Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (24): 5234-5246.doi: 10.3864/j.issn.0578-1752.2025.24.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

In-Season Release Rate of Nitrogen and Phosphorus in Manure Fertilizers During the Wheat Season in Typical Fluvo-Aquic Soil Under the Combined Application of Chemical and Manure Fertilizers

FANG KangRui1(), DING ShiJie2, CHEN YuShan1, YANG BingGeng1, GUO TengFei2, XU XinPeng1, ZHAO ShiCheng1, WANG XiuBin1, HUANG ShaoMin2,*(), QIU ShaoJun1,*(), HE Ping1, ZHOU Wei1   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2 Institute of Plant Nutrition and Environmental Resources Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002
  • Received:2025-01-22 Accepted:2025-03-17 Online:2025-12-22 Published:2025-12-22
  • Contact: HUANG ShaoMin, QIU ShaoJun

Abstract:

【Objective】The combination of manure and chemical fertilizers can enhance crop yield and soil fertility, yet the release rates of nitrogen and phosphorus in manure fertilizer under chemical fertilization and their influencing factors remain unclear. Therefore, it was of great significance to clarify the manure nutrient release rate to improve nutrient use efficiency and scientifically manage manure nutrients. 【Method】This study utilized a long-term field experiment (established in 2013) on sandy loam fluvo-aquic soil, adopting a randomized block design with five treatments: no reduction in fertilizer (F-0%, N-P2O5-K2O=210-120-60), no reduction in chemical fertilizer with manure fertilizer (MF-0%), and 20%, 30%, and 40% reduction in chemical fertilizer with manure fertilizer (MF-20%, MF-30%, and MF-40%). At wheat maturity, yield and soil nutrient indicators were measured, and organic manure nitrogen (N) and phosphorus (P) release rate and their influencing factors were analyzed. 【Result】Among four combined application of manure fertilizer and chemical fertilizer treatments, MF-30% achieved optimal wheat yield improvement and fertilizer reduction. Under the MF-30% treatment, the yields in 2023, 2024, and the average of the two years were 8.6, 8.6, and 8.6 t·hm-2, respectively, representing increases of 0.3, 0.1, and 0.1 t·hm-2 compared with the F-0% (no reduction in chemical fertilizer) treatment. Simultaneously, MF-30% significantly increased soil organic carbon, easily oxidized organic carbon, mineral nitrogen, available phosphorus, microbial biomass carbon, and microbial biomass phosphorus (P<0.05). The release rate of nitrogen and phosphorus in manure fertilizers decreased with increasing chemical fertilizers inputs. The nitrogen release ranged from 11.1% to 60.7% (mean 37.7%), while phosphorus release ranged from 8.3% to 54.4% (mean 30.4%). PLS-PM model analysis showed that exogenous fertilizer input (C, N) and soil nutrients (easily oxidized organic carbon, mineral nitrogen) had direct and highly significant positive effects on nitrogen release (P<0.01), with effect values of 3.054 and 1.230, respectively. Exogenous fertilizer stoichiometric ratios (C/N, C/P) exerted direct and highly significant negative effects on nitrogen release (P<0.01), with an effect value of -1.377. Exogenous fertilizer input (N, P) and stoichiometric ratio (N/P, C/P) showed direct and significant negative effects on phosphorus release (P<0.05), with effect values of -1.758 and -0.640, respectively. 【Conclusion】In fluvo-aquic soil, the average release rate of nitrogen and phosphorus in manure fertilizer were 37.7% and 30.4%, respectively. Both N and P release rates declined with increasing chemical fertilizer inputs, and exogenous fertilizer inputs and their stoichiometric ratios directly and significantly affected manure nutrient release rates.

