Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (23): 4952-4966.doi: 10.3864/j.issn.0578-1752.2025.23.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Incorporation of Inorganic-Organic Fertilizers on Soil Fertility, Ecological Stoichiometric Characteristics, and Yields of Rice Cropping System in the Red Soil Region of China

CHEN JunQuan1(), MA ChiYuan2, HU Xin1, LI Duo1, GUO YanQi1, LIU Can1, ZHOU Kai1, ZHENG TaiHui1,*()   

  1. 1 College of Land Resources and Environment, Jiangxi Agricultural University/Key Laboratory of Agricultural Resources and Ecology in Poyang Lake Watershed, Ministry of Agriculture and Rural Affairs, Nanchang 330045
    2 Technology Center of Nanchang Customs District, Nanchang 330038
  • Received:2024-11-05 Accepted:2024-12-30 Online:2025-12-01 Published:2025-12-09
  • Contact: ZHENG TaiHui

Abstract:

【Objective】 Long-term reliance on chemical fertilizers in red soil paddy fields has caused a decline in soil fertility and nutrient imbalances, leading to unstable rice yields. This study evaluated the effects of combining organic fertilizers and chemical fertilizers at different ratios on soil fertility and rice yields. The findings aim to provide scientific guidance for improving soil quality and promoting sustainable management of red soil paddy fields. 【Method】 A field experiment was conducted in the Green Breeding and Recycling Agricultural Demonstration Area, Shanggao County, Jiangxi Province, from 2021 to 2023. Seven treatments were implemented: no fertilization (CK), conventional chemical fertilizers alone (CF), optimized chemical fertilizers (COF), and partial replacement of chemical nitrogen fertilizers with 15% or 30% fermented pig manure organic fertilizers (OFN15, OFN30), and replacement with 30% or 60% of chemical phosphorus fertilizers with organic fertilizers (OFP30, OFP60). The study systematically analyzed the effects of these treatments on soil pH, carbon content, nitrogen, phosphorus, potassium nutrient levels, ecological stoichiometric characteristics, comprehensive soil fertility and rice yields. 【Result】 Treatments involving partial replacement of chemical fertilizers with organic fertilizers significantly increased the available potassium content in the soil by 10.8%-34.2% compared to CF treatments. Soil pH also increased by 0.19-0.30 units, while organic carbon content rose by 1.7%-11.6%. The effects of different organic fertilizer replacement proportions on soil nutrient improvement varied significantly, indicating the importance of determining the optimal proportion for soil enhancement. Among these treatments, the OFN30 treatment showed the greatest enhancement in soil nitrogen, phosphorus, potassium, and carbon content. Compared to CF, the OFN15 and OFP60 treatments reduced rice yields by 7.3% and 10.6%, respectively, while the OFN30 and OFP30 treatments showed no significant yield differences. A comprehensive soil fertility evaluation using the Nemero index (IFI) method ranked the seven soil treatments from highest to lowest as follows: OFN15 (1.407), OFN30 (1.391), OFP60 (1.379), OFP30 (1.356), COF (1.354), CF (1.341) and CK (1.309). While inorganic fertilizers had a more significant impact on rice yields, analysis using the partial least squares structural equation model (PLS-SEM) revealed that organic fertilizers were more effective in improving soil chemical properties. Furthermore, organic fertilizers had a significant positive impact on rice yield. Specifically, replacing chemical nitrogen fertilizers with organic fertilizers notably increased the levels of total nitrogen, organic carbon, and available nitrogen in paddy soil. 【Conclusion】 Based on a comprehensive evaluation of rice yields and improvements in soil physical and chemical properties, this study found that the application of organic fertilizers significantly enhanced the ecological stoichiometric characteristics of carbon, nitrogen, phosphorus, and potassium, as well as the overall fertility of red soil paddy fields under the experimental conditions. By maintaining the replacement ratio of organic fertilizers to chemical nitrogen fertilizers at about 30% (calculated based on nitrogen contents), an optimal balance between soil fertility and rice yield can be achieved in the short term. These findings provide important scientific evidence and practical guidance for the sustainable management and fertility improvement of red soil paddy fields.

