ZHANG DeJian1,*(), SUN XuePing3   

  1. 1 College of Life Sciences, Inner Mongolia University/Key Laboratory of Forage and Characteristic Crop Biotechnology of Ministry of Education, Hohhot 010020
    2 Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences/Key Laboratory of Black Land Protection and Utilization, Ministry of Agriculture and Rural Affairs, Hohhot 010031
    3 Inner Mongolia Agricultural University, Hohhot 010018
  • Received:2025-01-16 Accepted:2025-04-17 Online:2025-12-22 Published:2025-12-22
  • Contact: ZHANG XiangQian, ZHANG DeJian

Abstract:

【Objective】Soil organic carbon pool activity and stability are important indicators that directly reflect soil quality. This study aimed to explore the effects of long-term crop rotation system on soil organic carbon, active organic carbon and soil carbon pool management index, so as to provide the scientific management of soil carbon pool and rational crop layout in black soil areas.【Method】The experiment started in 2016, and 7 treatments were set up: potato continuous cropping (P-P), maize continuous cropping (M-M), soybean continuous cropping (S-S), soybean-maize rotation (S-M), soybean-potato rotation (S-P), maize-maize- potato rotation (M-M-P), and soybean-maize-potato rotation (S-M-P). P-P was used as a control. The characteristics of soil organic carbon (SOC), readily oxidizable carbon(ROC), inert organic carbon (IOC) and soil carbon pool management index (CPMI) in 0-60 cm soil layer at the harvest stage in 2022 and 2023 were analyzed systematically.【Result】Compared with the P-P treatment, in 2022 and 2023: (1) SOC content under S-M-P and S-M treatment in 0-10 cm soil layer increased significantly by 10.22%-12.49% and 20.67%-36.75%, respectively. The M-M-P treatment of 10-20 cm soil layer significantly increased by 16.65% and 33.76%, respectively. SOC content under S-M-P and M-M-P treatments in 20-40 cm soil layer was significantly increased by 28.74%-36.78% and 48.78%-53.67%, respectively. In 2023, the S-M-P in 40-60 cm soil layer was significantly increased by 14.90% (P<0.05). (2) ROC333 content in 0-10 cm soil layer under S-M and M-M-P treatment was significantly increased by 20.09%-20.41% and 34.94%-39.69%, respectively. ROC333 of all rotation treatments in 10-20 cm soil layer increased significantly by 13.16%-26.32% and 28.98%-52.63%, respectively (P<0.05). (3) ROC167 content in S-P, S-M and S-M-P treatments in 0-10 cm soil layer was significantly increased by 21.11%-35.46% and 42.33%-44.85%, respectively (P<0.05). (4) ROC33.3 content in 0-10 cm soil layer under S-M-P treatment was significantly increased by 18.04% and 19.02%, respectively (P<0.05). (5) IOC of S-M-P treatment in 0-10 cm soil layer was significantly increased by 13.30% and 14.84%; M-M-P, S-M-P and S-M treatments in 20-40 cm soil layer significantly increased by 20.38%-52.51% and 59.56%-69.54%, respectively (P<0.05). (6) CPMI in 0-10 cm soil layer was significantly increased by 24.07%-28.13% and 41.46%-42.57% under S-M and M-M-P treatments, respectively. All rotation treatments in 10-20 cm soil layer were significantly increased by 17.34%-31.49% and 36.97%-61.11%, respectively (P<0.05). 【Conclusion】In conclusion, maize-soybean, soy-maize-potato and maize-maize-potato rotation treatments were beneficial to improve soil carbon pool activity and increase soil carbon stability. Leguminous crop rotation could not only increase the activity of organic carbon pool but also maintain its stability, which was conducive to the stability of soil carbon pool balance in black soil.