Key words: nutrients release rate in manure, combination of manure and chemical fertilizers, stoichiometric ratio, fluvo-aquic soil, winter wheat

Fig. 1

Monthly precipitation and mean temperature during 2022-2023 and 2023-2024 wheat season"

Table 1

Nutrients rate in different fertilization treatments"

处理
Treatment
化肥投入 Fertilizer input (kg·hm-2) 有机肥投入 Manure input (kg·hm-2)
N P2O5 K2O N P2O5 K2O
化肥不减量F-0% 210 120 60 0 0 0
化肥不减量配施有机肥MF-0% 210 120 60 112.5 91 102
化肥减量20%配施有机肥MF-20% 168 96 48 112.5 91 102
化肥减量30%配施有机肥MF-30% 147 84 42 112.5 91 102
化肥减量40%配施有机肥MF-40% 126 72 36 112.5 91 102

Fig. 2

Wheat yield and aboveground biomass under different fertilizer treatments in 2023 and 2024 Different lowercase indicated the significance at LSD 0.05 level among treatments in the same year (P<0.05). The same as below"

Fig. 3

Wheat nutrient uptake under different fertilizer treatments in 2023 and 2024"

Table 2

Yield, biomass, grain N, P uptake and aboveground N, P uptake in different chemical fertilization treatments"

年份
Year
处理
Treatment
产量
Yield
(t ·hm-2)
地上部生物量
Biomass
(t·hm-2)
籽粒氮吸收
Grain N uptake (kg·hm-2)
籽粒磷吸收
Grain P uptake (kg·hm-2)
地上部氮吸收
Aboveground N
uptake (kg·hm-2)
地上部磷吸收
Aboveground N
uptake (kg·hm-2)
2023 F-20% 8.0 16.1 144.2 30.9 167.9 34.8
F-30% 7.4 14.5 126.2 29.9 144.9 33.5
F-40% 7.3 14.3 129.6 23.6 148.5 32.2
2024 F-20% 7.9 18.7 143.1 29.6 181.2 33.1
F-30% 7.3 15.7 135.1 26.7 168.3 29.1
F-40% 7.3 16.5 135.1 25.1 170.2 27.9
平均
Mean
F-20% 8.0 17.4 143.7 30.3 174.6 34.0
F-30% 7.4 15.1 130.6 28.3 156.6 31.3
F-40% 7.3 15.4 132.3 26.9 159.4 30.1

Fig. 4

Nitrogen and phosphorus release rate in manure (A) and relationship between N, P release percent of manure and chemical fertilizer rate (B)"

Table 3

Soil carbon, nitrogen, phosphorus and potassium contents, microbial biomass and enzymatic characteristics changes at wheat mature stage"

处理
Treatment
土壤全量和有效养分 Total and available nutrients 土壤生物特性Soil microbial characteristics
有机碳
SOC (g·kg-1)
全氮
TN
(g·kg-1)
全磷
TP
(g·kg-1)
全钾
TK
(g·kg-1)
易氧化有机碳
EOC
(g·kg-1)
矿质氮
Nmin
(mg·kg-1)
有效磷Olsen P (mg·kg-1) 速效钾
Available K (mg·kg-1)
微生物量碳
MBC (mg·kg-1)
微生物量氮
MBN (mg·kg-1)
微生物量磷
MBP (mg·kg-1)
β-葡萄糖苷酶
BG
(µmol·g-1·h-1)
氨基肽酶
LAP
(µmol·g-1·h-1)
几丁质酶
NAG (µmol·g-1·h-1)
酸性磷酸酶
AP (µmol·g-1·h-1)
F-0% 10.8b 1.3b 0.38a 13.4a 6.5c 12.4d 29.3b 344.5a 313.1c 27.4a 21.0c 167.2b 455.5c 14.1b 376.3b
MF-0% 11.8ab 1.3b 0.34a 10.3a 8.5a 16.9a 43.2a 348.5a 343.5bc 21.9ab 63.4b 209.9a 703.5a 22.8a 433.4a
MF-20% 12.7a 1.5a 0.4a 14.5a 8.0b 17.0a 44.4a 330.5a 361.0bc 21.5ab 75.5a 125.8d 598.8b 17.4ab 400.1ab
MF-30% 11.9a 1.4b 0.4a 13.4a 7.9b 15.7b 44.9a 339.3a 429.0a 16.1b 73.1ab 161.4bc 618.0b 17.0ab 410.7ab
MF-40% 11.7ab 1.3b 0.3b 12.3a 7.8b 14.8c 33.9b 315.8a 406.4ab 14.7b 70.2ab 132.7cd 616.0b 14.0b 362.5b