Key words: organic fertilizer replacement, red soil, rice, ecological stoichiometric characteristics, yield, comprehensive fertility assessment

Table 1

Single season fertilizer application rate with different proportions of organic fertilizer instead of chemical fertilizer"

处理
Treatment
复合肥
Compound fertilizer
尿素
Urea (N)
过磷酸钙
SSP (P2O5)
氯化钾
KCl (K2O)
腐熟猪粪有机肥
Decomposed pig manure organic fertilizer
CK 0 0 0 0 0
CF 420 233 307 147 0
COF 504 280 367 177 0
OFN15 357 198 167 90 1534
OFN30 290 165 33 33 3068
OFP30 290 215 220 100 1668
OFP60 127 207 183 60 3335

Table 2

Grading criteria for the evaluation of soil chemistry indicators"

分级
Grade
pH 有机质
Organic
matter
(g·kg-1)
全氮
Total
nitrogen
(g·kg-1)
全磷
Total
phosphorus
(g·kg-1)
全钾
Total
potassium
(g·kg-1)
碱解氮Alkali-hydrolysable nitrogen
(mg·kg-1)
有效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium
(mg·kg-1)
Xa 4.5 10 0.75 0.4 5 30 3 40
Xc 6.5 20 1.50 0.6 20 90 10 100
Xp 8.5 30 2.00 1.0 25 150 20 150

Fig. 1

Soil pH values under different treatments Different lowercase letters indicate significant differences between different treatments (P<0.05). The same as below"

Fig. 2

Soil carbon component content under different treatments"

Table 3

Effect of different treatments on nitrogen, phosphorus and potassium content of soil"

处理
Treatment
全氮
Total nitrogen
(g·kg-1)
全磷
Total phosphorus
(g·kg-1)
全钾
Total potassium
(g·kg-1)
碱解氮
Alkali-hydrolyzable
nitrogen (mg·kg-1)
有效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
CK 1.97±0.09a 0.81±0.07b 24.52±0.44a 131.33±9.45b 36.23±5.13b 39.67±4.16b
CF 2.07±0.06a 0.91±0.04a 24.32±0.35a 132.00±12.49b 46.97±4.98a 52.67±2.52ab
COF 2.12±0.03a 0.90±0.04a 24.27±0.33a 138.33±8.50b 45.30±2.95a 57.33±10.07ab
OFN15 2.13±0.01a 0.94±0.04a 24.24±0.57a 165.33±22.19a 46.33±5.36a 70.67±16.01a
OFN30 2.15±0.09a 0.96±0.05a 24.69±0.39a 136.67±8.08b 45.97±4.58a 64.00±21.28ab
OFP30 2.05±0.03a 0.88±0.06ab 24.23±0.22a 136.67±14.50b 41.07±3.76ab 58.33±17.62ab
OFP60 2.13±0.09a 0.91±0.04a 24.00±0.45a 150.33±8.74ab 45.70±2.79a 59.67±9.29ab

Table 4

Effect of different treatments on the stoichiometric characteristics of soil C, N, P and K"

处理Treatment C/N C/P C/K N/P N/K P/K
CK 8.316±0.294a 20.295±2.758a 0.669±0.051b 2.444±0.361a 0.081±0.008a 0.036±0.002b
CF 8.421±0.251a 19.117±0.811a 0.716±0.018ab 2.273±0.166a 0.085±0.003a 0.037±0.002a
COF 8.328±0.089a 19.521±0.576a 0.726±0.015ab 2.345±0.091a 0.087±0.001a 0.038±0.002ab
OFN15 8.563±0.103a 19.481±0.633a 0.754±0.009a 2.275±0.070a 0.088±0.001a 0.040±0.001a
OFN30 8.531±0.167a 19.173±2.035a 0.744±0.053a 2.251±0.277a 0.087±0.008a 0.041±0.001a
OFP30 8.523±0.317a 19.871±1.463a 0.721±0.012ab 2.330±0.095a 0.085±0.002a 0.039±0.002ab
OFP60 8.635±0.373a 20.199±0.987a 0.764±0.033a 2.343±0.168a 0.089±0.007a 0.038±0.001a

Table 5

Comprehensive evaluation of soil fertility with different treatments"

处理
Treatment
内梅罗指数
Nemerow index, IFI
排序
Rank
CK 1.309 7
CF 1.341 6
COF 1.354 5
OFN15 1.407 1
OFN30 1.391 2
OFP30 1.356 4
OFP60 1.379 3

Table 6

Rice yield of different treatments in 2023"

处理 Treatment 早稻产量 Early rice yield (t·hm-2) 晚稻产量 Late rice yield (t·hm-2) 总产量 Total yield (t·hm-2)
CK 4.41±0.45b 6.18±0.79b 10.59±0.36b
CF 9.57±0.75a 9.71±0.96a 19.28±1.62a
COF 9.87±1.58a 10.18±1.05a 20.05±2.53a
OFN15 8.94±1.41a 8.93±0.79a 17.86±2.18a
OFN30 9.50±0.48a 9.63±1.01a 19.12±0.63a
OFP30 9.24±0.50a 9.85±0.95a 19.09±1.18a
OFP60 8.37±0.76a 8.87±0.67a 17.28±1.30a