Key words: black soil area interlaced with agriculture and animal husbandry, maize, soybean, potato, crop rotation, soil organic carbon, soil readily oxidized organic carbon, soil carbon pool management index

Fig. 1

Average monthly precipitation and average monthly temperature in the test area from 2016 to 2023"

Table 1

Foundation fertility in 0-60 cm soil layer in 2016"

土层
Soil depth (cm)
pH
有机碳
Organic carbon (g·kg-1)
全氮
Total nitrogen (g·kg-1)
全磷
Total phosphorus (g·kg-1)
碱解氮
Alkali hydrolysable nitrogen (mg·kg-1)
速效磷
Available phosphorus
(mg·kg-1)
速效钾
Available potassium (mg·kg-1)
0-10 7.93 21.95 2.39 0.59 36.71 22.16 193.33
10-20 7.92 22.12 2.38 0.61 37.80 20.34 198.33
20-40 8.05 16.82 2.23 0.56 32.20 13.65 153.33
40-60 8.58 12.66 1.45 0.44 20.81 3.65 103.33

Table 2

Test design"

耕作模式
Tillage method
处理代码
Handing code
轮作周期氮磷钾用量
Nitrogen, phosphorus and potassium consumption during crop rotation (kg·hm-2)
连作
Continuous cropping
玉米连作 Maize continuous cropping M-M N (397.50), P (150), K (150)
大豆连作 Soybean continuous cropping S-S N (87.50), P (143.75), K (68.75)
马铃薯连作 Potato continuous cropping P-P N (275), P (125), K (125)
轮作
Crop rotation
大豆-玉米轮作 Soybean-maize rotation S-M N (485), P (293.75), K (218.75)
大豆-马铃薯轮作 Soybean-potato rotation S-P N (362.5), P (268.75), K (193.75)
玉米-玉米-马铃薯轮作 Maize-maize-potato rotation M-M-P N (1070), P (425), K (425)
大豆-玉米-马铃薯轮作 Soybean-maize-potato rotation S-M-P N (760), P (418.75), K (343.75)

Fig. 2

Soil organic carbon under the different crop rotation systems Different letters indicate that different treatments in the same soil layer are significantly different at the 0.05 level. The same as below"

Fig. 3

Soil ROC333 under the different crop rotation systems"

Fig. 4

Soil ROC167 under the different crop rotation systems"

Fig. 5

Soil ROC33.3 under the different crop rotation systems"

Fig. 6

Soil IOC under the different crop rotation systems"

Table 3

CPMI under the different crop rotation systems on 2022-2023"

