Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (5): 956-974.doi: 10.3864/j.issn.0578-1752.2025.05.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Sulfur Concentration and Distribution in Wheat Grain Sampled from Farmers’ Fields in Main Wheat Production Regions of China and Its Affecting Factors

SHE WenTing1(), SUN RuiQing1, DANG HaiYan1, LI WenHu1, ZHANG Feng1, TIAN Yi1, XU JunFeng1, DING YuLan1, WANG ZhaoHui1,2()   

  1. 1 College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro- Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    2 State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2024-04-30 Accepted:2024-06-17 Online:2025-03-07 Published:2025-03-07
  • Contact: WANG ZhaoHui

Abstract:

ObjectiveIt was of great significance to clarify the grain sulfur (S) concentration, its distribution in flour and bran, and relevant affecting agronomy, nutrition, soil physicochemical and fertilization factors for regulating grain S nutrition, and optimizing S management regionally over major wheat production regions of China.【Method】During the two wheat growing seasons from 2021 to 2023, 445 wheat plants and soil samples were collected from typical farmers’ fields in 18 major wheat production provinces (municipalities or districts) in China, to analyze the relationship of grain, flour and bran S concentrations with yield, biomass, harvest index and yield components, S accumulation and distribution in shoot, as well as soil physicochemical properties and fertilization.【Result】Grain S concentrations of farmers in main wheat production regions of China ranged from 1.00 to 2.31 g·kg-1, with an average of 1.59 g·kg-1. The flour and bran S concentration were 0.55-2.05 and 0.54-4.26 g·kg-1, respectively, with an average of 1.33 and 2.03 g·kg-1, respectively. About half of the samples were at low grain S concentration level. Sulfur concentration in wheat grain and flour from wheat-maize and dryland wheat production regions were higher than that from spring wheat and rice-wheat production regions. The bran S concentration was higher than that of flour, both increased with the grain S concentration. The increase of wheat yield and thousand kernel weight was beneficial to the improvement of grain S concentration. For each 1.0 t·hm-2 increase of yield, the grain S concentration increased by 0.01 g·kg-1; and for each 1.0 g increase of the thousand kernel weight, the grain S concentration increased by 0.003 g·kg-1. A positive correlation was found between the grain and flour S concentration and S accumulation in all wheat organs. With the increase of grain S concentration, its distribution ability to flour decreased while the distribution to bran developed. However, in the dryland wheat production region, the increase of grain S accumulation was lower than that of yield, thus the grain S concentration decreased with the yield increase. Soil pH, nitrate nitrogen (N) and phosphorus fertilizer application all showed significant effects on grain S concentration. Grain S concentration increased by 0.02, 0.0004 and 0.0004 g·kg-1, respectively, with each unit increase of these three parameters. The main soil factors affecting flour S concentration were pH, ammonium N, and available iron (Fe). For each 1.0 unit increase of pH, the flour S concentration increased by 0.04 g·kg-1; while for each 1.0 mg·kg-1 increase of soil ammonium N and available Fe, the flour S concentration decreased by 0.0003 and 0.0005 g·kg-1, respectively. 【Conclusion】In brief, the grain S concentrations were of great increase potentials for farmers’ wheat in main wheat production regions of China. It was obviously a vital approach to regulate grain S concentration and its distribution in flour and bran, by optimizing wheat grain yield components, adjusting soil pH, coordinating the soil nitrate N, ammonium N and available Fe supply, and applying nitrogen and phosphorus fertilizers rationally together with increased S fertilizer application, for improving soil S availability and balancing wheat S uptake and yield formation to harvest high yield with optimized grain S nutrition.

Key words: wheat, grain, flour, bran, sulfur, soil pH, soil ammonium N, soil nitrate N, farmers’ field

Table 1

Basic physicochemical properties of top soil (0-20 cm) sampled from farmers’ field in different wheat production regions of China"

麦区
Wheat production region
pH 有机质
SOM
(g·kg-1)
全氮
TN
(g·kg-1)
硝态氮
NO3--N
(mg·kg-1)
铵态氮
NH4+-N
(mg·kg-1)
有效磷
AP
(mg·kg-1)
速效钾
AK
(mg·kg-1)
有效硫
AS
(mg·kg-1)
春麦区 SW 7.9 27.8 1.5 21.3 6.1 42.7 204.3 31.1
旱作区 DW 8.4 22.6 1.1 10.8 2.5 30.9 208.5 27.1
麦玉区 WM 7.6 22.0 1.3 31.6 7.8 57.8 215.8 30.8
稻麦区 RW 6.5 30.7 1.8 19.8 9.6 47.1 188.3 31.9
全国 All 7.5 25.0 1.4 24.0 7.2 48.9 206.3 30.5

Table 2

Classification criteria of grain S concentration"