Table 4

Stoichiometric ratio of soil nutrients and microorganisms at wheat mature stage"

处理
Treatment
养分计量比 Soil nutrients stoichiometric ratio 生物计量比Microbial stoichiometric ratio
SOC:TN SOC:TP TN:TP EOC:Nmin EOC:OP Nmin:OP MBC:MBN MBC:MBP MBN:MBP EC:N EC:P EN:P
F-0% 8.3b 29.0b 3.5b 521.5a 230.4a 0.44a 11.6c 14.9a 1.30a 0.84a 0.86ab 1.03b
MF-0% 9.1a 34.7b 3.8b 505.6ab 197.3a 0.39a 16.5b 5.4b 0.35b 0.81b 0.88a 1.08a
MF-20% 8.4b 34.1b 4.1b 469.0b 179.9a 0.38a 16.9b 4.8b 0.29b 0.75d 0.81d 1.07a
MF-30% 8.6ab 34.0b 3.9b 504.0ab 176.6a 0.35a 26.7a 5.9b 0.22b 0.79c 0.84bc 1.07a
MF-40% 8.9ab 42.6a 4.8a 531.1a 238.7a 0.45a 28.0a 5.8b 0.21b 0.75d 0.83cd 1.09a

Fig. 5

Effects of between N and P release rate of manure in relation to exogenous fertilizer, soil nutrients, microbial characteristics, and stoichiometric ratio analyzed by partial least squares path mode (PLS-PM) C input includes manure fertilizer carbon and straw carbon, N input includes manure fertilizer nitrogen and chemical fertilizer nitrogen, P input includes manure phosphorus and chemical fertilizer phosphorus; C/N (input) refers to the carbon-nitrogen ratio of exogenous inputs, C/P (input) refers to the carbon-phosphorus ratio of exogenous inputs, N/P (input) refers to the nitrogen-phosphorus ratio of exogenous inputs; NRR, PRR stands for the nitrogen and phosphorus release rate of manure, respectively. The red arrow indicates a negative correlation, the blue arrow indicates a positive correlation, dashed lines indicate non-significant coefficient paths; The number at the arrow represents the path coefficient; R2 indicates the explained variance; GOF is the goodness of fit statistic; * and** indicate significant correlation at 0.05 and 0.01 level, respectively"

[1]
蔡美芳, 刘晓伟, 吴孝情, 吴仁人, 陈中颖, 卢文洲. 基于土壤养分平衡的畜禽养殖承载力研究. 土壤学报, 2018, 55(6): 1431-1440.
CAI M F, LIU X W, WU X Q, WU R R, CHEN Z Y, LU W Z. Livestock and poultry carrying capacity of land based on soil nutrient balance. Acta Pedologica Sinica, 2018, 55(6): 1431-1440. (in Chinese)
[2]
鲁伟丹, 李俊华, 罗彤, 陈丽丽, 张磊, 刘硕康. 连续三年不同有机肥替代率对小麦产量及土壤养分的影响. 植物营养与肥料学报, 2021, 27(8): 1330-1338.
LU W D, LI J H, LUO T, CHEN L L, ZHANG L, LIU S K. Effects of different organic fertilizer replacement rates on wheat yield and soil nutrients over three consecutive years. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 1330-1338. (in Chinese)
[3]
龚雪蛟, 秦琳, 刘飞, 刘东娜, 马伟伟, 张厅, 刘晓, 罗凡. 有机类肥料对土壤养分含量的影响. 应用生态学报, 2020, 31(4): 1403-1416.

