Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (13): 2522-2537.doi: 10.3864/j.issn.0578-1752.2025.13.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comprehensive Evaluation of Potato Flour Quality and Variety Screening

ZHAO TianTian1(), YUAN JianLong2, ZHUO FengQi1, TANG ZhenSan2, XU Jie2, ZHANG Feng1,2()   

  1. 1 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070
    2 Agronomy College, Gansu Agricultural University/State Key Laboratory of Arid Land Crop Science, Lanzhou 730070
  • Received:2025-01-09 Accepted:2025-02-24 Online:2025-07-01 Published:2025-07-05

Abstract:

【Objective】 This study analyzes the quality characteristics of potato flour from different potato varieties (lines), aiming to identify key indicators for selecting suitable varieties for potato flour processing and to provide a theoretical basis for breeding high-quality processing varieties. 【Method】 Thirty-two domestically and internationally cultivated potato varieties (lines) were employed as experimental materials, with the variety Atlantic as the control. The contents of dry matter, starch, amylose, reducing sugars, ascorbic acid, citric acid, chlorogenic acid, and glycoalkaloids in the tubers were measured, along with the quality and physicochemical properties of the potato flour, including moisture, ash, crude starch, crude fat, solubility, swelling capacity, water-holding capacity, oil-holding capacity, blue value, freeze-thaw stability, whiteness, brightness, and thermal characteristics. After principal component analysis, cluster analysis, correlation analysis, and stepwise regression analysis, the differences in tuber and potato flour quality among the various varieties (lines) were compared, and representative indicators and superior processing quality varieties were identified. 【Result】 Among the thirty-two varieties, the tuber dry matter content ranged from 17.14% to 25.58% FW, starch content ranged from 11.34% to 19.52% FW, amylose content ranged from 15.24% to 24.44% FW of the starch content, reducing sugars content ranged from 0.10% to 1.07% FW, ascorbic acid content ranged from 0.51 to 4.10 mg·g-1 DW, citric acid content ranged from 9.60 to 28.42 mg·g-1 DW, chlorogenic acid content ranged from 121.32 to 2 558.36 mg·kg-1 DW, and glycoalkaloids content ranged from 25.63 to 882.90 mg·kg-1 DW. The potato flour moisture content ranged from 2.05 to 7.21 g·100 g-1, ash content ranged from 2.00 to 5.34 g·100 g-1, crude starch content ranged from 44.50 to 77.50 g·100 g-1, crude fat content ranged from 0.10 to 0.93 g·100 g-1, solubility ranged from 14.11% to 25.17%, swelling capacity ranged from 12.75% to 17.71%, water-holding capacity ranged from 2.76 to 3.79 g·g-1, oil-holding capacity ranged 2.37 to 3.30 g·g-1, blue value ranged from 6.35 to 22.52, bleeding rate ranged from 23.96% to 54.34%, whiteness ranged from 11.47 to 31.00, brightness ranged from 75.92 to 88.03, onset temperature ranged from 60.70 to 70.04 ℃, peak temperature ranged from 64.84 to 74.06 ℃, crystallization temperature ranged from 69.37 to 78.15 ℃, and pasting enthalpy ranged from 2.36 to 4.92 J·g-1. Significant correlations were found among various indicators, including agronomic traits of tubers and the quality and physicochemical properties of potato flour. Notably, there are an extremely significant negative correlation among swelling capacity, bleeding rate, To, Tp, and Tc. A comprehensive evaluation model for potato flour quality was developed: Y=0.612+0.352×Dry matter (%)-0.344×Bleeding rate (%)-0.233×Glycoalkaloid content (μg·g-1)-0.238×Peak temperature (℃)+0.152×Crude starch (g·100 g-1) (R²=0.952, P<0.01). 【Conclusion】 The content of dry matter, glycoalkaloid, crude starch, freeze-thaw stability, and peak temperature are key indicators for evaluating and selecting potatoes for flour processing. Gannongshu No.7 and Zhongshu No.49 are excellent varieties for potato flour processing.