土层
Soil layer
(cm)
处理
Treatment
2022 2023
碳库活度
Activity, A
碳库活度指数
Activity index, AI
碳库指数
C pool
index, CPI
碳库管理指数
C management
index, CPMI
活性有机碳分配
Active organic carbon partitioning (%)
碳库活度
Activity, A
碳库活度指数
Activity index, AI
碳库指数
C pool index, CPI
碳库管理指数
C management
index, CPMI
活性有机碳分配
Active organic carbon partitioning (%)
0-10 P-P(CK) 0.47±0.00bc 1.00±0.00abc 1.00±0.00a 100.00±0.00b 31.90±0.21bc 0.42±0.03c 1.00±0.00a 1.00±0.00c 100.00±0.00c 29.51±1.38c
M-M 0.41±0.02c 0.87±0.05c 1.17±0.02a 101.49±5.18b 28.90±1.17d 0.48±0.02ab 1.15±0.12a 1.26±0.08ab 143.75±10.57a 32.27±0.71ab
S-S 0.52±0.03ab 1.11±0.11ab 1.09±0.08a 118.69±2.51a 34.10±1.17ab 0.50±0.02a 1.20±0.06a 1.16±0.05abc 139.71±4.26ab 33.42±0.80a
S-M 0.52±0.02ab 1.11±0.09ab 1.13±0.07a 124.07±4.96a 34.13±1.04ab 0.43±0.03bc 1.04±0.10a 1.38±0.13a 141.46±5.81ab 30.21±1.31bc
S-P 0.41±0.01c 0.88±0.05c 1.03±0.04a 89.93±4.55b 29.20±0.42cd 0.48±0.00ab 1.16±0.08a 1.05±0.06bc 120.97±2.18b 32.56±0.20ab
M-M-P 0.57±0.03a 1.20±0.03a 1.07±0.05a 128.13±3.82a 36.07±1.18a 0.50±0.01a 1.19±0.08a 1.20±0.08abc 142.57±3.03ab 33.23±0.28a
S-M-P 0.43±0.01c 0.91±0.05bc 1.11±0.08a 100.56±1.05b 30.04±0.36cd 0.49±0.01ab 1.17±0.07a 1.21±0.04abc 141.98±10.91ab 32.83±0.25ab
10-20 P-P(CK) 0.40±0.01a 1.00±0.00a 1.00±0.00a 100.00±0.00c 28.44±0.55a 0.37±0.03b 1.00±0.00a 1.00±0.00d 100.00±0.00b 27.13±1.81b
M-M 0.28±0.01b 0.70±0.03b 1.14±0.03a 79.37±2.17d 21.66±0.77b 0.38±0.02b 1.03±0.08a 1.31±0.04ab 135.11±13.68a 27.47±1.00b
S-S 0.38±0.03a 0.97±0.06a 1.01±0.01a 97.99±5.38c 27.75±1.31a 0.46±0.03a 1.25±0.12a 1.16±0.04bc 143.59±8.73a 31.50±1.52a
S-M 0.46±0.01a 1.17±0.05a 1.13±0.08a 131.49±4.97a 31.67±0.68a 0.48±0.02a 1.29±0.13a 1.17±0.01bc 150.66±14.51a 32.17±0.94a
S-P 0.45±0.05a 1.13±0.10a 1.05±0.10a 117.34±2.00b 30.90±2.14a 0.44±0.01ab 1.19±0.08a 1.14±0.03cd 136.97±13.63a 30.59±0.67ab
M-M-P 0.45±0.02a 1.12±0.03a 1.17±0.01a 130.89±3.53ab 30.84±1.09a 0.45±0.02ab 1.21±0.08a 1.34±0.05a 161.11±4.56a 30.90±1.01ab
S-M-P 0.43±0.05a 1.07±0.09a 1.12±0.04a 118.44±7.32ab 29.72±2.39a 0.42±0.02ab 1.14±0.13a 1.25±0.10abc 141.35±15.51a 29.43±0.76ab
20-40 P-P(CK) 0.49±0.02a 1.00±0.00a 1.00±0.00c 100.00±0.00a 32.70±1.06a 0.49±0.02a 1.00±0.00a 1.00±0.00b 100.00±0.00bc 33.15±0.78a
M-M 0.26±0.01d 0.54±0.02d 1.23±0.07abc 66.16±4.78c 20.76±0.83d 0.38±0.02bc 0.77±0.02bc 1.48±0.03a 113.32±2.22a 27.56±0.75bc
S-S 0.27±0.02d 0.57±0.05d 1.18±0.14abc 65.51±3.26c 21.51±1.03d 0.32±0.01d 0.64±0.02d 1.39±0.06a 88.92±2.82d 24.05±0.71d
S-M 0.39±0.01b 0.80±0.05b 1.13±0.08abc 90.38±1.02b 27.99±0.40b 0.35±0.01cd 0.70±0.01cd 1.44±0.06a 101.36±3.58bc 25.87±0.81cd
S-P 0.27±0.01d 0.56±0.03d 1.02±0.09bc 56.87±2.46d 21.38±0.51d 0.41±0.01b 0.82±0.04b 1.12±0.01b 91.61±4.17cd 28.77±0.66b
M-M-P 0.34±0.01c 0.69±0.02c 1.37±0.06a 94.58±0.75ab 25.13±0.70c 0.36±0.00cd 0.72±0.02cd 1.54±0.06a 110.35±1.68ab 26.23±0.11cd
S-M-P 0.25±0.01d 0.52±0.04d 1.30±0.1ab 67.16±0.48c 20.17±0.39d 0.35±0.01cd 0.72±0.06cd 1.49±0.08a 106.24±4.97ab 26.11±0.77cd
40-60 P-P(CK) 0.27±0.01a 1.00±0.00abc 1.00±0.00a 100.00±0.00ab 21.22±0.86a 0.26±0.02cd 1.00±0.00bc 1.00±0.00a 100.00±0.00de 20.45±0.94c
M-M 0.29±0.02a 1.16±0.10a 0.95±0.08a 108.33±3.04a 22.19±0.91a 0.28±0.01bc 0.99±0.09bc 1.17±0.06a 114.58±5.75bcd 21.59±0.51bc
S-S 0.22±0.01bc 0.91±0.09bc 1.05±0.07a 94.73±3.94bc 18.30±0.44bc 0.21±0.02d 0.75±0.09c 1.17±0.04a 87.07±7.30e 17.21±1.18d
S-M 0.26±0.02ab 1.06±0.12ab 1.07±0.05a 111.82±8.74a 20.56±1.20ab 0.33±0.01b 1.16±0.07b 1.11±0.04a 128.00±2.50bc 24.44±0.80b
S-P 0.22±0.02bc 0.90±0.02bc 1.02±0.03a 92.08±4.09bc 18.30±1.02bc 0.31±0.03b 1.14±0.16b 1.17±0.08a 130.41±13.13b 23.80±1.66b
M-M-P 0.20±0.01c 0.82±0.02c 1.10±0.03a 89.54±2.43bc 16.83±0.70c 0.31±0.01bc 1.12±0.06b 0.97±0.03a 108.62±4.79cd 23.83±0.29b
S-M-P 0.20±0.01c 0.81±0.04c 1.04±0.04a 83.48±0.77c 16.65±0.45c 0.44±0.02a 1.73±0.17a 1.15±0.09a 196.98±4.38a 30.56±1.01a