doi: 10.13287/j.1001-9332.202004.025
GONG X J, QIN L, LIU F, LIU D N, MA W W, ZHANG T, LIU X, LUO F. Effects of organic manure on soil nutrient content: A review. Chinese Journal of Applied Ecology, 2020, 31(4): 1403-1416. (in Chinese)

doi: 10.13287/j.1001-9332.202004.025
[4]
DU Y D, CUI B J, ZHANG Q, WANG Z, SUN J, NIU W Q. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena, 2020, 193: 104617.

doi: 10.1016/j.catena.2020.104617
[5]
申长卫, 袁敬平, 李新华, 张帅垒, 任秀娟, 王菲, 刘星, 张影, 欧行奇, 陈锡岭. 有机肥氮替代20%化肥氮提高豫北冬小麦氮肥利用率和土壤肥力. 植物营养与肥料学报, 2020, 26(8): 1395-1406.
SHEN C W, YUAN J P, LI X H, ZHANG S L, REN X J, WANG F, LIU X, ZHANG Y, OU X Q, CHEN X L. Improving winter wheat N utilization efficiency and soil fertility through replacement of chemical N by 20% organic manure. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1395-1406. (in Chinese)
[6]
LU Y H, GAO Y J, NIE J, LIAO Y L, ZHU Q D. Substituting chemical P fertilizer with organic manure: effects on double-rice yield, phosphorus use efficiency and balance in subtropical China. Scientific Reports, 2021, 11(1): 8629.

doi: 10.1038/s41598-021-87851-2 pmid: 33883629
[7]
WU H W, CUI H L, FU C X, LI R, QI F Y, LIU Z L, YANG G, XIAO K Q, QIAO M. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Science of the Total Environment, 2024, 909: 168627.

doi: 10.1016/j.scitotenv.2023.168627
[8]
DOU X L, HE P, ZHU P, ZHOU W. Soil organic carbon dynamics under long-term fertilization in a black soil of China: Evidence from stable C isotopes. Scientific Reports, 2016, 6: 21488.

doi: 10.1038/srep21488 pmid: 26898121
[9]
ZHANG M L, ZHANG X, ZHANG L Y, ZENG L, LIU Y, WANG X B, HE P, LI S T, LIANG G Q, ZHOU W, AI C. The stronger impact of inorganic nitrogen fertilization on soil bacterial community than organic fertilization in short-term condition. Geoderma, 2021, 382: 114752.

doi: 10.1016/j.geoderma.2020.114752
[10]
YANG X, BAO Y W, LI B W, WANG R X, SUN C, MA D H, CHEN L, ZOU H T, ZHANG J B. Effects of fertilization applications on soil aggregate organic carbon content and assessment of their influencing factors: A meta-analysis. Catena, 2024, 242: 108135.

doi: 10.1016/j.catena.2024.108135
[11]
LIU D M, ZHANG S R, FEI C, DING X D. Impacts of straw returning and N application on NH4+-N loss, microbially reducible Fe (III) and bacterial community composition in saline-alkaline paddy soils. Applied Soil Ecology, 2021, 168: 104115.

doi: 10.1016/j.apsoil.2021.104115
[12]
NAYAK D R, BABU Y J, ADHYA T K. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition. Soil Biology and Biochemistry, 2007, 39(8): 1897-1906.

doi: 10.1016/j.soilbio.2007.02.003
[13]
STEVENSON F J. Cycles of Soil:Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. New York: Wiley, 1999.
[14]
CUI J W, ZHU R L, WANG X Y, XU X P, AI C, HE P, LIANG G Q, ZHOU W, ZHU P. Effect of high soil C/N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition. Journal of Environmental Management, 2022, 303: 114155.