Fig. 3

Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis of the effects of organic-inorganic combined application on soil fertility, carbon composition, and yield In the figure, R2 values represent the variance of the dependent variable explained by the model. The width of the arrow indicates the strength of the path coefficient’s influence. Solid and dashed lines denote positive and negative correlations, respectively. *, **, and *** Represent significant correlations of P<0.05, P<0.01, and P<0.001, respectively"

[1]
TANG L, RISALAT H, CAO R, HU Q N, PAN X Y, HU Y X, ZHANG G Y. Food security in China: a brief view of rice production in recent 20 years. Foods, 2022, 11(21): 3324.

doi: 10.3390/foods11213324
[2]
李东坡, 武志杰. 化学肥料的土壤生态环境效应. 应用生态学报, 2008, 19(5): 1158-1165.
LI D P, WU Z J. Impact of chemical fertilizers application on soil ecological environment. Chinese Journal of Applied Ecology, 2008, 19(5): 1158-1165. (in Chinese)
[3]
张北赢, 陈天林, 王兵. 长期施用化肥对土壤质量的影响. 中国农学通报, 2010, 26(11): 182-187.
ZHANG B Y, CHEN T L, WANG B. Effects of long-term uses of chemical fertilizers on soil quality. Chinese Agricultural Science Bulletin, 2010, 26(11): 182-187. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2009-2796
[4]
李亚贞, 韩天富, 曲潇琳, 马常宝, 都江雪, 柳开楼, 黄晶, 刘淑军, 刘立生, 申哲, 张会民. 我国水稻的肥料贡献率时空变化及影响因素. 中国农业科学, 2023, 56(4): 674-685. doi: 10.3864/j.issn.0578-1752.2023.04.007.
LI Y Z, HAN T F, QU X L, MA C B, DU J X, LIU K L, HUANG J, LIU S J, LIU L S, SHEN Z, ZHANG H M. Spatio-temporal variations of fertilizer contribution rate for rice in China and its influencing factors. Scientia Agricultura Sinica, 2023, 56(4): 674-685. doi: 10.3864/j.issn.0578-1752.2023.04.007. (in Chinese)
[5]
宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展. 生态环境学报, 2016, 25(1): 175-181.

doi: 10.16258/j.cnki.1674-5906.2016.01.026
NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: A review. Ecology and Environmental Sciences, 2016, 25(1): 175-181. (in Chinese)
[6]
江志阳, 李汝会, 陈欣. 肥料与“碳中和”的生态策略. 肥料与健康, 2022, 49(1): 6-10.
JIANG Z Y, LI R H, CHEN X. Fertilizer and ecological strategy of "carbon neutrality". Fertilizer and Health, 2022, 49(1): 6-10. (in Chinese)
[7]
冯嘉仪, 储双双, 王婧, 吴道铭, 莫其锋, 曾曙才. 华南地区5种典型林分类型土壤肥力综合评价. 华南农业大学学报, 2018, 39(3): 73-81.
FENG J Y, CHU S S, WANG J, WU D M, MO Q F, ZENG S C. Comprehensive evaluation of soil fertility of five typical forest stands in South China. Journal of South China Agricultural University, 2018, 39(3): 73-81. (in Chinese)
[8]
杨文娜, 任嘉欣, 李忠意, 徐义, 李振轮, 何丙辉. 主成分分析法和模糊综合评价法判断喀斯特土壤的肥力水平. 西南农业学报, 2019, 32(6): 1307-1313.
YANG W N, REN J X, LI Z Y, XU Y, LI Z L, HE B H. Soil fertility in Karst regions with analysis of principal component and fuzzy synthetic evaluation. Southwest China Journal of Agricultural Sciences, 2019, 32(6): 1307-1313. (in Chinese)
[9]
夏芊蔚, 陈浩, 姚宇阗, 笪达, 陈健, 石志琦. “优标”水稻体系对稻田土壤环境的影响. 中国农业科学, 2022, 55(17): 3343-3354. doi: 10.3864/j.issn.0578-1752.2022.17.007.
XIA Q W, CHEN H, YAO Y T, DA D, CHEN J, SHI Z Q. Effects of ‘good quality standard’ rice system on soil environment of paddy field. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354. doi: 10.3864/j.issn.0578-1752.2022.17.007. (in Chinese)
[10]
包耀贤, 徐明岗, 吕粉桃, 黄庆海, 聂军, 张会民, 于寒青. 长期施肥下土壤肥力变化的评价方法. 中国农业科学, 2012, 45(20): 4197-4204. doi: 10.3864/j.issn.0578-1752.2012.20.009.
BAO Y X, XU M G, F T, HUANG Q H, NIE J, ZHANG H M, YU H Q. Evaluation method on soil fertility under long-term fertilization. Scientia Agricultura Sinica, 2012, 45(20): 4197-4204. doi: 10.3864/j.issn.0578-1752.2012.20.009. (in Chinese)
[11]
ABID M, BATOOL T, SIDDIQUE G, ALI S, BINYAMIN R, SHAHID M J, RIZWAN M, ALSAHLI A A, ALYEMENI M N. Integrated nutrient management enhances soil quality and crop productivity in maize-based cropping system. Sustainability, 2020, 12(23): 10214.