麦区
Wheat production region
籽粒硫水平Grain S level
高硫 HS (g·kg-1) 中硫 MS (g·kg-1) 低硫 LS (g·kg-1)
春麦区 SW (y=0.0505x+0.4544) ≥1.67 1.54-1.67 <1.54
旱作区 DW (y=0.0523x+0.5067) ≥1.76 1.63-1.76 <1.63
麦玉区 WM (y=0.0323x+0.9231) ≥1.70 1.62-1.70 <1.62
稻麦区 RW (y=0.0457x+0.5831) ≥1.68 1.56-1.68 <1.56
全国 All (y=0.0452x+0.6211) ≥1.71 1.59-1.71 <1.59

Fig. 1

Yield and grain S concentration of wheat sampled from farmers’ fields in different wheat production regions of China from 2021 to 2023 SW: Represents the spring wheat production region; DW: Represents the dryland wheat production region; WM: Represents the wheat-maize production region; RW: Represents the rice-wheat production region; All: Represents the whole wheat production region in China. The same as below. Different lowercase letters indicate significant difference among yield average values (P<0.05), and different capital letters indicate significant difference among grain S concentration average values (P<0.05). The solid lines and dots inside the box are respectively the median and the mean values; the lower and upper edges of the box represent the 25th and 75th percentile, respectively; the lower and upper error line represent the 5th and 95th percentile, respectively. “n” is the sample size"

Fig. 2

Classification of grain S concentration of wheat sampled from farmers’ fields in different wheat production regions of China from 2021 to 2023"

Fig. 3

Grain S concentration under different S levels of wheat sampled from farmers’ fields in different wheat production regions of China during 2021 to 2023 Different lowercase letters indicate significant difference among grain S concentration average values under different sulfur levels in each wheat production regions (P<0.05)"

Table 3

Flour S and bran S concentration average values at different grain S levels of wheat sampled from farmers’ fields in main wheat production regions of China from 2021 to 2023"

麦区
Wheat production region
籽粒硫水平
Grain S level
面粉硫含量
Flour S concentration (g·kg-1)
麸皮硫含量
Bran S concentration (g·kg-1)
春麦区
SW
低硫 LS 1.27 a 1.57 c
中硫 MS 1.36 a 2.05 b
高硫 HS 1.32 a 2.49 a
平均 Mean 1.30 AB 1.93 A
旱作区
DW
低硫 LS 1.34 b 1.75 c
中硫 MS 1.38 ab 2.14 b
高硫 HS 1.48 a 2.51 a
平均 Mean 1.39 A 2.03 A
麦玉区
WM
低硫 LS 1.30 b 1.91 c
中硫 MS 1.41 a 2.11 b
高硫 HS 1.43 a 2.43 a
平均 Mean 1.37 A 2.11 A
稻麦区
RW
低硫 LS 1.23 b 1.63 c
中硫 MS 1.23 b 2.31 b
高硫 HS 1.41 a 2.76 a
平均 Mean 1.26 B 1.94 A
全国
All
低硫 LS 1.27 c 1.76 c
中硫 MS 1.35 b 2.16 b
高硫 HS 1.43 a 2.48 a
平均 Mean 1.33 2.03

Fig. 4

Relationship between grain, flour and bran S concentration of wheat sampled from farmers’ fields in different wheat production regions of China from 2021 to 2023 Orange represents positive correlation and green represents negative correlation. The darker the color and the narrower the ellipse, the greater the correlation coefficient; ** Indicates that the correlation is significant at P<0.01, * Indicates that the correlation is significant at P<0.05. The same as below. The equation is a linear regression equation, and x represents the grain S concentration, y represents the S concentration of flour or bran"

Table 4

Wheat yield, biomass, harvest index and yield components at different grain S levels of wheat sampled from farmers’ fields in main wheat production regions of China from 2021 to 2023"

麦区
Wheat production region
籽粒硫水平
Grain S level
小麦产量
Wheat yield
(t·hm-2)
生物量
Biomass
(t·hm-2)
收获指数
Harvest index
(%)
千粒重
TGW
(g)
穗粒数
Grain number per spike
公顷穗数
Spike number
(×104·hm-2)
春麦区
SW
低硫 LS 5.2b 12.0a 42.4b 38.3b 30.9b 387b
中硫 MS 6.3ab 13.2a 48.3a 43.2ab 34.5ab 465ab
高硫 HS 6.6a 13.7a 48.7a 44.6a 35.3a 493a
平均 Mean 5.9B 12.7B 45.3B 41.0C 32.8BC 433BC
旱作区
DW
低硫 LS 6.6a 14.5a 45.6a 44.2a 31.0a 436a
中硫 MS 6.3a 14.1a 44.8a 44.7a 30.4a 428ab
高硫 HS 4.8b 10.2b 47.2a 41.1a 30.3a 321b
平均 Mean 6.1B 13.4B 45.7B 43.6B 30.7C 408C
麦玉区
WM
低硫 LS 7.8a 16.7a 48.0a 44.3b 33.6a 570a
中硫 MS 7.8a 16.7a 47.5a 46.0ab 34.8a 572a
高硫 HS 8.0a 16.9a 48.1a 46.6a 32.7a 541a
平均 Mean 7.9A 16.8A 47.9A 45.4A 33.6B 561A
稻麦区
RW
低硫 LS 6.5a 14.1a 46.2a 44.4ab 38.0a 532a
中硫 MS 6.2a 13.9a 44.7a 46.3a 32.0b 411b
高硫 HS 5.6a 14.4a 39.8b 42.7b 34.6ab 456ab
平均 Mean 6.3B 14.1B 44.9B 44.6AB 36.0A 491B
全国
All
低硫 LS 6.8a 14.8a 46.2a 43.5b 34.1a 505a
中硫 MS 7.2a 15.6a 46.9a 45.4a 33.9a 526a
高硫 HS 6.9a 15.1a 46.6a 45.0a 32.6a 482a
平均 Mean 6.9 15.1 46.5 44.4 33.7 505