doi: 10.1016/j.jenvman.2021.114155
[15]
ALBERTI G, VICCA S, INGLIMA I, BELELLI-MARCHESINI L, GENESIO L, MIGLIETTA F, MARJANOVIC H, MARTINEZ C, MATTEUCCI G, D’ANDREA E, et al. Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests. IForest-Biogeosciences and Forestry, 2015, 8(2): 195-206.

doi: 10.3832/ifor1196-008
[16]
SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795-798.

doi: 10.1038/nature08632
[17]
杜映妮, 李天阳, 何丙辉, 贺小容, 付适. 长期施肥和耕作下紫色土坡耕地土壤C、N、P和K化学计量特征. 环境科学, 2020, 41(1): 394-402.
DU Y N, LI T Y, HE B H, HE X R, FU S. Stoichiometric characteristics of purple sloping cropland under long-term fertilization and cultivation. Environmental Science, 2020, 41(1): 394-402. (in Chinese)
[18]
许淼平, 任成杰, 张伟, 陈正兴, 付淑月, 刘伟超, 杨改河, 韩新辉. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制. 应用生态学报, 2018, 29(7): 2445-2454.

doi: 10.13287/j.1001-9332.201807.041
XU M P, REN C J, ZHANG W, CHEN Z X, FU S Y, LIU W C, YANG G H, HAN X H. Responses mechanism of C:N:P stoichiometry of soil microbial biomass and soil enzymes to climate change. Chinese Journal of Applied Ecology, 2018, 29(7): 2445-2454. (in Chinese)
[19]
HE X J, ABS E, ALLISON S D, TAO F, HUANG Y Y, MANZONI S, ABRAMOFF R, BRUNI E, BOWRING S P K, CHAKRAWAL A, et al. Emerging multiscale insights on microbial carbon use efficiency in the land carbon cycle. Nature Communications, 2024, 15(1): 8010.

doi: 10.1038/s41467-024-52160-5 pmid: 39271672
[20]
赵明, 赵征宇, 蔡葵, 王玉洲. 畜禽有机肥料当季速效氮磷钾养分释放规律. 山东农业科学, 2004, 36(5): 59-61.
ZHAO M, ZHAO Z Y, CAI K, WANG Y Z. Release law of available nitrogen, phosphorus and potassium in livestock and poultry organic fertilizer in season. Shandong Agricultural Sciences, 2004, 36(5): 59-61. (in Chinese)
[21]
徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量. 中国农业科学, 2023, 56(2): 300-313. doi: 10.3864/j.issn.0578-1752.2023.02.008.
XU J K, YUAN L, WEN Y C, ZHANG S Q, LI Y T, LI H Y, ZHAO B Q. Nitrogen fertilizer replacement value of livestock manure in the winter wheat growing season. Scientia Agricultura Sinica, 2023, 56(2): 300-313. doi: 10.3864/j.issn.0578-1752.2023.02.008. (in Chinese)
[22]
徐久凯, 袁亮, 温延臣, 张水勤, 林治安, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥磷素在冬小麦上替代化肥磷当量研究. 中国农业科学, 2021, 54(22): 4826-4839. doi: 10.3864/j.issn.0578-1752.2021.22.010.
XU J K, YUAN L, WEN Y C, ZHANG S Q, LIN Z A, LI Y T, LI H Y, ZHAO B Q. Phosphorus fertilizer replacement value of livestock manure in winter wheat. Scientia Agricultura Sinica, 2021, 54(22): 4826-4839. doi: 10.3864/j.issn.0578-1752.2021.22.010. (in Chinese)
[23]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[24]
SINSABAUGH R L, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 2012, 43: 313-343.