Key words: potato, flour, processing quality, comprehensive evaluation, variety screening

Table 1

32 test material codes"

编号 Number 品种(系) Variety (line) 编号 Number 品种(系) Variety (line)
G1 麦肯1号Innovator G17 1422-1-12
G2 Panamera G18 1428-1-31
G3 中加10号Zhongjia No.10 G19 1423-1-8
G4 大西洋Atlantic G20 1423-1-20
G5 布尔班克Burbank G21 1428-1-26
G6 夏波蒂Shepody G22 1402-1
G7 新大坪Xindaping G23 1412-1
G8 甘农薯7号Gannongshu No.7 G24 1416-5
G9 甘农薯9号Gannongshu No.9 G25 H0916
G10 冀张薯12号Jizhangshu No.12 G26 陇薯10号Longshu No.10
G11 庄薯5号Zhuangshu No.5 G27 华颂19号Huasong No.19
G12 陇薯7号Longshu No.7 G28 定薯6号Dingshu No.6
G13 陇薯14号Longshu No.14 G29 东农322 Dongnong No.322
G14 陇薯23号Longshu No.23 G30 Arizona
G15 中薯49号Zhongshu No.49 G31 华颂36号Huasong No.36
G16 1428-1-34 G32 克新21号Kexin No.21

Fig. 1

Quality composition in tubers of potato varieties (lines) A: Dry matter; B: Starch; C: Amylose; D: Reducing sugar; E: Ascorbic acid; F: Citric acid; G: Chlorogenic acid; H: Glycoside alkaloids. With Atlantic as the control variety, orange indicates that the content of this variety is higher than that of Atlantic, and green indicates that the content of this variety is lower than that of Atlantic. Different lowercase letter refers to significant difference of different potato varieties and lines, P≤0.05. The same as below"

Fig. 2

The content of main components of potato flour"

Table 2

Physicochemical properties of potato flour of potato varieties (lines)"

编号
Number
溶解度
Solubility
(%)
膨胀度
Swelling capacity
(%)
持水力
Water holding capacity (g·g-1)
持油力
Oil holding
capacity (g·g-1)
析水率
Bleeding rate
(%)
碘蓝值
Blue value
G1 17.58±2.36defg 14.83±0.68defgh 2.89±0.03ijkl 2.98±0.15abc 40.45±0.06cdefgh 14.54±0.22de
G2 18.80±0.14bcdefg 16.13±0.84bcd 3.56±0.09b 3.12±0.15ab 37.13±0.13defghi 18.41±0.35b
G3 19.87±0.47bcdefg 16.60±0.12abc 3.40±0.05bcd 2.93±0.10abcd 39.26±0.14cdefgh 8.87±0.94hijk
G4 14.11±2.91h 17.32±0.99a 3.26±0.01defg 2.64±0.30bcdef 31.67±2.20hi 8.68±0.41hijk
G5 15.78±0.51gh 15.21±0.49cdef 2.98±0.16hijk 2.87±0.08abcdef 41.77±2.54cdefg 8.54±1.49hijk
G6 18.89±1.84bcdefg 13.61±0.23hi 2.87±0.19jkl 3.11±0.19ab 39.40±6.82cdefgh 6.77±0.33k
G7 19.33±0.88bcdefg 14.60±0.25efgh 2.89±0.13ijkl 2.69±0.11bcdef 46.67±8.64abcd 8.91±1.42hijk
G8 20.44±2.04bcdef 14.98±0.59defg 2.76±0.00hi 2.90±0.12abcdef 32.59±1.56ghi 6.35±0.88k
G9 21.22±1.64abcde 15.58±1.14cde 2.82±0.05kl 2.92±0.02abcde 36.03±0.81efghi 7.33±0.47jk
G10 21.83±0.17abcd 17.67±0.30a 3.02±0.09hij 2.73±0.05bcdef 23.96±2.69j 8.17±0.17hijk
G11 22.89±1.07ab 15.23±0.48cdef 2.83±0.02kl 2.91±0.03abcdef 45.75±0.71bcde 13.14±1.27def
G12 21.33±0.67abcde 17.71±0.01a 3.15±0.01fgh 3.02±0.07abc 41.66±6.19cdefg 9.89±0.44fghijk
G13 21.42±2.54abcde 13.16±0.13i 3.13±0.07fgh 2.98±0.04abc 43.12±3.30cdef 10.94±0.15efghij
G14 20.33±0.67bcdef 15.46±0.31cde 3.05±0.16hij 2.84±0.12abcdef 43.46±1.20cdef 12.87±0.50def
G15 19.00±0.00bcdefg 16.17±0.61bcd 3.10±0.04gh 2.64±0.04bcdef 35.37±0.73fghi 11.76±0.52defgh
G16 21.57±0.87abcde 13.67±0.51ghi 3.24±0.04efg 2.60±0.07bcdef 45.67±4.02bcde 11.49±0.79defghi
G17 22.76±0.17ab 13.28±0.61i 2.98±0.03hijk 2.78±0.42bcdef 49.15±1.93abc 14.31±1.36de
G18 19.22±1.73bcdefg 15.68±0.73cde 3.73±0.02a 2.87±0.03abcdef 43.14±0.44cdef 12.62±0.50defg
G19 25.03±3.36a 12.75±0.43i 3.36±0.01cde 2.86±0.23abcdef 54.34±0.19a 11.22±0.90efghi
G20 21.56±0.19abcde 15.18±0.16cdef 3.37±0.08cde 2.66±0.13bcdef 42.71±7.25cdef 15.09±0.95cd
G21 25.17±1.83a 13.91±0.03fghi 3.03±0.01hij 2.37±0.04f 47.64±0.36abc 9.18±0.64ghijk
G22 22.26±0.36abc 14.94±0.23defg 3.37±0.08cde 2.75±0.16bcdef 43.34±1.79cdef 12.93±2.83def
G23 22.35±0.75ab 15.08±0.20def 2.95±0.01hijk 2.64±0.13bcdef 52.70±0.37ab 13.98±1.78de
G24 22.11±0.39abc 13.59±0.37hi 3.42±0.05bcde 2.77±0.05bcdef 42.84±0.86cdef 8.00±0.00ijk
G25 20.40±0.57bcdef 15.43±0.22cde 3.28±0.02def 2.39±0.04ef 48.41±0.21abc 8.17±0.17hijk
G26 20.09±1.87bcdef 16.98±0.65ab 3.39±0.06cde 2.57±0.04cdef 39.53±2.44cdefgh 18.07±0.79bc
G27 17.31±0.89efgh 14.54±0.12efgh 3.05±0.04hij 2.56±0.09cdef 41.89±5.28cdefg 9.84±1.96fghijk
G28 16.28±1.85fgh 16.02±0.56bcde 3.06±0.06l 2.40±0.01def 37.56±6.36cdef 10.87±0.61efghij
G29 15.74±0.65gh 16.06±0.35bcde 3.29±0.03def 2.65±0.01bcdef 44.00±0.42cdef 22.52±2.32a
G30 19.05±1.34bcdefg 14.98±0.07defg 3.70±0.00a 3.29±0.16a 36.40±2.07efghi 18.87±0.61b
G31 19.71±1.39bcdefg 15.39±0.89cde 3.47±0.01bc 3.30±0.11a 35.42±0.84fghi 11.25±0.55efghi
G32 17.86±1.41cdefg 15.00±0.37defg 3.79±0.06a 2.88±0.04abcdef 30.28±1.32i 13.19±1.39def