doi: 10.3390/su122310214
[12]
LAN X J, SHAN J, HUANG Y, LIU X M, LV Z Z, JI J H, HOU H Q, XIA W J, LIU Y R. Effects of long-term manure substitution regimes on soil organic carbon composition in a red paddy soil of Southern China. Soil and Tillage Research, 2022, 221: 105395.

doi: 10.1016/j.still.2022.105395
[13]
LIU J A, SHU A P, SONG W F, SHI W C, LI M C, ZHANG W X, LI Z Z, LIU G R, YUAN F S, ZHANG S X, LIU Z B, GAO Z. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma, 2021, 404: 115287.

doi: 10.1016/j.geoderma.2021.115287
[14]
WANG J, WANG F, SHA Z M, CAO L K. Enhancing soil nitrogen supply and maintaining rice yield through partial replacement of chemical nitrogen with food waste-derived organic fertilizer. Plant and Soil, 2023, 492(1): 625-639.

doi: 10.1007/s11104-023-06207-z
[15]
张子琦, 焦菊英, 陈同德, 林红, 陈玉兰, 徐倩, 程玉卓, 赵文婷. 拉萨河流域洪积扇不同植被类型土壤化学计量特征. 生态学报, 2022, 42(16): 6801-6815.
ZHANG Z Q, JIAO J Y, CHEN T D, LIN H, CHEN Y L, XU Q, CHENG Y Z, ZHAO W T. Soil stoichiometry characteristics of different vegetation types in alluvial fans of the Lhasa River Basin. Acta Ecologica Sinica, 2022, 42(16): 6801-6815. (in Chinese)
[16]
宋亚辉, 艾泽民, 乔磊磊, 翟珈莹, 李袁泽, 李秧秧. 施肥对黄土高原农地土壤碳氮磷生态化学计量比的影响. 水土保持研究, 2019, 26(6): 38-45, 52.
SONG Y H, AI Z M, QIAO L L, ZHAI J Y, LI Y Z, LI Y Y. Effects of fertilization on ecological stoichiometric ratio soil carbon, nitrogen and phosphorus in farmland of the Loess Plateau. Research of Soil and Water Conservation, 2019, 26(6): 38-45, 52. (in Chinese)
[17]
姚志霞, 周怀平, 解文艳, 杨振兴, 陈浩宁, 文永莉, 程曼. 黄土旱塬24a不同秸秆还田土壤碳、氮、磷和胞外酶计量特征. 环境科学, 2023, 44(5): 2746-2755.
YAO Z X, ZHOU H P, XIE W Y, YANG Z X, CHEN H N, WEN Y L, CHENG M. Effects of 24 years different straw return on soil carbon, nitrogen, phosphorus, and extracellular enzymatic stoichiometry in dryland of the Loess Plateau, China. Environmental Science, 2023, 44(5): 2746-2755. (in Chinese)
[18]
LI C S, WANG H, LI S M, JI H K, YU X F, WANG D F, HOU Z W, WANG Q C, WU Z P, CHANG X R, HUANG J Y, WANG X L. Differential influences of forest floor-pyrolyzed biochar-derived and leached dissolved organic matter interaction with natural iron-bearing minerals in forest subsoil on the formation of mineral-associated soil organic matter. The Science of the Total Environment, 2024, 912: 168724.

doi: 10.1016/j.scitotenv.2023.168724
[19]
SU R L, WU X, HU J L, LI H B, XIAO H B, ZHAO J S, HU R G. Warming promotes the decomposition of oligotrophic bacterial-driven organic matter in paddy soil. Soil Biology and Biochemistry, 2023, 186: 109156.

doi: 10.1016/j.soilbio.2023.109156
[20]
WITZGALL K, VIDAL A, SCHUBERT D I, HÖSCHEN C, SCHWEIZER S A, BUEGGER F, POUTEAU V, CHENU C, MUELLER C W. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 2021, 12: 4115.

doi: 10.1038/s41467-021-24192-8 pmid: 34226560
[21]
ZOU Z C, MA L X, WANG X, CHEN R R, JONES D L, BOL R, WU D, DU Z L. Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions. Soil Biology and Biochemistry, 2023, 182: 109042.