doi: 10.1146/ecolsys.2012.43.issue-1
[25]
姜桂英. 中国农田长期不同施肥的固碳潜力及预测[D]. 北京: 中国农业科学院, 2013.
JIANG G Y. Carbon sequestration potential and prediction of long-term different fertilization in farmland of China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[26]
DENG L, PENG C H, HUANG C B, WANG K B, LIU Q Y, LIU Y L, HAI X Y, SHANGGUAN Z P. Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China. Geoderma, 2019, 353: 188-200.

doi: 10.1016/j.geoderma.2019.06.037
[27]
李红星, 高飞, 任佰朝, 赵斌, 刘鹏, 张吉旺. 夏玉米秸秆还田量和施氮量对冬小麦产量和氮素利用的影响. 植物营养与肥料学报, 2022, 28(7): 1260-1270.
LI H X, GAO F, REN B Z, ZHAO B, LIU P, ZHANG J W. Effects of straw incorporation and nitrogen application rate on winter wheat yield and nitrogen utilization. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1260-1270. (in Chinese)
[28]
李炎龙, 季荣博, 吴云, 秦泽峰, 彭懿, 盖京苹, 冯固. 我国北方3种典型土壤-作物体系中微生物量磷库特征. 生态学报, 2022, 42(8): 3325-3332.
LI Y L, JI R B, WU Y, QIN Z F, PENG Y, GAI J P, FENG G. Soil microbial biomass phosphorus pool in farmlands of the Northern China. Acta Ecologica Sinica, 2022, 42(8): 3325-3332. (in Chinese)
[29]
KÖGEL-KNABNER I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 2002, 34(2): 139-162.

doi: 10.1016/S0038-0717(01)00158-4
[30]
夏梦洁, 陈竹君, 刘占军, 周建斌. 黄土高原旱地夏季休闲期15N标记硝态氮的去向. 土壤学报, 2017, 54(5): 1230-1239.
XIA M J, CHEN Z J, LIU Z J, ZHOU J B. Fate of 15N labeled nitrate in dryland under summer fallow on the Loess Plateau. Acta Pedologica Sinica, 2017, 54(5): 1230-1239. (in Chinese)
[31]
张璐, 张文菊, 徐明岗, 蔡泽江, 彭畅, 王伯仁, 刘骅. 长期施肥对中国3种典型农田土壤活性有机碳库变化的影响. 中国农业科学, 2009, 42(5): 1646-1655. doi: 10.3864/j.issn.0578-1752.2009.05.018.
ZHANG L, ZHANG W J, XU M G, CAI Z J, PENG C, WANG B R, LIU H. Effects of long-term fertilization on change of labile organic carbon in three typical upland soils of China. Scientia Agricultura Sinica, 2009, 42(5): 1646-1655. doi: 10.3864/j.issn.0578-1752.2009.05.018. (in Chinese)
[32]
朱兆良, 文启孝. 中国土壤氮素. 南京: 江苏科学技术出版社, 1992.
ZHU Z L, WEN Q X. Nitrogen in Soils of China. Nanjing: Jiangsu Science and Technology Press, 1992. (in Chinese)
[33]
ZHANG L, DING X D, PENG Y, GEORGE T S, FENG G. Closing the loop on phosphorus loss from intensive agricultural soil: A microbial immobilization solution? Frontiers in Microbiology, 2018, 6: 00104.
[34]
VAN DER SLOOT M, KLEIJN D, DE DEYN G B, LIMPENS J. Carbon to nitrogen ratio and quantity of organic amendment interactively affect crop growth and soil mineral N retention. Crop and Environment, 2022, 1(3): 161-167.

doi: 10.1016/j.crope.2022.08.001
[35]
WU M Y, CHEN L, CHEN S G, CHEN Y L, MA J P, ZHANG Y Q, PANG D B, LI X B. Soil microbial carbon and nitrogen limitation constraints soil organic carbon stability in arid and semi-arid grasslands. Journal of Environmental Management, 2025, 373: 123675.