Table 3

Thermal characteristics of potato flour of potato varieties (lines)"

编号 Number 起始温度 To (℃) 峰值温度 Tp (℃) 终止温度 Tc (℃) 糊化焓值 ΔH (J·g-1)
G1 62.21±1.08o 66.64±1.44lm 72.52±2.72klmn 4.01±0.43abc
G2 60.72±0.31p 64.84±0.21n 69.37±0.45p 3.50±0.80abc
G3 60.70±0.20p 65.16±0.10n 70.22±0.41op 4.08±0.36abc
G4 63.99±0.28hijkl 68.58±0.49ghij 73.06±0.53ijklm 4.11±0.57abc
G5 64.97±0.60fghi 69.32±0.41fgh 73.62±0.19ghijkl 3.61±0.50abc
G6 68.95±0.20b 73.11±0.18b 77.81±0.33a 4.76±1.20a
G7 64.09±0.27hijkl 68.12±0.13ijk 72.13±0.32lmn 3.74±0.41abc
G8 62.75±0.23ghijk 67.69±0.24ghi 72.72±0.28ghijkl 4.03±0.33abc
G9 64.00±0.36hijkl 68.39±0.33hij 73.13±0.56hijklm 4.53±0.70ab
G10 63.15±0.26lmno 66.63±0.13lm 70.94±0.21no 3.86±0.49abc
G11 65.39±0.61fg 69.47±0.45fgh 73.99±0.75fghijkl 3.83±1.44abc
G12 62.50±0.37no 66.24±0.33m 70.21±0.43op 3.68±0.38abc
G13 70.04±0.39a 74.06±0.48a 78.15±0.71a 4.56±0.25ab
G14 65.13±0.38fgh 69.28±0.28fgh 74.31±0.40efghijk 4.92±0.25a
G15 63.53±0.63klm 67.41±0.23kl 71.65±0.16mno 3.75±0.32abc
G16 66.67±0.34de 70.55±0.31de 74.52±0.53defghij 3.79±0.73abc
G17 67.77±0.46c 71.70±0.12c 75.60±0.31def 2.36±0.84c
G18 63.35±0.23klmn 67.91±0.19ijk 72.34±0.39lmn 4.09±0.76abc
G19 68.22±0.28c 71.98±0.37c 76.02±0.52cde 4.32±0.53abc
G20 67.98±0.82c 72.80±0.69b 77.20±1.28abc 3.00±0.76abc
G21 67.23±0.15cd 71.36±0.09cd 75.40±0.08defg 4.01±0.28abc
G22 63.73±0.40jklm 70.06±0.29ef 75.05±0.67defgh 3.99±0.08abc
G23 67.64±0.51c 71.85±0.55c 76.27±0.70bcd 3.77±0.15abc
G24 63.94±0.21ijkl 69.28±0.26fgh 74.73±0.18defghi 3.40±0.61abc
G25 65.28±0.37fg 69.60±0.37fg 74.94±0.76defghi 3.48±0.43abc
G26 64.31±0.37ghijkl 68.66±0.30ghij 73.88±0.37fghijkl 3.48±0.30abc
G27 69.27±0.92b 73.20±0.49b 77.53±0.06ab 3.86±1.21abc
G28 64.52±0.02mno 68.82±0.00jk 73.66±0.07jklm 3.97±0.53abc
G29 64.47±0.26ghijk 68.43±0.30hij 73.22±0.58hijklm 3.98±0.80abc
G30 67.30±0.01cd 71.27±0.02cd 75.31±0.23defg 2.59±0.12bc
G31 64.78±0.21ghij 68.77±0.22ghi 73.24±0.34hijklm 3.87±0.12abc
G32 65.98±0.36ef 70.27±0.48ef 75.88±0.66cde 3.68±0.31abc