Fig. 5

Correlation analysis of grain, flour and bran S concentration with yield and yield components of wheat sampled from farmers’ fields in China from 2021 to 2023 The equation is a linear regression equation, x represents wheat yield (biomass、harvest index or yield components), and their units are the same as that in Table 4. y represents the S concentration of grain (flour or bran)"

Table 5

S accumulation and distribution at different grain S levels of wheat sampled from farmers’ fields in main wheat production regions of China from 2021 to 2023"

麦区
Wheat production region
籽粒硫水平
Grain S level
籽粒硫积累量
Grain S accumulation
(kg·hm-2)
地上部硫积累量
Shoot S accumulation
(kg·hm-2)
籽粒硫分配指数
Grain S distribution index (%)
面粉硫分配指数
Flour S distribution index (%)
麸皮硫分配指数
Bran S distribution index (%)
春麦区
SW
低硫 LS 7.2b 14.8b 51.2a 65.9a 34.1c
中硫 MS 9.8a 19.5ab 50.7a 59.0b 41.1b
高硫 HS 11.5a 24.3a 48.2a 50.9c 49.1a
平均 Mean 9.0B 18.5B 50.2A 60.2A 39.8B
旱作区
DW
低硫 LS 9.6a 20.8a 48.4b 59.6a 40.4b
中硫 MS 10.7a 22.3a 50.1ab 55.4ab 44.6ab
高硫 HS 8.9a 16.8a 55.1a 54.7b 45.3a
平均 Mean 9.7B 20.3B 50.4A 57.4A 42.6B
麦玉区
WM
低硫 LS 11.7c 24.7b 49.3a 52.2a 47.8a
中硫 MS 13.0b 27.0ab 50.0a 49.8a 50.2a
高硫 HS 14.5a 29.6a 50.8a 48.4a 51.6a
平均 Mean 12.9A 26.9A 49.9A 50.4B 49.6A
稻麦区
RW
低硫 LS 9.1a 18.2b 52.1a 54.7a 45.3a
中硫 MS 10.0a 18.7b 53.4a 50.0a 50.0a
高硫 HS 10.1a 23.7a 44.9b 50.0a 50.0a
平均 Mean 9.5B 19.1B 51.4A 52.8B 47.2A
全国
All
低硫 LS 9.8b 20.2b 50.5a 55.9a 44.1b
中硫 MS 11.9a 24.6a 50.4a 50.8b 49.2a
高硫 HS 12.6a 26.1a 50.3a 50.5b 49.5a
平均 Mean 11.1 22.9 50.4 53.2 46.8

Fig. 6

Correlation analysis of grain, flour and bran S concentration with S accumulation and distribution of wheat sampled from farmers’ fields in China from 2021 to 2023 The equation is a linear regression equation, x represents S accumulation of steam-and-leaf, glume, grain, flour or bran (or their S distribution index), and their units are the same as that in Table 5, y represents the S concentration of grain (flour or bran)"

Fig. 7

Grain N concentration under different S level of wheat sampled from farmers’ fields in different wheat production regions of China from 2021 to 2023 Different lowercase letters indicate significant difference among grain N concentration average values under different sulfur levels in same wheat production regions (P<0.05); Different capital letters indicate significant difference among grain N concentration average values (P<0.05) in different wheat production regions"

Fig. 8

Correlation analysis of grain, flour and bran grain S concentration with grain N concentration of wheat sampled from farmers’ fields in different wheat production regions of China from 2021 to 2023 GSC: Grain S concentration; FSC: Flour S concentration; BSC: Bran S concentration. In the figure, orange represents grain, blue represents flour, and green represents bran. The darker the color, the greater the correlation coefficient; the equation is a linear regression equation, x represents grain N concentration, y represents the S concentration of grain (flour or bran); thick line indicates that the correlation is significant at P<0.01, fine line indicates that the correlation is significant at P<0.05"