Fig. 7

Pearson correlation between soil ROC and SOC content"

[1]
黄绍文, 高伟, 唐继伟, 李春花. 我国主要菜区耕层土壤盐分总量及离子组成. 植物营养与肥料学报, 2016, 22(4): 965-977.
HUANG S W, GAO W, TANG J W, LI C H. Total salt content and ion composition in tillage layer of soils in the main vegetable production regions of China. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 965-977. (in Chinese)
[2]
WANG X Y. Study on continuous cropping obstacle and control strategy of medicinal plants// Proceedings of the 2017 3rd International Conference on Economics, Social Science, Arts, Education and Management Engineering (ESSAEME 2017).
[3]
IHESHIULO E M, LARNEY F J, HERNANDEZ-RAMIREZ G, STLUCE M, CHAU H W, LIU K. Quantitative evaluation of soil health based on a minimum dataset under various short-term crop rotations on the Canadian prairies. Science of the Total Environment, 2024, 935: 173335.

doi: 10.1016/j.scitotenv.2024.173335
[4]
TANG H J, QIU J J, WANG L G, LI H, LI C S, VAN RANST E. Modeling soil organic carbon storage and its dynamics in croplands of China. Agricultural Sciences in China, 2010, 9(5): 704-712.

doi: 10.1016/S1671-2927(09)60146-2
[5]
ZHANG X, SHEN S W, XUE S Q, HU Y S, WANG X D. Long-term tillage and cropping systems affect soil organic carbon components and mineralization in aggregates in semiarid regions. Soil and Tillage Research, 2023, 231: 105742.

doi: 10.1016/j.still.2023.105742
[6]
PANCHAL P, PREECE C, PEÑUELAS J, GIRI J. Soil carbon sequestration by root exudates. Trends in Plant Science, 2022, 27(8): 749-757.