Fig. 3

The color of potato flour of potato varieties (lines)"

Fig. 4

Correlation analysis of 24 quality indicators"

Table 4

Eigenvectors and percentage of accumulated contribution of principal components"

主成分
Principle components
指标
Index
主成分Principle factor
1 2 3 4 5 6 7 8
因子载荷矩阵
Factor loading matrix
X1 0.21 0.40 0.00 0.03 0.06 0.08 -0.02 0.03
X2 0.21 0.40 0.00 0.03 0.06 0.08 -0.02 0.03
X3 0.16 0.35 -0.12 0.12 0.12 -0.14 0.00 0.25
X4 0.09 0.37 -0.04 -0.05 0.24 0.26 -0.04 -0.09
X5 -0.21 0.02 -0.01 0.39 -0.01 -0.10 0.44 0.12
X6 0.07 -0.12 0.20 0.18 -0.11 0.38 -0.45 0.15
X7 0.21 -0.03 0.37 0.16 0.07 -0.20 0.06 -0.23
X8 0.17 0.17 0.33 0.17 -0.11 0.24 0.14 -0.33
X9 -0.21 0.15 -0.12 -0.20 0.34 0.24 0.10 0.04
X10 -0.20 0.21 0.25 -0.10 0.17 -0.25 -0.11 -0.16
X11 0.01 0.16 0.01 0.47 0.16 -0.27 -0.33 0.19
X12 -0.12 -0.10 0.15 0.17 -0.04 0.59 0.22 0.12
X13 -0.20 0.19 -0.15 -0.08 -0.05 -0.15 0.39 -0.05
X14 0.32 -0.11 -0.13 0.09 -0.21 -0.02 0.15 0.02
X15 -0.02 -0.20 -0.39 0.14 0.27 0.05 -0.12 0.23
X16 0.04 -0.17 0.01 -0.29 0.49 0.08 0.02 -0.26
X17 -0.02 -0.12 -0.34 0.23 0.17 0.03 -0.27 -0.46
X18 0.24 -0.23 0.12 -0.04 0.17 -0.10 0.15 0.37
X19 0.15 -0.09 0.22 0.05 0.47 0.07 0.19 0.24
X20 0.22 -0.24 0.26 0.03 0.20 -0.20 0.03 -0.12
X21 -0.35 0.01 0.23 0.07 0.06 -0.07 -0.09 -0.01
X22 -0.36 0.03 0.20 0.07 0.07 -0.01 -0.07 0.07
X23 -0.35 0.01 0.20 0.06 0.05 0.00 -0.11 0.12
X24 0.05 0.08 0.17 -0.51 -0.17 -0.07 -0.23 0.30
特征值 Eigenvalue 6.04 4.01 2.42 1.77 1.60 1.39 1.15 1.01
贡献率Contribution rate (%) 25.18 16.70 10.07 7.36 6.66 5.78 4.78 4.20
累计贡献率
Cumulative contribution rate (%)
25.18 41.88 51.96 59.32 65.98 71.76 76.54 80.74

Table 5

Composite score (F) of 32 potato varieties (lines)"