doi: 10.1016/j.jenvman.2024.123675
[36]
沈其荣, 沈振国, 史瑞和. 有机肥氮素的矿化特征及与其化学组成的关系. 南京农业大学学报, 1992, 15(1): 59-64.
SHEN Q R, SHEN Z G, SHI R H. The characteristics of mineralization of nitrogen in organic manure and its relation to chemical composition of organic manure. Journal of Nanjing Agricultural University, 1992, 15(1): 59-64. (in Chinese)
[37]
CUI J W, YANG B G, ZHANG M L, SONG D L, XU X P, AI C, LIANG G Q, ZHOU W. Investigating the effects of organic amendments on soil microbial composition and its linkage to soil organic carbon: A global meta-analysis. Science of the Total Environment, 2023, 894: 164899.

doi: 10.1016/j.scitotenv.2023.164899
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[3] SHE YingJun, ZHOU ZiZhe, WU Ming, GUO Wei, SHI ChangJian, HU Chao, LI Ping. Effects of Groundwater Depth and Nitrogen Application on the Distribution of Soil Water and Salt and the Nutrient Absorption and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2025, 58(20): 4285-4304.
[4] GUO DouDou, ZHANG KeKe, HUANG ShaoMin, SONG Xiao, ZHANG ShuiQing, YUE Ke, DING ShiJie, GUO TengFei. Effects of Long-Term Fertilization on Phosphorus Adsorption and Desorption Characteristics of Fluvo-Aquic Soils [J]. Scientia Agricultura Sinica, 2025, 58(14): 2805-2820.
[5] WANG ShiJi, LI YueYing, CHEN Chen, JIANG GuiYing, LIU ChaoLin, ZHU ChangWei, YANG Jin, WANG MengRu, JIE XiaoLei, LIU Fang, LIU ShiLiang. The Characteristics of Ammonia Volatilization and Crop Yield Under Legume-Wheat Rotation System in Fluvo-Aquic Soil in Northern Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(13): 2614-2629.
[6] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[7] GAO XingXiang, KONG Yuan, ZHANG YaoZhong, LI Mei, LI Jian, JIN Yan, ZHANG GuoFu, LIU ShuaiShuai, LIU MingPing, ZENG Yan, BAI LianYang. Analysis on Distribution and Change of Weed Community in Winter Wheat Field in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 91-100.
[8] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[9] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[10] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[11] ZHU RuiMing, ZHAO RongQin, JIAO ShiXing, LI XiaoJian, XIAO LianGang, XIE ZhiXiang, YANG QingLin, WANG Shuai, ZHANG HuiFang. Spatial Distribution and Driving Factors of Winter Wheat Irrigation Carbon Emission Intensity at Township Level in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(5): 950-964.
[12] ZHANG Rong, LIU LinRu, FU KaiXia, WU ZiJun, SONG YiFan, WANG LuYuan, HOU GeGe, HE Li, FENG Wei, DUAN JianZhao, WANG YongHua, GUO TianCai. Regulatory of Exogenous Melatonin on Floret Development and Carbon Nutrient Metabolism in Winter Wheat Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(23): 4644-4657.
[13] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[14] MAI ChunYan, LIU YiKe, LIU HongWei, LI HongJie, YANG Li, WU PeiPei, ZHOU Yang, ZHANG HongJun. Breeding of the Fusarium Head Blight (FHB)-Resistant Wheat Cultivar Lunxuan 20 Using the Dwarf-Male Sterile Wheat Molecular Strategy in the Yellow and Huai River Valley Winter Wheat Region [J]. Scientia Agricultura Sinica, 2024, 57(19): 3719-3729.
[15] LI LianYi, WANG ShiJi, JIANG GuiYing, LI Yang, YANG Jin, ZHU XuanLin, ZHU ChangWei, WANG RenZhuo, LIU Fang, JIE XiaoLei, LIU ShiLiang. Rotation Tillage Mode Improves Wheat Root and Yield in Fluvo- Aquic Soil in Norther Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(18): 3626-3641.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!