doi: 10.1016/j.tplants.2022.04.009
[7]
刘继龙, 董泽, 曹晓强, 王志卓, 刘倩倩, 曹冉. 不同覆盖及耕作措施对黑土区坡耕地土壤养分时空变化特征及作物产量的影响. 干旱地区农业研究, 2024, 42(4): 189-198.
LIU J L, DONG Z, CAO X Q, WANG Z Z, LIU Q Q, CAO R. Effects of different mulching and tillage practices on soil nutrient temporal and spatial characteristics and crop yield of sloping farmland in black soil areas. Agricultural Research in Arid Areas, 2018, 42(4): 189-198. (in Chinese)
[8]
ZUBER S M, BEHNKE G D, NAFZIGER E D, VILLAMIL M B. Multivariate assessment of soil quality indicators for crop rotation and tillage in Illinois. Soil and Tillage Research, 2017, 174: 147-155.

doi: 10.1016/j.still.2017.07.007
[9]
吴鹏博, 李立军, 张艳丽, 李晓婷, 杨帆. 轮作结合施肥对土壤有机碳及其组分和土壤养分的影响. 土壤通报, 2020, 51(2): 416-422.
WU P B, LI L J, ZHANG Y L, LI X T, YANG F. Effects of rotation and fertilization on soil organic carbon and its fractions and soil nutrients. Chinese Journal of Soil Science, 2020, 51(2): 416-422. (in Chinese)
[10]
金雯晖, 杨劲松, 侯晓静, 姚荣江, 余世鹏, 王相平, 谢文萍. 轮作模式对滩涂土壤有机碳及团聚体的影响. 土壤, 2016, 48(6): 1195-1201.
JIN W H, YANG J S, HOU X J, YAO R J, YU S P, WANG X P, XIE W P. Effects of rotation systems on soil organic carbon and aggregates in light salinized farmland in north Jiangsu Province. Soils, 2016, 48(6): 1195-1201. (in Chinese)
[11]
CULMAN S W, SNAPP S S, FREEMAN M A, SCHIPANSKI M E, BENISTON J, LAL R, DRINKWATER L E, FRANZLUEBBERS A J, GLOVER J D, GRANDY A S, et al. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Science Society of America Journal, 2012, 76(2): 494-504.

doi: 10.2136/sssaj2011.0286
[12]
LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant and Soil, 1993, 155(1): 399-402.
[13]
徐明岗, 于荣, 孙小凤, 刘骅, 王伯仁, 李菊梅. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响. 植物营养与肥料学报, 2006, 12(4): 459-465.
XU M G, YU R, SUN X F, LIU H, WANG B R, LI J M. Effects of long-term fertilization on active organic matter and carbon management index (CMI) of typical soil of China. Plant Nutrition and Fertilizer Science, 2006, 12(4): 459-465. (in Chinese)
[14]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000.
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[15]
BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46(7): 1459.

doi: 10.1071/AR9951459
[16]
徐侠, 王丰, 栾以玲, 汪家社, 方燕鸿, 阮宏华. 武夷山不同海拔植被土壤易氧化碳. 生态学杂志, 2008, 27(7): 1115-1121.
XU X, WANG F, LUAN Y L, WANG J S, FANG Y H, RUAN H H. Soil readily oxidizable carbon along an elevation gradient of Wuyi Mountains in southeastern China. Chinese Journal of Ecology, 2008, 27(7): 1115-1121. (in Chinese)
[17]
YAN Z J, ZHOU J, YANG L, GUNINA A, YANG Y D, PEIXOTO L, ZENG Z H, ZANG H D, KUZYAKOV Y. Diversified cropping systems benefit soil carbon and nitrogen stocks by increasing aggregate stability: Results of three fractionation methods. Science of the Total Environment, 2022, 824: 153878.

doi: 10.1016/j.scitotenv.2022.153878
[18]
LUO B L, ZHOU J, YAO W, WANG Y X, GUILLAUME T, YUAN M, HAN D W, BILYERA N, WANG L X, ZHAO L, et al. Maize and soybean rotation benefits soil quality and organic carbon stock. Journal of Environmental Management, 2024, 372: 123352.