编号
Number
综合得分(F
Composite score (F)
排名
Rank
编号
Number
综合得分(F
Composite score (F)
排名
Rank
G1 0.68 8 G17 0.48 17
G2 0.72 7 G18 0.66 11
G3 0.67 9 G19 0.28 28
G4 0.83 2 G20 0.40 21
G5 0.51 14 G21 0.14 31
G6 0.39 23 G22 0.21 30
G7 0.49 16 G23 0.37 25
G8 0.84 1 G24 0.50 15
G9 0.67 10 G25 0.46 18
G10 0.74 6 G26 0.65 12
G11 0.56 13 G27 0.39 22
G12 0.79 4 G28 0.78 5
G13 0.37 24 G29 0.35 26
G14 0.42 20 G30 0.11 32
G15 0.81 3 G31 0.23 29
G16 0.45 19 G32 0.35 27

Fig. 5

The dendrogram of clusters for 32 potato varieties (lines)"

Table 6

Average and CV of each index in cluster groups"

性状
Traits
类群Ⅰ GroupⅠ 类群Ⅱ GroupⅡ 类群Ⅲ GroupⅢ
平均数 Mean 变异系数 CV (%) 平均数 Mean 变异系数 CV (%) 平均数 Mean 变异系数 CV (%)
干物质Dry matter 23.49 7.33 22.15 7.91 18.94 7.89
淀粉Starch 17.50 9.53 16.20 10.47 13.09 11.05
还原糖Reducing sugars 21.48 11.69 20.70 9.37 16.81 6.72
直链淀粉Amylose 0.28 68.66 0.30 48.93 0.67 44.02
抗坏血酸Ascorbic acid 1.10 32.54 1.86 51.42 1.19 29.97
柠檬酸Citric acid 19.23 26.05 16.88 21.46 21.13 14.25
绿原酸Chlorogenic acid 316.95 46.72 1132.93 58.6 597.19 71.93
糖苷生物Glycoalkaloids 155.63 73.45 404.45 43.39 400.65 85.41
水分Moisture 3.50 31.83 5.52 21.76 3.94 38.10
灰分Ash 3.79 21.42 4.35 16.47 3.94 11.03
粗淀粉Crude starch 60.25 13.41 61.62 13.29 56.93 11.88
粗脂肪Crude fat 0.34 47.95 0.52 37.63 0.58 49.00
溶解度Solubility 19.55 11.05 22.69 6.31 17.76 8.89
膨胀度Swelling capacity 16.02 6.17 13.95 6.46 14.97 5.07
持水力WHC 3.14 9.00 3.21 5.78 3.31 10.93
持油力OHC 2.79 7.74 2.71 6.41 2.95 9.97
碘蓝值Blue value 11.17 32.28 11.91 20.05 13.00 44.07
析水率Bleeding rate 38.91 16.09 46.84 9.46 38.45 12.32
白度Whiteness 24.11 21.32 22.11 17.84 24.25 11.73
亮度Brightness 84.05 2.44 80.15 3.64 84.57 1.95
初始温度To 63.47 2.26 67.02 3.03 66.53 3.00
峰值温度Tp 67.72 2.16 71.51 2.01 70.62 2.79
终止温Tc 72.44 2.22 75.88 1.56 75.23 2.60
糊化焓值ΔH 3.94 9.64 3.69 18.44 3.77 17.01
[1]
DAPČEVIĆ HADNAĐEV T, PAJIĆ-LIJAKOVIĆ I, HADNAĐEV M, MASTILOVIĆ J, TORBICA A, BUGARSKI B. Influence of starch sodium octenyl succinate on rheological behaviour of wheat flour dough systems. Food Hydrocolloids, 2013, 33(2): 376-383.
[2]
SINGH N, KAUR S P, KAUR L, SODHI N S. Physico-chemical, rheological and chapati making properties of flours from some Indian potato cultivars. Journal of Food Science and Technology, 2005, 42(4): 344-348.
[3]
CHANDRA S, SINGH S, KUMARI D. Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology, 2015, 52(6): 3681-3688.