doi: 10.1016/j.soilbio.2023.109042
[22]
SAID-PULLICINO D, MINIOTTI E F, SODANO M, BERTORA C, LERDA C, CHIARADIA E A, ROMANI M, CESARI DE MARIA S, SACCO D, CELI L. Linking dissolved organic carbon cycling to organic carbon fluxes in rice paddies under different water management practices. Plant and Soil, 2016, 401(1): 273-290.

doi: 10.1007/s11104-015-2751-7
[23]
FAN X R, CHEN X P, CHEN T, LIU X X, SONG Y L, TAN S R, CHEN Y, YAN P, WANG X L. Effects of substituting synthetic nitrogen with organic amendments on crop yield, net greenhouse gas emissions and carbon footprint: A global meta-analysis. Field Crops Research, 2023, 301: 109035.

doi: 10.1016/j.fcr.2023.109035
[24]
贾震, 付文涛, 王海媛, 陈金, 曾勇军, 黄山. 红壤稻田不同肥力水平和施氮量对早晚季甲烷排放的互作效应. 中国稻米, 2023, 29(6): 61-66.

doi: 10.3969/j.issn.1006-8082.2023.06.012
JIA Z, FU W T, WANG H Y, CHEN J, ZENG Y J, HUANG S. Interactive effects of different fertility levels and nitrogen application rates on methane emissions in early and late season of red soil rice fields. China Rice, 2023, 29(6): 61-66. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2023.06.012
[25]
XIE J, LIANG F, XIE J J, JIANG G J, ZHANG X P, ZHANG Q. Yield variation characteristics of red paddy soil under long-term green manure cultivation and its influencing factors. International Journal of Environmental Research and Public Health, 2022, 19(5): 2812.

doi: 10.3390/ijerph19052812
[26]
石鑫蕊, 任彬彬, 江琳琳, 范淑秀, 曹英丽, 马殿荣. 有机肥替代部分化肥对水稻光合速率、氮素利用率和产量的影响. 应用生态学报, 2021, 32(1): 154-162.

doi: 10.13287/j.1001-9332.202101.021
SHI X R, REN B B, JIANG L L, FAN S X, CAO Y L, MA D R. Effects of organic manure partial substitution for chemical fertilizer on the photosynthetic rate, nitrogen use efficiency and yield of rice. Chinese Journal of Applied Ecology, 2021, 32(1): 154-162. (in Chinese)
[27]
魏文良, 刘路, 仇恒浩. 有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响. 植物营养与肥料学报, 2020, 26(8): 1384-1394.
WEI W L, LIU L, QIU H H. Effects of different organic resources application combined with chemical fertilizer on yield and nitrogen use efficiency of main grain crops in China. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1384-1394. (in Chinese)
[28]
MA T F, HE X H, CHEN S G, LI Y J, HUANG Q W, XUE C, SHEN Q R. Long-term organic-inorganic fertilization regimes alter bacterial and fungal communities and rice yields in paddy soil. Frontiers in Microbiology, 2022, 13: 890712.

doi: 10.3389/fmicb.2022.890712
[29]
全国农业技术推广服务中心编. 土壤分析技术规范. 2版. 北京: 中国农业出版社, 2006.
National Agricultural Technology Extension Service Center. Technical Specifications for Soil Analysis. 2nd Edition. Beijing: China Agriculture Press, 2006. (in Chinese)
[30]
赵林林, 吴志祥, 孙瑞, 杨川, 符庆茂, 谭正洪. 土壤有机碳分类与测定方法的研究概述. 热带农业工程, 2021, 45(3): 154-161.
ZHAO L L, WU Z X, SUN R, YANG C, FU Q M, TAN Z H. An overview of research on classification and determination of soil organic carbon. Tropical Agricultural Engineering, 2021, 45(3): 154-161. (in Chinese)
[31]
全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998.
National Soil Survey Office. China Soil. Beijing: China Agriculture Press, 1998. (in Chinese)
[32]
周佳慧, 张昆, 谢志坚, 王斌强. 稻秆炭还田对红壤双季稻田土壤碳氮磷钾生态化学计量学特征及其综合肥力的影响. 核农学报, 2024, 38(5): 968-975.