Fig. 9

Ranking of the importance of soil physicochemical properties and fertilization in affecting grain, flour and bran S concentration of wheat sampled from farmers’ fields in China from 2021 to 2023 ** Indicates that the indicator in random forest importance ranking is significant at P<0.01, * Indicates that the indicator is significant at P<0.05. The equation inside of column is a linear regression equation, x represents soil physicochemical properties and fertilization, and their units are the same as in Table 6, y represents the S concentration of grain (flour or bran). ## Indicates that the correlation is significant at P<0.01, # Indicates that the correlation is significant at P<0.05"

Table 6

Soil physicochemical properties and fertilization at different grain S levels of wheat sampled from farmers’ fields in main wheat production regions of China from 2021 to 2023"

麦区
Wheat production region
籽粒硫水平
Grain S level
pH 有机质
SOM
(g·kg-1)
硝态氮
NO3--N
(mg·kg-1)
铵态氮
NH4+-N
(mg·kg-1)
有效铁
AFe
(mg·kg-1)
氮肥
N
(kg·hm-2)
磷肥
P2O5
(kg·hm-2)
春麦区
SW
低硫 LS 7.5b 35.2a 30.6a 9.1a 53.1a 153b 129b
中硫 MS 8.2ab 24.3ab 11.3a 2.6a 9.9b 322a 228a
高硫 HS 8.6a 17.4b 10.7a 3.0a 11.2b 328a 202a
平均 Mean 7.9B 27.8A 21.3AB 6.1AB 32.6B 233AB 170A
旱作区
DW
低硫 LS 8.3b 22.1a 10.0b 2.3a 6.2a 165a 102a
中硫 MS 8.4ab 22.5a 9.4b 2.2a 5.6ab 181a 124a
高硫 HS 8.5a 23.4a 14.0a 3.1a 4.3b 160a 119a
平均 Mean 8.4A 22.6B 10.8B 2.5B 5.6C 168B 111C
麦玉区
WM
低硫 LS 7.7a 23.2a 27.5a 9.0a 30.7a 245a 141a
中硫 MS 7.3a 21.8ab 31.2a 8.8a 40.8a 262a 135a
高硫 HS 7.6a 20.6b 38.1a 5.7a 26.8a 279a 151a
平均 Mean 7.6C 22.0B 31.6A 7.8A 31.7B 260A 143B
稻麦区
RW
低硫 LS 6.6a 29.5b 17.1b 7.7b 124.0a 221a 78a
中硫 MS 6.2a 27.8b 15.9b 8.4b 129.1a 189a 79a
高硫 HS 6.5a 39.6a 36.2a 18.9a 144.7a 156a 89a
平均 Mean 6.5D 30.7A 19.8B 9.6A 128.4A 203B 80D
全国
All
低硫 LS 7.4b 26.9a 21.9a 7.6a 60.7a 214a 113b
中硫 MS 7.4b 23.0b 21.3a 6.7a 52.6ab 236a 128ab
高硫 HS 7.8a 23.7ab 31.0a 6.8a 34.8b 239a 141a
平均 Mean 7.5 25.0 24.0 7.2 51.9 226 123
[1]
中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2023.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2023. (in Chinese)
[2]
NAZAR R, IQBAL N, MASOOD A, SYEED S, KHAN N A. Understanding the significance of sulfur in improving salinity tolerance in plants. Environmental and Experimental Botany, 2011, 70(2/3): 80-87.
[3]
SHAH S H, ISLAM S, MOHAMMAD F. Sulphur as a dynamic mineral element for plants: a review. Journal of Soil Science and Plant Nutrition, 2022, 22(2): 2118-2143.
[4]
YU Z T, SHE M Y, ZHENG T, DIEPEVEEN D, ISLAM S, ZHAO Y, ZHANG Y Q, TANG G X, ZHANG Y J, ZHANG J J, BLANCHARD C L, MA W J. Impact and mechanism of sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content. Communications Biology, 2021, 4: 945.

doi: 10.1038/s42003-021-02458-7 pmid: 34362999
[5]
ZÖRB C, STEINFURTH D, SELING S, LANGENKÄMPER G, KOEHLER P, WIESER H, LINDHAUER M G, MÜHLING K H. Quantitative protein composition and baking quality of winter wheat as affected by late sulfur fertilization. Journal of Agricultural and Food Chemistry, 2009, 57(9): 3877-3885.

doi: 10.1021/jf8038988 pmid: 19326868
[6]
普正仙, 宗世荣, 王芳, 周凌翔, 鲁振亚. 元素硫与动植物营养和人体健康. 肥料与健康, 2023, 50(1): 19-23.
PU Z X, ZONG S R, WANG F, ZHOU L X, LU Z Y. Elemental sulfur and animal and plant nutrition and human health. Fertilizer & Health, 2023, 50(1): 19-23. (in Chinese)
[7]
DOLEMAN J F, GRISAR K, VAN LIEDEKERKE L, SAHA S, ROE M, TAPP H S, MITHEN R F. The contribution of alliaceous and cruciferous vegetables to dietary sulphur intake. Food Chemistry, 2017, 234: 38-45.