doi: 10.1007/s13197-014-1427-2 pmid: 26028751
[4]
AVULA R, SINGH R. Functional properties of potato flour and its role in product development-A review. Food, 2009, 3(2): 105-112.
[5]
付玉虎, 辛世华, 吴庆, 杨小萍, 刘慧燕, 方海田. 马铃薯全粉烤饼制作配方的优化及其质构特性研究. 食品工业科技, 2023, 44(22): 176-181.
FU Y H, XIN S H, WU Q, YANG X P, LIU H Y, FANG H T. Study on the optimization of the formula of potato scone and its texture characteristics. Science and Technology of Food Industry, 2023, 44(22): 176-181. (in Chinese)
[6]
OSEI TUTU C, AMISSAH J G N, AMISSAH J N, AKONOR P T, BUDU A S, SAALIA F K. Application of Frafra potato (Solenostemon rotundifolius) flour in the development of gluten-free bread. Heliyon, 2024, 10(2): e24521.
[7]
ZHAO R X, LI N, LIU Q N, LIU W, ZHANG L, HU H H. Potato flour, oat bran, and inulin as functional ingredients in gluten-free biscuits: Glycemic index reduction and physicochemical characterization improvement. Food and Bioprocess Technology, 2023, 16(12): 2825-2836.
[8]
商靖雯. 马铃薯食味品质及其与淀粉、蛋白质及风味物质的相关性研究[D]. 哈尔滨: 东北农业大学, 2023.
SHANG J W. Study on the eating quality of potato and its correlation with starch, protein and flavor substances[D]. Harbin: Northeast Agricultural University, 2023. (in Chinese)
[9]
LISIŃSKA G, PĘKSA A, KITA A, RYTEL E, TAJNER-CZOPEK A. The quality of potato for processing and consumption. Food, 2009, 3(2): 99-104.
[10]
BARRIOS E P, NEWSOM D W, MILLER J C. Some factors influencing the culinary quality of Irish potatoes II. Physical characters. American Potato Journal, 1963, 40(6): 200-208.
[11]
VAN HUNG P, MAEDA T, MORITA N. Waxy and high-amylose wheat starches and flours: Characteristics, functionality and application. Trends in Food Science & Technology, 2006, 17(8): 448-456.
[12]
EVŽEN Š, DVOŘÁČEK V. New processing and applications of waxy starch (a review). Journal of Food Engineering, 2017, 206: 77-87.
[13]
SINGH N, KAUR L, EZEKIEL R, GURAYA H S.Microstructural, cooking and textural characteristics of potato (Solanum tuberosum L.) tubers in relation to physicochemical and functional properties of their flours. Journal of the Science of Food and Agriculture, 2005, 85(8): 1275-1284.
[14]
朱大伟, 章林平, 陈铭学, 方长云, 于永红, 郑小龙, 邵雅芳. 中国优质稻品种品质及食味感官评分值的特征. 中国农业科学, 2022, 55(7): 1271-1283. doi: 10.3864/j.issn.0578-1752.2022.07.002.
ZHU D W, ZHANG L P, CHEN M X, FANG C Y, YU Y H, ZHENG X L, SHAO Y F. Characteristics of high-quality rice varieties and taste sensory evaluation values in China. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. doi: 10.3864/j.issn.0578-1752.2022.07.002. (in Chinese)
[15]
刘娟, 梁延超, 隋景航, 余斌, 王润润, 张小微, 程李香, 王玉萍, 张峰. 马铃薯块茎蒸煮品质、质构特性及加工型品系筛选. 中国农业科学, 2016, 49(21): 4074-4084. doi: 10.3864/j.issn.0578-1752.2016.21.002.
LIU J, LIANG Y C, SUI J H, YU B, WANG R R, ZHANG X W, CHENG L X, WANG Y P, ZHANG F. Screening for cooking- processing potato lines according to potato Tuber qualities and properties. Scientia Agricultura Sinica, 2016, 49(21): 4074-4084. doi: 10.3864/j.issn.0578-1752.2016.21.002. (in Chinese)
[16]
夏兰欣, 周贵华, 王广, 王海波, 宋波涛, 吴承金, 程超. GC-MS和GC-IMS分析食用油对熟炕马铃薯挥发性成分的影响. 中国粮油学报, 2022, 37(12): 236-245.
XIA L X, ZHOU G H, WANG G, WANG H B, SONG B T, WU C J, CHENG C. Conjoint analysis of effects of edible oil on volatile components of cooked Kang potatoes by GM-MS and GC-IMS. Journal of the Chinese Cereals and Oils Association, 2022, 37(12): 236-245. (in Chinese)
[17]
徐杰, 夏露露, 唐振三, 李文丽, 赵甜甜, 程李香, 张峰. 马铃薯块茎蒸制和烘焙后嗅味品质分析. 作物学报, 2025, 51(5): 1409-1420.