doi: 10.1016/j.jenvman.2024.123352
[19]
CUI J W, SONG D L, DAI X L, XU X P, HE P, WANG X Y, LIANG G Q, ZHOU W, ZHU P. Effects of long-term cropping regimes on SOC stability, soil microbial community and enzyme activities in the Mollisol region of Northeast China. Applied Soil Ecology, 2021, 164: 103941.

doi: 10.1016/j.apsoil.2021.103941
[20]
LI G R, TANG X Q, HOU Q M, LI T, XIE H X, LU Z Q, ZHANG T S, LIAO Y C, WEN X X. Response of soil organic carbon fractions to legume incorporation into cropping system and the factors affecting it: A global meta-analysis. Agriculture, Ecosystems & Environment, 2023, 342: 108231.

doi: 10.1016/j.agee.2022.108231
[21]
YAO C C, GUO H J, XU H H, YANG X Y, YAO Z S, GU J X. Maize stalk incorporation increases N2O emissions that offset the benefit of SOC sequestration in a winter wheat-summer maize field: A four-year measurement in long-term fertilizer experiments. Agriculture, Ecosystems & Environment, 2023, 352: 108507.

doi: 10.1016/j.agee.2023.108507
[22]
蒋如, 宁诗琪, 隋宗明, 袁玲, 刘京. 长期轮作施肥处理对植烟土壤有机碳组分和酶活性的影响. 土壤, 2024, 56(3): 510-516.
JIANG R, NING S Q, SUI Z M, YUAN L, LIU J. Effects of long-term rotation and fertilization treatments on organic carbon fractions and enzyme activity in tobacco-planting soil. Soils, 2024, 56(3): 510-516. (in Chinese)
[23]
侯乾, 王万兴, 李广存, 熊兴耀. 马铃薯连作障碍研究进展. 作物杂志, 2019(6): 1-7.
HOU Q, WANG W X, LI G C, XIONG X Y. Advances in the research on potato continuous cropping obstacles. Crops, 2019(6): 1-7. (in Chinese)
[24]
ZHANG K L, MALTAIS-LANDRY G, LIAO H L. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biology and Biochemistry, 2021, 156: 108219.

doi: 10.1016/j.soilbio.2021.108219
[25]
孙涛, 冯晓敏, 高新昊, 邓艾兴, 郑成岩, 宋振伟, 张卫建. 多样化种植对土壤团聚体组成及其有机碳和全氮含量的影响. 中国农业科学, 2023, 56(15): 2929-2940. doi: 10.3864/j.issn.0578-1752.2023.15.008.
SUN T, FENG X M, GAO X H, DENG A X, ZHENG C Y, SONG Z W, ZHANG W J. Effects of diversified cropping on the soil aggregate composition and organic carbon and total nitrogen content. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940. doi:10.3864/j.issn.0578-1752.2023.15.008. (in Chinese)
[26]
JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant and Soil, 2009, 321(1): 5-33.

doi: 10.1007/s11104-009-9925-0
[27]
EL ZAHAR HAICHAR F, SANTAELLA C, HEULIN T, ACHOUAK W. Root exudates mediated interactions belowground. Soil Biology and Biochemistry, 2014, 77: 69-80.

doi: 10.1016/j.soilbio.2014.06.017
[28]
李新华, 郭洪海, 朱振林, 董红云, 杨丽萍, 张锡金. 不同秸秆还田模式对土壤有机碳及其活性组分的影响. 农业工程学报, 2016, 32(9): 130-135.
LI X H, GUO H H, ZHU Z L, DONG H Y, YANG L P, ZHANG X J. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 130-135. (in Chinese)
[29]
赵宇航, 殷浩凯, 胡雪纯, 解文艳, 刘志平, 周怀平, 杨振兴. 长期秸秆还田褐土有机碳矿化特征及其驱动力. 环境科学, 2024, 45(4): 2353-2362.
ZHAO Y H, YIN H K, HU X C, XIE W Y, LIU Z P, ZHOU H P, YANG Z X. Characteristics and driving forces of organic carbon mineralization in brown soil with long-term straw returning. Environmental Science, 2024, 45(4): 2353-2362. (in Chinese)