doi: S0308-8146(17)30667-2 pmid: 28551250
[8]
GUO Z K, ZHANG X M, WANG L, WANG X S, WANG R Z, HUI X L, WANG S, WANG Z H, SHI M. Selecting high zinc wheat cultivars increases grain zinc bioavailability. Journal of Agricultural and Food Chemistry, 2021, 69(38): 11196-11203.
[9]
WANG X S, GUO Z K, HUI X L, WANG R Z, WANG S, KOPITTKE P M, WANG Z H, SHI M. Improved Zn bioavailability by its enhanced colocalization and speciation with S in wheat grain tissues after N addition. Food Chemistry, 2023, 404(Pt A): 134582.
[10]
DAS NEVES M A, KIMURA T, SHIMIZU N, SHIIBA K. Production of alcohol by simultaneous saccharification and fermentation of low-grade wheat flour. Brazilian Archives of Biology and Technology, 2006, 49(3): 481-490.
[11]
CHEN Z W, MENSE A L, BREWER L R, SHI Y C. Wheat bran layers: Composition, structure, fractionation, and potential uses in foods. Critical Reviews in Food Science and Nutrition, 2023: 1-24.
[12]
李永华. 北方麦区土壤和小麦籽粒钙镁硫的分布特征[D]. 杨凌: 西北农林科技大学, 2021.
LI Y H. Distribution of calcium, magnesium and sulfur in soil and wheat grain in Northern China[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
[13]
牟文燕, 褚宏欣, 黄宁, 张露露, 张学美, 郭子糠, 黄翠, 孙利谦, 魏蕾, 罗一诺, 王朝辉, 刘金山. 中国主要麦区小麦品种(系)产量与需硫特征关系分析. 作物学报, 2022, 48(12): 3192-3202.