doi: 10.3724/SP.J.1006.2025.44139
XU J, XIA L L, TANG Z S, LI W L, ZHAO T T, CHENG L X, ZHANG F. Analysis of smell quality of potato tubers after steaming and baking. Acta Agronomica Sinica, 2025, 51(5): 1409-1420. (in Chinese)
[18]
李凯峰, 尹玉和, 王琼, 林团荣, 郭华春. 不同马铃薯品种挥发性风味成分及代谢产物相关性分析. 中国农业科学, 2021, 54(4): 792-803. doi: 10.3864/j.issn.0578-1752.2021.04.011.
LI K F, YIN Y H, WANG Q, LIN T R, GUO H C. Correlation analysis of volatile flavor components and metabolites among potato varieties. Scientia Agricultura Sinica, 2021, 54(4): 792-803. doi: 10.3864/j.issn.0578-1752.2021.04.011. (in Chinese)
[19]
张永成, 田丰. 马铃薯试验研究方法. 北京: 中国农业科学技术出版社, 2007.
ZHANG Y C, TIAN F. Research Method of Potato Experiment. Beijing: China Agricultural Science and Technology Press, 2007. (in Chinese)
[20]
刘襄河, 郑丽璇, 郑丽勉, 欧成成, 叶超霞, 王安利. 双波长法测定常用淀粉原料中直链淀粉、支链淀粉及总淀粉含量. 广东农业科学, 2013, 40(18): 97-100.
LIU X H, ZHENG L X, ZHENG L M, OU C C, YE C X, WANG A L. Determination of amylose and amylopectin in the commonly used starch materials by dual-wavelength spectrophotometry. Guangdong Agricultural Sciences, 2013, 40(18): 97-100. (in Chinese)
[21]
CHEN Z C, YAMAJI N, MOTOYAMA R, NAGAMURA Y, MA J F. Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiology, 2012, 159(4): 1624-1633.

doi: 10.1104/pp.112.199778 pmid: 22732245
[22]
DEUßER H, GUIGNARD C, HOFFMANN L, EVERS D. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chemistry, 2012, 135(4): 2814-2824.