doi: 10.11869/j.issn.1000-8551.2024.05.0968
ZHOU J H, ZHANG K, XIE Z J, WANG B Q. Effects of rice-straw biochar on ecological stoichiometry characteristics of C, N, P, K and the integrated fertility of reddish paddy soil in double-rice cropping field. Journal of Nuclear Agricultural Sciences, 2024, 38(5): 968-975. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2024.05.0968
[33]
罗杰, 张嵚, 罗密密, 万广越, 赵小敏, 陈秀龙. 某离子型稀土矿不同功能区土壤退化特征. 中国稀土学报, 2022, 40(2): 329-338.
LUO J, ZHANG Q, LUO M M, WAN G Y, ZHAO X M, CHEN X L. Degradation characteristics of soil in different functional areas of an ion-type rare earth mine. Journal of the Chinese Society of Rare Earths, 2022, 40(2): 329-338. (in Chinese)
[34]
胡天睿, 蔡泽江, 王伯仁, 张璐, 文石林, 朱建强, 徐明岗. 有机肥替代化学氮肥提升红壤抗酸化能力. 植物营养与肥料学报, 2022, 28(11): 2052-2059.
HU T R, CAI Z J, WANG B R, ZHANG L, WEN S L, ZHU J Q, XU M G. Swine manure as part of the total N source improves red soil resistance to acidification. Journal of Plant Nutrition and Fertilizers, 2022, 28(11): 2052-2059. (in Chinese)
[35]
熊健, 赵茜芮, 李伟, 杨博, 孙晶, 杨崛园, 张强英, 吕学斌. 拉萨河下游湿地土壤养分特征与肥力评价. 水土保持学报, 2024, 38(1): 328-336.
XIONG J, ZHAO X R, LI W, YANG B, SUN J, YANG J Y, ZHANG Q Y, X B. Soil nutrient characteristics and fertility evaluation of wetland in the lower reaches of the Lasa River. Journal of Soil and Water Conservation, 2024, 38(1): 328-336. (in Chinese)
[36]
杨昌富, 王好圆, 覃双结, 张璐, 文石林, 蔡泽江. 氮肥形态及用量对坡耕地红壤pH的影响机理. 植物营养与肥料学报, 2023, 29(6): 1168-1180.
YANG C F, WANG H Y, QIN S J, ZHANG L, WEN S L, CAI Z J. Mechanisms of nitrogen fertilizer types and rates on pH of red soil in sloping farmland. Journal of Plant Nutrition and Fertilizers, 2023, 29(6): 1168-1180. (in Chinese)
[37]
唐贤, 梁丰, 徐明岗, 文石林, 蔡泽江, 宋芳芳, 高强. 长期施用化肥对农田土壤pH影响的整合分析. 吉林农业大学学报, 2020, 42(3): 316-321.
TANG X, LIANG F, XU M G, WEN S L, CAI Z J, SONG F F, GAO Q. A meta-analysis of effects of long-term application of chemical fertilizer on pH of farmland soil. Journal of Jilin Agricultural University, 2020, 42(3): 316-321. (in Chinese)
[38]
WANG H X, XU J L, LIU X J, ZHANG D, LI L W, LI W, SHENG L X. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil and Tillage Research, 2019, 195: 104382.

doi: 10.1016/j.still.2019.104382
[39]
劳洁玉, 郑铭洁, 黄永材, 任震, 吴家森, 傅伟军. 紫云英及氮肥减量下配施生物质炭对土壤理化性质和水稻产量的影响. 江西农业大学学报, 2024, 46(2): 289-301.
LAO J Y, ZHENG M J, HUANG Y C, REN Z, WU J S, FU W J. Effects of Chinese milk vetch (Astragalus sinicus L.) and nitrogen fertilizer reduction combined with biochar on soil physical and chemical properties and rice yield. Acta Agriculturae Universitatis Jiangxiensis, 2024, 46(2): 289-301. (in Chinese)

doi: 10.3724/aauj.2024027
[40]
KARHU K, ALAEI S, LI J, MERILÄ P, OSTONEN I, BENGTSON P. Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios. Soil Biology and Biochemistry, 2022, 167: 108615.

doi: 10.1016/j.soilbio.2022.108615
[41]
李雪杰, 陈杰, 常帅, 于红博, 张丽华, 张巧凤, 李想. 草原土壤有机质和速效养分的空间分布及主控因子分析. 草地学报, 2023, 31(6): 1798-1809.

doi: 10.11733/j.issn.1007-0435.2023.06.023
LI X J, CHEN J, CHANG S, YU H B, ZHANG L H, ZHANG Q F, LI X. Spatial distribution of organic carbon and available nutrients in grassland soils and analysis of the main controlling factors. Acta Agrestia Sinica, 2023, 31(6): 1798-1809. (in Chinese)
[42]
ZHANG Z G, AN J, XIONG S W, LI X F, XIN M H, WANG J, HAN Y C, WANG G P, FENG L, LEI Y P, YANG B F, XING F F, LI Y B, WANG Z B. Orychophragmus violaceus-maize rotation increases maize productivity by improving soil chemical properties and plant nutrient uptake. Field Crops Research, 2022, 279: 108470.