doi: 10.3724/SP.J.1006.2022.11106
MU W Y, CHU H X, HUANG N, ZHANG L L, ZHANG X M, GUO Z K, HUANG C, SUN L Q, WEI L, LUO Y N, WANG Z H, LIU J S. Relationship between grain yield and sulfur requirement characteristics of wheat cultivars (lines) in main wheat production regions of China. Acta Agronomica Sinica, 2022, 48(12): 3192-3202. (in Chinese)
[14]
MESKO M F, COSTA V C, SILVA J S, SCAGLIONI P T, FROHLICH A C, DUARTE F A, FLORES E M M. A novel method for chlorine and sulfur determination in gluten-free and gluten- containing edible flours from different raw materials and countries. Food Analytical Methods, 2020, 13(9): 1799-1805.
[15]
TÓTH Á, SIPOS P, BORBÉLY M, ELEK Á, GYŐRI Z. Study of macro-element content of different particle size wheat flour fractions with special regard to carbon content. Cereal Research Communications, 2005, 33(1): 321-324.
[16]
JÄRVAN M, EDESI L, ADAMSON A. Effect of sulphur fertilization on grain yield and yield components of winter wheat. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 2011, 62(5): 401-409.
[17]
DAWAR K, KHAN N, FAHAD S, ALAM S S, KHAN S, AHMAD MIAN I, ALI AKBAR W. Effect of sulfur and zinc nutrition on yield and uptake by wheat. Journal of Plant Growth Regulation, 2022, 41(6): 2338-2346.
[18]
ULLAH I, MUHAMMAD D, MUSSARAT M. Effect of various nitrogen sources at various sulfur levels on maize-wheat yield and N/S uptake under different climatic conditions. Journal of Plant Growth Regulation, 2023, 42(3): 2073-2087.
[19]
GÓMEZ F M, PRYSTUPA P, BOERO J J, GUTIÉRREZ-BOEM F H. Sulfur partitioning and grain concentration differed from that for nitrogen in malting barley. Field Crops Research, 2021, 263: 108053.
[20]
BEHERA S K, SHUKLA A K, PACHAURI S P, SHUKLA V, SIKANIYA Y, SRIVASTAVA P C. Spatio-temporal variability of available sulphur and micronutrients (Zn, Fe, Cu, Mn, B and Mo) in soils of a hilly region of northern India. Catena, 2023, 226: 107082.
[21]
崔帅, 刘烁然, 王寅, 夏晨真, 焉莉, 冯国忠, 高强. 吉林省旱地土壤有效硫含量及其与土壤有机质和全氮的关系. 中国农业科学, 2022, 55(12): 2372-2383. doi: 10.3864/j.issn.0578-1752.2022.12.009.
CUI S, LIU S R, WANG Y, XIA C Z, YAN L, FENG G Z, GAO Q. Soil available sulfur content in Jilin Province and its correlation with soil organic matter and soil total nitrogen. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383. doi: 10.3864/j.issn.0578-1752.2022.12.009. (in Chinese)
[22]
牟文燕, 罗一诺, 张学美, 张露露, 黄宁, 郭子糠, 黄翠, 孙利谦, 魏蕾, 王朝辉, 田汇. 影响我国主要麦区小麦籽粒硫含量的品种(系)与土壤因素. 植物营养与肥料学报, 2023, 29(2): 273-286.
MU W Y, LUO Y N, ZHANG X M, ZHANG L L, HUANG N, GUO Z K, HUANG C, SUN L Q, WEI L, WANG Z H, TIAN H. Cultivar (lines) and soil factors affecting wheat grain sulfur concentration in the major wheat-producing regions of China. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 273-286. (in Chinese)
[23]
马小龙, 佘旭, 王朝辉, 曹寒冰, 何红霞, 何刚, 王森, 黄明, 刘璐. 旱地小麦产量差异与栽培、施肥及主要土壤肥力因素的关系. 中国农业科学, 2016, 49(24): 4757-4771. doi: 10.3864/j.issn.0578-1752.2016.24.008.
MA X L, SHE X, WANG Z H, CAO H B, HE H X, HE G, WANG S, HUANG M, LIU L. Yield variation of winter wheat and its relation to cultivation, fertilization, and main soil fertility factors. Scientia Agricultura Sinica, 2016, 49(24): 4757-4771. doi: 10.3864/j.issn.0578-1752.2016.24.008. (in Chinese)
[24]
何迅, 巩细民. 土壤样品的采集与制备技术. 湖北农业科学, 2003, 42(3): 47-48.
HE X, GONG X M. Collection and preparation technology of soil samples. Hubei Agricultural Sciences, 2003, 42(3): 47-48. (in Chinese)
[25]
NOACK R. Report of a joint FAO/WHO ad hoc expert committee. WHO technical report series No. 522, 118 S., Genf 1973. Nahrung, 1974, 18(3): 329-332.
[26]
王东, 金士鹏, 孙亮, 张民. 不同小麦品种氮、硫积累特性与子粒品质的关系. 植物营养与肥料学报, 2009, 15(1): 41-47.
WANG D, JIN S P, SUN L, ZHANG M. Relationship between grain quality and the accumulation of nitrogen and sulfur in different wheat cultivars. Plant Nutrition and Fertilizer Science, 2009, 15(1): 41-47. (in Chinese)
[27]
牟文燕. 我国主要麦区小麦品种的产量、硫含量和需硫量差异[D]. 杨凌: 西北农林科技大学, 2022.
MU W Y. Differences in yield, grain sulfur concentration and sulfur requirement of wheat cultivars in main wheat production regions of China[D]. Yangling: Northwest A&F University, 2022. (in Chinese)
[28]
高素华, 郭建平, 王连敏, 王立志. 气象条件对小麦中量元素和微量元素含量的可能影响. 应用气象学报, 2001, 12(4): 507-512.
GAO S H, GUO J P, WANG L M, WANG L Z. The possible impacts of meteorological conditions on content of middle and trace elements for winter wheat. Quarterly Journal of Applied Meteorology, 2001, 12(4): 507-512. (in Chinese)
[29]
沈学善. 施硫对两种品质类型冬小麦物质积累转运和产量及品质的影响[D]. 郑州: 河南农业大学, 2007.
SHEN X S. Effects of sulfur application on accumulation and transfer of dry matter, nitrogen and sulfur and grain yield, quality of two winter wheat (Triticum aestivum L.) cultivars with different gluten[D]. Zhengzhou: Henan Agricultural University, 2007. (in Chinese)
[30]
王凡. 不同基因型小麦硫效率差异及生理机制研究[D]. 郑州: 河南农业大学, 2008.
WANG F. Studies on differences of sulfate efficiency and physiologicalmechanism among different wheat genotypes[D]. Zhengzhou: Henan Agricultural University, 2008. (in Chinese)
[31]
中国小麦品质区划方案试行. 中国农业信息快讯, 2001(6): 19-20.
China wheat quality zoning scheme trial. China Agricultural Information Bulletin, 2001(6): 19-20. (in Chinese)
[32]
ARI P E, ERMISER D, CINDIK B, YALCIN E, GAGA E O. Multi-elemental characterization of semolina samples by inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). Biological Trace Element Research, 2022, 200(7): 3462-3473.
[33]
CZAJA T, SOBOTA A, SZOSTAK R. Quantification of ash and moisture in wheat flour by Raman spectroscopy. Foods, 2020, 9(3): 280.
[34]
PERSSON D P, HANSEN T H, LAURSEN K H, SCHJOERRING J K, HUSTED S. Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS. Metallomics: Integrated Biometal Science, 2009, 1(5): 418-426.
[35]
KAISER D E, SUTRADHAR A K, WIERSMA J J. Do hard red spring wheat varieties vary in their response to sulfur? Agronomy Journal, 2019, 111(5): 2422-2434.