doi: 10.1021/es103860a
[30]
苗淑杰, 乔云发, 王文涛, 施雨涵. 添加玉米秸秆对黄棕壤有机质的激发效应. 土壤, 2019, 51(3): 622-626.
MIAO S J, QIAO Y F, WANG W T, SHI Y H. Priming effect of maize straw addition on soil organic matter in yellow-brown soil. Soils, 2019, 51(3): 622-626. (in Chinese)
[31]
郑永美, 周丽梅, 郑亚萍, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 花生主要碳代谢指标与根瘤固氮能力的关系. 植物营养与肥料学报, 2021, 27(1): 75-86.
ZHENG Y M, ZHOU L M, ZHENG Y P, WU Z F, SUN X W, YU T Y, SHEN P, WANG C B. Relationship between carbon metabolism indices of peanut leaves and nitrogen fixation ability of nodules. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 75-86. (in Chinese)
[32]
LIU K, BANDARA M, HAMEL C, KNIGHT J D, GAN Y T. Intensifying crop rotations with pulse crops enhances system productivity and soil organic carbon in semi-arid environments. Field Crops Research, 2020, 248: 107657.

doi: 10.1016/j.fcr.2019.107657
[33]
GAN Y T, CAMPBELL C A, JANZEN H H, LEMKE R L, BASNYAT P, MCDONALD C L. Carbon input to soil from oilseed and pulse crops on the Canadian prairies. Agriculture, Ecosystems and Environment, 2009, 132(3): 290-297.

doi: 10.1016/j.agee.2009.04.014
[34]
张经廷, 张丽华, 吕丽华, 董志强, 姚艳荣, 金欣欣, 姚海坡, 贾秀领. 还田作物秸秆腐解及其养分释放特征概述. 核农学报, 2018, 32(11): 2274-2280.

doi: 10.11869/j.issn.100-8551.2018.11.2274
ZHANG J T, ZHANG L H, L H, DONG Z Q, YAO Y R, JIN X X, YAO H P, JIA X L. Overview of the characteristics of crop straw decomposition and nutrients release of returned field crops. Journal of Nuclear Agricultural Sciences, 2018, 32(11): 2274-2280. (in Chinese)

doi: 10.11869/j.issn.100-8551.2018.11.2274
[35]
徐国伟, 常二华, 蔡建. 秸秆还田的效应及影响因素. 耕作与栽培, 2005, 25(1): 6-9.
XU G W, CHANG E H, CAI J. Effect and influencing factors of straw returning to field. Tillage and Cultivation, 2005, 25(1): 6-9. (in Chinese)
[36]
梅秀文, 祝腾霄, 李玉萍, 李双异, 孙良杰, 安婷婷, 汪景宽. 不同施肥下根际沉积对秸秆碳氮在土壤剖面中固存的影响. 中国农业科学, 2023, 56(19): 3856-3868. doi:10.3864/j.issn.0578-1752.2023.19.012.
MEI X W, ZHU T X, LI Y P, LI S Y, SUN L J, AN T T, WANG J K. Effects of rhizodeposition on straw carbon and nitrogen sequestration in soil profiles under different fertilization conditions. Scientia Agricultura Sinica, 2023, 56(19): 3856-3868. doi:10.3864/j.issn.0578-1752.2023.19.012. (in Chinese)
[37]
李晓庆, 赵承森, 孟雨田, 徐晴晴, 陈琳, 马晓伟, 刘锡博, 王宏燕, 赵伟. 玉米秸秆对不同有机碳含量的黑土有机碳库的影响. 华南农业大学学报, 2018, 39(6): 39-46.
LI X Q, ZHAO C S, MENG Y T, XU Q Q, CHEN L, MA X W, LIU X B, WANG H Y, ZHAO W. Effects of maize straw on organic carbon pool in different organic carbon with different content of organic carbon in black soil. Journal of South China Agricultural University, 2018, 39(6): 39-46. (in Chinese)
[38]
LEHMANN J, KLEBER M. The contentious nature of soil organic matter. Nature, 2015, 528(7580): 60-68.