doi: 10.1016/j.fcr.2022.108470
[43]
侯红乾, 冀建华, 刘秀梅, 吕真真, 蓝贤瑾, 刘益仁. 不同比例有机肥替代化肥对水稻产量和氮素利用率的影响. 土壤, 2020, 52(4): 758-765.
HOU H Q, JI J H, LIU X M, Z Z, LAN X J, LIU Y R. Effect of long-term combined application of organic and inorganic fertilizers on rice yield, nitrogen uptake and utilization in red soil area of China. Soils, 2020, 52(4): 758-765. (in Chinese)
[44]
刘泰, 王洪媛, 杨波, 魏静, 贺鹏程, 王玉龙, 刘宏斌. 粪肥增施对水稻产量和氮素利用效率的影响. 农业资源与环境学报, 2022, 39(3): 545-555.
LIU T, WANG H Y, YANG B, WEI J, HE P C, WANG Y L, LIU H B. Effect of additional applications of manure on rice crop yield and nitrogen use efficiency. Journal of Agricultural Resources and Environment, 2022, 39(3): 545-555. (in Chinese)
[45]
GAO P, ZHANG T, LEI X Y, CUI X W, LU Y X, FAN P F, LONG S P, HUANG J, GAO J S, ZHANG Z H, ZHANG H M. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers. Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.

doi: 10.1016/j.jia.2023.02.037
[46]
周晓芬, 张彦才, 李巧云. 有机肥料对土壤钾素供应能力及其特点研究. 中国生态农业学报, 2003, 11(2): 61-63.
ZHOU X F, ZHANG Y C, LI Q Y. The K supplying capability and characteristics of organic fertilizers to soil. Chinese Journal of Eco-Agriculture, 2003, 11(2): 61-63. (in Chinese)
[47]
吴茜虞, 续勇波, 雷宝坤, 李孙宁, 徐卓颖. 粪肥替代对稻田土壤氮素、有机质含量及水稻产量的影响. 西南农业学报, 2023, 36(10): 2217-2223.
WU X Y, XU Y B, LEI B K, LI S N, XU Z Y. Effects of manure substitution for chemical fertilizers on soil nitrogen, organic matter content and rice yield in paddy field. Southwest China Journal of Agricultural Sciences, 2023, 36(10): 2217-2223. (in Chinese)
[48]
张伟彬. 不同比例化肥与有机肥配施对土壤碳组分及微生物碳代谢的影响. 江苏农业科学, 2022, 50(15): 188-195.
ZHANG W B. Effects of different proportions of chemical fertilizer and organic fertilizer on soil carbon composition and microbial carbon metabolism. Jiangsu Agricultural Sciences, 2022, 50(15): 188-195. (in Chinese)
[49]
DAMBREVILLE C, HALLET S, NGUYEN C, MORVAN T, GERMON J C, PHILIPPOT L. Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted pig manure or ammonium nitrate. FEMS Microbiology Ecology, 2006, 56(1): 119-131.

doi: 10.1111/j.1574-6941.2006.00064.x pmid: 16542410
[50]
WUEST S B, GOLLANY H T. Soil organic carbon and nitrogen after application of nine organic amendments. Soil Science Society of America Journal, 2013, 77(1): 237-245.

doi: 10.2136/sssaj2012.0184
[51]
石丽红, 李超, 唐海明, 程凯凯, 李微艳, 文丽, 肖小平. 长期不同施肥措施对双季稻田土壤活性有机碳组分和水解酶活性的影响. 应用生态学报, 2021, 32(3): 921-930.

doi: 10.13287/j.1001-9332.202103.023
SHI L H, LI C, TANG H M, CHENG K K, LI W Y, WEN L, XIAO X P. Effects of long-term fertilizer management on soil labile organic carbon fractions and hydrolytic enzyme activity under a double- cropping rice system of Southern China. Chinese Journal of Applied Ecology, 2021, 32(3): 921-930. (in Chinese)
[52]
GUO X, JIANG Y F. Spatial characteristics of ecological stoichiometry and their driving factors in farmland soils in Poyang Lake Plain, Southeast China. Journal of Soils and Sediments, 2019, 19(1): 263-274.

doi: 10.1007/s11368-018-2047-7
[53]
PAN L D, SHI D M, JIANG G Z, XU Y. Impacts of different management measures on soil nutrients and stoichiometric characteristics for sloping farmland under erosive environments in the Three Gorges Reservoir Area, China. Soil and Tillage Research, 2024, 244: 106173.

doi: 10.1016/j.still.2024.106173
[54]
杜映妮, 李天阳, 何丙辉, 贺小容, 付适. 长期施肥和耕作下紫色土坡耕地土壤C、N、P和K化学计量特征. 环境科学, 2020, 41(1): 394-402.
DU Y N, LI T Y, HE B H, HE X R, FU S. Stoichiometric characteristics of purple sloping cropland under long-term fertilization and cultivation. Environmental Science, 2020, 41(1): 394-402. (in Chinese)
[55]
张康宁, 俞巧钢, 叶静, 马军伟, 符建荣. 有机替代对农田土壤肥力及氮磷流失的影响. 浙江农业科学, 2019, 60(7): 1154-1158.