doi: 10.2134/agronj2018.12.0798
[36]
白金顺, 曹卫东, 毕军, 李学敏, 杨璐, 高嵩涓, 熊静. 速效硫肥对冬小麦产量、品质和经济效益的影响. 中国农学通报, 2013, 29(27): 105-110.
BAI J S, CAO W D, BI J, LI X M, YANG L, GAO S J, XIONG J. Effects of rapid release sulphur fertilizer on grain yield, quality and economic profit for winter wheat. Chinese Agricultural Science Bulletin, 2013, 29(27): 105-110. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2012-3037
[37]
赵玉霞, 李娜, 王文岩, 李雪芳, 周芳, 王林权. 施用硫肥对陕西关中地区冬小麦氮、硫吸收与转运及产量的影响. 植物营养与肥料学报, 2013, 19(6): 1321-1328.
ZHAO Y X, LI N, WANG W Y, LI X F, ZHOU F, WANG L Q. Effects of sulfur application rate on the absorption and translocation of nitrogen and sulfur and grain yield of winter wheat in Guanzhong area of Shaanxi. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1321-1328. (in Chinese)
[38]
罗来超, 王朝辉, 惠晓丽, 张翔, 马清霞, 包明, 赵岳, 黄明, 王森. 覆膜栽培对旱地小麦籽粒产量及硫含量的影响. 作物学报, 2018, 44(6): 886-896.

doi: 10.3724/SP.J.1006.2018.00886
LUO L C, WANG Z H, HUI X L, ZHANG X, MA Q X, BAO M, ZHAO Y, HUANG M, WANG S. Effects of plastic film mulching on grain yield and sulfur concentration of winter wheat in dryland of Loess Plateau. Acta Agronomica Sinica, 2018, 44(6): 886-896. (in Chinese)
[39]
郑诗樟, 刘志良. 硫肥对土壤质量和生物有效性的研究进展. 山东农业大学学报(自然科学版), 2015, 46(5): 688-693.
ZHENG S Z, LIU Z L. Advances on the availability of sulphur fertilizers for soil quality and biology. Journal of Shandong Agricultural University (Natural Science Edition), 2015, 46(5): 688-693. (in Chinese)
[40]
申丹丹. 氮、硫肥配施对稻茬小麦籽粒产量、品质和养分利用的影响[D]. 扬州: 扬州大学, 2022.
SHEN D D. Effects of combined application of nitrogen and sulfur on grain yield, quality and nutrient utilization of wheat following rice[D]. Yangzhou: Yangzhou University, 2022. (in Chinese)
[41]
WANG H L, OFFLER C E, PATRICK J W, UGALDE T D. The cellular pathway of photosynthate transfer in the developing wheat grain. I. Delineation of a potential transfer pathway using fluorescent dyes. Plant, Cell & Environment, 1994, 17(3): 257-266.
[42]
FITZGERALD M A, UGALDE T D, ANDERSON J W. Sulphur nutrition affects delivery and metabolism of S in developing endosperms of wheat. Journal of Experimental Botany, 2001, 52(360): 1519-1526.

pmid: 11457912
[43]
JORDAN-MEILLE L, HOLLAND J E, MCGRATH S P, GLENDINING M J, THOMAS C L, HAEFELE S M. The grain mineral composition of barley, oat and wheat on soils with pH and soil phosphorus gradients. European Journal of Agronomy, 2021, 126: 126281.
[44]
沈育伊, 滕秋梅, 张德楠, 徐广平, 周龙武, 黄科朝, 覃香香, 曹彦强, 段春燕. 湿地土壤硫组分特征及其影响因素的研究进展. 生态科学, 2021, 40(1): 182-191.
SHEN Y Y, TENG Q M, ZHANG D N, XU G P, ZHOU L W, HUANG K C, QIN X X, CAO Y Q, DUAN C Y. Review on soil sulfur fractions and influence factors in wetlands. Ecological Science, 2021, 40(1): 182-191. (in Chinese)
[45]
CHEN H, YANG L Q, WEN L, LUO P, LIU L, YANG Y, WANG K L, LI D J. Effects of nitrogen deposition on soil sulfur cycling. Global Biogeochemical Cycles, 2016, 30(11): 1568-1577.
[46]
孙丽娟, 段德超, 彭程, 何俊昱, 施积炎. 硫对土壤重金属形态转化及植物有效性的影响研究进展. 应用生态学报, 2014, 25(7): 2141-2148.
SUN L J, DUAN D C, PENG C, HE J Y, SHI J Y. Influence of sulfur on the speciation transformation and phyto-availability of heavy metals in soil: A review. Chinese Journal of Applied Ecology, 2014, 25(7): 2141-2148. (in Chinese)
[47]
CUI H X, LUO Y L, LI C H, CHANG Y L, JIN M, LI Y, WANG Z L. Effects of nitrogen forms on nitrogen utilization, yield, and quality of two wheat varieties with different gluten characteristics. European Journal of Agronomy, 2023, 149: 126919.
[48]
GUO J X, JIA Y M, CHEN H H, ZHANG L J, YANG J C, ZHANG J, HU X Y, YE X, LI Y, ZHOU Y. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific Reports, 2019, 9: 1248.