doi: 10.1016/j.foodchem.2012.07.028 pmid: 22980877
[23]
喻刚. 番茄糖苷生物碱关联分析及其调控机理解析[D]. 武汉: 华中农业大学, 2018.
YU G. Correlation analysis and regulation mechanism analysis of tomato glycoside alkaloids[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[24]
NIBA L L, BOKANGA M M, JACKSON F L, SCHLIMME D S, LI B W. Physicochemical properties and starch granular characteristics of flour from various Manihot esculenta (cassava) genotypes. Journal of Food Science, 2002, 67(5): 1701-1705.
[25]
CROSBIE G B. The relationship between starch swelling properties, paste viscosity and boiled noodle quality in wheat flours. Journal of Cereal Science, 1991, 13(2): 145-150.
[26]
XIE F, YUAN C M, ZHANG H, WU Y, AI L Z. Structure-function relationship between galactomannans and their effects on freeze-thaw stability, retrogradation, and texture of corn starch gels during cold storage. Food Chemistry, 2023, 398: 133915.
[27]
WANG Y L, OU X Q, ALI AL-MAQTARI Q, HE H J, OTHMAN N. Evaluation of amylose content: Structural and functional properties, analytical techniques, and future prospects. Food Chemistry: X, 2024, 24: 101830.
[28]
KAUR A, SINGH N, EZEKIEL R, GURAYA H S. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chemistry, 2007, 101(2): 643-651.
[29]
DUAN X Y, ZHANG T T, LIU Q N, ZHANG L, LIU W, ZHAO R X, HU H H. Effect of freezing temperature on the thermal, rheological, and gelatinization properties of freeze-thaw-dehydrated potato powder. Gels, 2024, 10(11): 744.
[30]
ADEBOWALE K O, ADENIYI AFOLABI T, LAWAL O S. Isolation, chemical modification and physicochemical characterisation of Bambarra groundnut (Voandzeia subterranean) starch and flour. Food Chemistry, 2002, 78(3): 305-311.
[31]
HWANG I G, KIM H Y, WOO K S, LEE J, JEONG H S. Biological activities of Maillard reaction products (MRPs) in a sugar-amino acid model system. Food Chemistry, 2011, 126(1): 221-227.
[32]
KOHYAMA K, NISHINARI K. Effect of soluble sugars on gelatinization and retrogradation of sweet potato starch. Journal of Agricultural and Food Chemistry, 1991, 39(8): 1406-1410.
[33]
曾凡逵. 马铃薯糖苷生物碱的结构特征、生物合成、毒性及加工对其含量的影响. 中国马铃薯, 2022, 36(2): 155-164.
ZENG F K. Structural characteristics and biosynthesis, toxicity, and effects of processing on content of potato glycoalkaloids. Chinese Potato Journal, 2022, 36(2): 155-164. (in Chinese)
[34]
KWAŚNIEWSKA-KAROLAK I, MOSTOWSKI R. The influence of storage conditions on the staling rate and starch retrogradation in wheat rolls packaged in a modified atmosphere. Journal of Microbiology, Biotechnology and Food Sciences, 2019, 8(5): 1188-1193.
[35]
SRICHUWONG S, ISONO N, JIANG H X, MISHIMA T, HISAMATSU M. Freeze-thaw stability of starches from different botanical sources: Correlation with structural features. Carbohydrate Polymers, 2012, 87(2): 1275-1279.
[36]
JAYAKODY L, LAN H, HOOVER R, CHANG P, LIU Q, DONNER E. Composition, molecular structure, and physicochemical properties of starches from two grass pea (Lathyrus sativus L.) cultivars grown in Canada. Food Chemistry, 2007, 105(1): 116-125.
[37]
HUANG S Q, CHAO C, YU J L, COPELAND L, WANG S J. New insight into starch retrogradation: The effect of short-range molecular order in gelatinized starch. Food Hydrocolloids, 2021, 120: 106921.
[38]
祝毛迪. 稻米加工品质调控基因Wx和ALK的克隆与功能研究[D]. 武汉: 华中农业大学, 2024.
ZHU M D. Cloning and functional study of rice processing quality control genes Wx and ALK[D]. Wuhan: Huazhong Agricultural University, 2024. (in Chinese)
[1] JI ShengYang, LU BaiYi, LI PeiWu. Some Reflections on Modern Science of Agricultural Product Quality [J]. Scientia Agricultura Sinica, 2025, 58(9): 1830-1844.
[2] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[3] SHE WenTing, SUN RuiQing, DANG HaiYan, LI WenHu, ZHANG Feng, TIAN Yi, XU JunFeng, DING YuLan, WANG ZhaoHui. Sulfur Concentration and Distribution in Wheat Grain Sampled from Farmers’ Fields in Main Wheat Production Regions of China and Its Affecting Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 956-974.
[4] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[5] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[6] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[7] CHEN YongXian, CHEN RuiJiang, DU YiZhi, ZHU JunJie, CHEN WanXia, ZHAO ZiHan, WANG JiChun, DU Kang, ZHANG Kai. Screening and Identification of Drought-Tolerant Sweet Potato Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(2): 214-237.
[8] SUN RuiQing, DANG HaiYan, SHE WenTing, WANG XingShu, CHU HongXin, WANG Tao, DING YuLan, LUO YiNuo, XU JunFeng, LI XiaoHan, WANG ZhaoHui. Yield Components and Soil Factors Affecting Zinc Concentration in Wheat Grain and Flour in Major Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2025, 58(2): 291-306.
[9] TANG GuiMei, LI WeiDong, ZHOU YuXia, KONG YouHan, XIAO XiaoLing, PENG YingShu, ZHANG Li, FU HongYan, LIU Yang, HUANG GuoLin. Genetic Diversity Analysis of Cymbidium faberi Germplasm Resources Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2025, 58(2): 339-354.
[10] LI PeiSong, LU YongDi, GUO Yu, ZHANG QiPeng, LIU TaoFen, WANG TianHe, YANG MingFeng, XIANG Dao, TIAN JingShan, ZHANG WangFeng. The Regional Distribution of Raw Cotton Quality in Xinjiang Based on Notarized Inspection Data for Cotton [J]. Scientia Agricultura Sinica, 2025, 58(1): 58-74.
[11] QIAO ZhengYan, YU Miao, TANG YuJie, SHI GuiShan, LIU XinYu, LIU XiaoHan, WANG XinDing, LI Yang, WANG Nai, CHEN BingRu. Comprehensive Evaluation for Soda Salinity and Alkalinity in Sorghum Seedling Stage and Selection of Indicators [J]. Scientia Agricultura Sinica, 2025, 58(1): 30-42.
[12] GUO Lei, HUANG ChenYan, SONG HongFeng, SHEN ZhiJun, ZHANG BinBin, MA RuiJuan, SUN Meng, HE Xin, YU MingLiang. Screening, Compounding and Safety Evaluation of Herbicides Suitable for Peach Nursery [J]. Scientia Agricultura Sinica, 2024, 57(9): 1734-1747.
[13] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[14] HUANG LiQiang, JIANG Ru, ZHU BoZhi, PENG Huan, XU Chong, SONG JiaXiong, CHEN Min, LI YongQing, HUANG WenKun, PENG DeLiang. Identification and Evaluation of Major Potato Cultivars Resistance to Globodera rostochiensis and Detection of Their H1 Resistance Gene Marker [J]. Scientia Agricultura Sinica, 2024, 57(8): 1506-1516.
[15] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!