doi: 10.16178/j.issn.0528-9017.20190725
ZHANG K N, YU Q G, YE J, MA J W, FU J R. Effects of organic substitution on farmland soil fertility and nitrogen and phosphorus loss. Journal of Zhejiang Agricultural Sciences, 2019, 60(7): 1154-1158. (in Chinese)
[56]
张文学, 王少先, 金伟, 徐丽萍, 唐先干, 熊丽, 王萍, 夏文建, 刘增兵, 孙刚, 李祖章, 刘光荣, 邵彩虹. 有机无机氮肥比例对稻田土壤肥力和作物产量的短期效应. 植物营养与肥料学报, 2023, 29(7): 1300-1312.
ZHANG W X, WANG S X, JIN W, XU L P, TANG X G, XIONG L, WANG P, XIA W J, LIU Z B, SUN G, LI Z Z, LIU G R, SHAO C H. Short-term effects of organic to chemical nitrogen proportion on paddy soil fertility and double rice yield. Journal of Plant Nutrition and Fertilizers, 2023, 29(7): 1300-1312. (in Chinese)
[57]
柳开楼, 黄晶, 张会民, 韩天富, 黄庆海, 余喜初, 李大明, 胡惠文, 叶会财, 胡志华, 马常宝, 薛彦东. 基于红壤稻田肥力与相对产量关系的水稻生产力评估. 植物营养与肥料学报, 2018, 24(6): 1425-1434.
LIU K L, HUANG J, ZHANG H M, HAN T F, HUANG Q H, YU X C, LI D M, HU H W, YE H C, HU Z H, MA C B, XUE Y D. Assessment of productivity of red paddy soil based on soil fertility and relative yield. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1425-1434. (in Chinese)
[58]
吕真真, 吴向东, 侯红乾, 冀建华, 刘秀梅, 刘益仁. 有机-无机肥配施比例对双季稻田土壤质量的影响. 植物营养与肥料学报, 2017, 23(4): 904-913.
Z Z, WU X D, HOU H Q, JI J H, LIU X M, LIU Y R. Effect of different application ratios of chemical and organic fertilizers on soil quality in double cropping paddy fields. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 904-913. (in Chinese)
[59]
丁晓娟, 顾进初, 徐素霞, 袁嘉烩, 高化平, 赵海涛. 有机肥部分替代化学磷肥对小麦生长及土壤性状的影响. 安徽农业科学, 2023, 51(18): 149-151.
DING X J, GU J C, XU S X, YUAN J H, GAO H P, ZHAO H T. Effects of partial substitution of organic fertilizer for chemical phosphorus fertilizer on wheat growth and soil properties. Journal of Anhui Agricultural Sciences, 2023, 51(18): 149-151. (in Chinese)
[60]
赵娜, 王小利, 何进, 杨胜美, 郑钦文, 李明瑞. 有机肥替代化学氮肥对黄壤活性有机碳组分、酶活性及作物产量的影响. 环境科学, 2024, 45(7): 4196-4205.
ZHAO N, WANG X L, HE J, YANG S M, ZHENG Q W, LI M R. Effects of replacing chemical nitrogen fertilizer with organic fertilizer on active organic carbon fractions, enzyme activities, and crop field in yellow soil. Environmental Science, 2024, 45(7): 4196-4205. (in Chinese)
[61]
韩天富, 马常宝, 黄晶, 柳开楼, 薛彦东, 李冬初, 刘立生, 张璐, 刘淑军, 张会民. 基于Meta分析中国水稻产量对施肥的响应特征. 中国农业科学, 2019, 52(11): 1918-1929. doi: 10.3864/j.issn.0578-1752.2019.11.007.
HAN T F, MA C B, HUANG J, LIU K L, XUE Y D, LI D C, LIU L S, ZHANG L, LIU S J, ZHANG H M. Variation in rice yield response to fertilization in China: Meta-analysis. Scientia Agricultura Sinica, 2019, 52(11): 1918-1929. doi: 10.3864/j.issn.0578-1752.2019.11.007. (in Chinese)
[1] WANG AiDong, LI RuiJie, FENG XiangQian, HONG WeiYuan, LI ZiQiu, ZHANG XiaoGuo, WANG DanYing, CHEN Song. Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation [J]. Scientia Agricultura Sinica, 2025, 58(9): 1719-1734.
[2] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[3] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[4] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[5] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[6] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[7] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[8] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[9] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[10] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[11] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[12] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[13] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[14] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[15] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!