doi: 10.1038/s41598-018-37838-3 pmid: 30718692
[49]
CELLETTI S, PII Y, MIMMO T, CESCO S, ASTOLFI S. The characterization of the adaptive responses of durum wheat to different Fe availability highlights an optimum Fe requirement threshold. Plant Physiology and Biochemistry: PPB, 2016, 109: 300-307.
[50]
YESMIN R, HOSSAIN M, KIBRIA M G, JAHIRUDDIN M, SOLAIMAN Z M, BOKHTIAR S M, HOSSAIN M B, SATTER M A, ABEDIN M A. Evaluation of critical limit of sulphur in soils for wheat (Triticum aestivum L.) and mustard (Brassica napus L.). Sustainability, 2021, 13(15): 8325.
[51]
DAWAR K, KHAN A A, JAHANGIR M M R, MIAN I A, KHAN B, AHMAD B, FAHAD S, MOUSTAFA M, AL-SHEHRI M, MUBASHIR M, DATTA R, DANISH S. Effect of nitrogen in combination with different levels of sulfur on wheat growth and yield. ACS Omega, 2022, 8(1): 279-288.
[52]
邓占华, 卢树昌. 华北中部平原麦田土壤供硫水平及施硫肥效果研究. 河北农业科学, 2010, 14(2): 36-38.
DENG Z H, LU S C. Study on sulfur content and sulfur fertilizer application in wheat soil in central North China Plain. Journal of Hebei Agricultural Sciences, 2010, 14(2): 36-38. (in Chinese)
[53]
HAMNÉR K, WEIH M, ERIKSSON J, KIRCHMANN H. Influence of nitrogen supply on macro- and micronutrient accumulation during growth of winter wheat. Field Crops Research, 2017, 213: 118-129.
[54]
ASSEFA S, HAILE W, TENA W. Effects of phosphorus and sulfur on yield and nutrient uptake of wheat (Triticum aestivum L.) on Vertisols, North Central, Ethiopia. Heliyon, 2021, 7(3): e06614.
[1] ZHANG Tao, WANG Huan, XIE HongKai, CHEN YinJi. Formation and Structure of Wheat Bran Polysaccharide-Golden Threadfin Bream Surimi Blended Gel [J]. Scientia Agricultura Sinica, 2025, 58(5): 1004-1016.
[2] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[3] ZHANG Ling, CAO Lei, CAI Cheng, YAN XinYi, XIANG BoCai, AI Jia, ZHAN XinYang, SONG YouHong, ZHU YuLei. Changes in Seed Vigor and Physiological Index of Winter Wheat Under Natural Aging Condition [J]. Scientia Agricultura Sinica, 2025, 58(5): 877-889.
[4] DIAO DengChao, LI YunLi, MENG XiangYu, JI SongHan, SUN YuChen, MA XueHong, LI Jie, FENG YongJia, LI ChunLian, WU JianHui, ZENG QingDong, HAN DeJun, $\boxed{\hbox{WANG ChangFa}}$, ZHENG WeiJun. Cloning and Heat Tolerance Function of Wheat TaGRAS34-5A Gene [J]. Scientia Agricultura Sinica, 2025, 58(4): 617-634.
[5] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[6] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
[7] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[8] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[9] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[10] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[11] SUN RuiQing, DANG HaiYan, SHE WenTing, WANG XingShu, CHU HongXin, WANG Tao, DING YuLan, LUO YiNuo, XU JunFeng, LI XiaoHan, WANG ZhaoHui. Yield Components and Soil Factors Affecting Zinc Concentration in Wheat Grain and Flour in Major Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2025, 58(2): 291-306.
[12] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[13] GAO XingXiang, KONG Yuan, ZHANG YaoZhong, LI Mei, LI Jian, JIN Yan, ZHANG GuoFu, LIU ShuaiShuai, LIU MingPing, ZENG Yan, BAI LianYang. Analysis on Distribution and Change of Weed Community in Winter Wheat Field in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 91-100.
[14] LÜ JinLing, YOU Ke, WANG XiaoFei, XIAO Qiang, LI WenFeng, MA Jin, YANG Qing, ZHANG JinPing, KONG HaiJiang, CHANG YunHua. Variation Characteristics and Key Influencing Factors of Near-Surface Ambient Ammonia Concentration in Typical Cropland Areas in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 127-140.
[15] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!