doi: 10.1038/nature16069
[39]
COTRUFO M F, WALLENSTEIN M D, BOOT C M, DENEF K, PAUL E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter. Global Change Biology, 2013, 19(4): 988-995.

doi: 10.1111/gcb.2013.19.issue-4
[40]
VIEIRA F C B, BAYER C, ZANATTA J A, DIECKOW J, MIELNICZUK J, HE Z L. Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. Soil and Tillage Research, 2007, 96(1/2): 195-204.

doi: 10.1016/j.still.2007.06.007
[41]
刘红梅, 张海芳, 赵建宁, 王慧, 秦洁, 杨殿林, 张乃芹. 氮添加对贝加尔针茅草原土壤活性有机碳和碳库管理指数的影响. 草业学报, 2020, 29(8): 18-26.

doi: 10.11686/cyxb2019477
LIU H M, ZHANG H F, ZHAO J N, WANG H, QIN J, YANG D L, ZHANG N Q. Effects of nitrogen addition on labile soil organic carbon and carbon pool management index of Stipa baicalensis steppe in Inner Mongolia, China. Acta Prataculturae Sinica, 2020, 29(8): 18-26. (in Chinese)
[42]
武琳, 黄尚书, 叶川, 钟义军, 黄欠如, 成艳红, 郑伟, 孙永明, 高蕊, 周莺. 土地利用方式对江西红壤旱地碳库管理指数的影响. 土壤, 2017, 49(6): 1275-1279.
WU L, HUANG S S, YE C, ZHONG Y J, HUANG Q R, CHENG Y H, ZHENG W, SUN Y M, GAO R, ZHOU Y. Effects of land uses on carbon pool management index of read soil in Jiangxi. Soils, 2017, 49(6): 1275-1279. (in Chinese)
[43]
袁嘉欣, 杨滨娟, 胡启良, 唐海鹰, 李淑娟, 黄国勤. 长江中游稻田种植模式对土壤有机碳及碳库管理指数的影响. 中国生态农业学报(中英文), 2021, 29(7): 1205-1214.
YUAN J X, YANG B J, HU Q L, TANG H Y, LI S J, HUANG G Q. Effects of paddy field cropping patterns on soil organic carbon and carbon pool management index in the middle reaches of the Yangtze River. Chinese Journal of Eco-Agriculture, 2021, 29(7): 1205-1214. (in Chinese)
[1] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[2] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[3] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[4] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[5] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[6] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[7] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[8] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[9] WU XinJia, XUE Wei, YAN YiDan, NIE YingYing, YE LiMing, XU LiJun. Temporal and Spatial Variation Characteristics of Soil Organic Carbon in Hulunbuir and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(6): 1145-1158.
[10] LIU LuPing, HU XueJie, QI Jin, CHEN Qiang, LIU Zhi, ZHAO TianTian, SHI XiaoLei, LIU BingQiang, MENG QingMin, ZHANG MengChen, HAN TianFu, YANG ChunYan. Cloning of the Promoters and Analysis of Expression Patterns of Maturity Genes E1 and E2 in Soybean [J]. Scientia Agricultura Sinica, 2025, 58(5): 840-850.
[11] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[12] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[13] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[14] ZHOU GuangFei, MA Liang, MA Lu, ZHANG ShuYu, ZHANG HuiMin, SONG XuDong, ZHANG ZhenLiang, LU HuHua, HAO DeRong, MAO YuXiang, XUE Lin, CHEN GuoQing. Genome-Wide Association Study of Husk Traits in Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 431-442.
[15] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!