Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (12): 2303-2315.doi: 10.3864/j.issn.0578-1752.2025.12.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of 322 Peanut Germplasms for Resistance to Aspergillus flavus Infection

CUI MengJie(), SUN ZiQi, QI FeiYan, LIU Hua, XU Jing, DU Pei, HUANG BingYan, DONG WenZhao, HAN SuoYi(), ZHANG XinYou()   

  1. Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002
  • Received:2024-12-11 Accepted:2025-02-17 Online:2025-06-19 Published:2025-06-19
  • Contact: HAN SuoYi, ZHANG XinYou

Abstract:

【Objective】Aflatoxin contamination is one of the important factors that hinders sustainable development of the peanut industry. Precise evaluation of germplasm resources from China and abroad for resistance to A. flavus infection and creation of new resistant germplasms will facilitate the development of resistant cultivars. 【Method】The A. flavus infection index of 322 peanut germplasm lines were characterized following in-vitro inoculation of seeds harvested from 3 different “environments” (CA2020, CS2020, CS2021). Aspergillus flavus strain As 3.4408, known for its strong infectivity and high toxin production, was used as the inoculation strain. The botanical type, plant type and nutritional quality of kernels were measured and analyzed. Accessions exhibiting resistance with novel traits were comprehensively evaluated and screened. 【Result】Thirteen accessions with stable resistance were identified, accounting for 4.04% of the total germplasm lines evaluated, most of which belonged to var. hypogaea, including two with stable and high resistance (C203 and C206), while no accession was observed to be immune to Aspergillus flavus infection. The frequency distribution of infection index of 322 accessions exhibited continuous variation, with the broad-sense heritability exceeding 0.8, indicating that the A. flavus-resistance of kernels was significantly influenced by genotypes and “environments”, and the phenotypic variation was primarily controlled by genetic factors. Correlation analysis revealed significant positive correlation of infection index of accessions among the different “environments” (P<0.001), and the phenotype of each accession harvested from various “environments” was relatively consistent. Additionally, no significant correlation was found between nutritional quality and infection index. Comparative analysis of infection index among peanut accessions of different botanical and plant types revealed that var. hypogaea/prostrate-type peanuts were more likely to exhibit resistance to A. flavus infection within the existing peanut germplasm resources. 【Conclusion】The phenotypes of peanut germplasms harvested from different “environments” in response to A. flavus infection were relatively stable. Variation of kernels resistance to A. flavus infection was primarily controlled by genotype. Accessions C203 and C206, exhibiting stable and high resistance, can serve as excellent resistant parents for the mining of aflatoxin resistance genes and for the improvement of peanut varieties resistant to aflatoxin contamination.

Key words: peanut, Aspergillus flavus, genetic resources, resistance evaluation, novel resistance resource

Table 1

Classification of infection scores of peanut kernels by A. flavus"

侵染程度分级 Scale 描述 Description
0 花生籽仁表面未见绿色孢子No visible green spores on peanut kernels
1 籽仁表面的黄曲霉菌孢子覆盖率1%—10%,花生籽仁的种皮表面有零星绿色孢子
1%-10% coverage rate of A. flavus spores on the surface of peanut kernels, visible sporadic green spores
2 籽仁表面的黄曲霉菌孢子覆盖率11%—20%,有部分厚实的孢子层
11%-20% coverage rate of A. flavus spores on the surface of peanut kernels, visible thick spore layers
3 籽仁表面的黄曲霉菌孢子覆盖率21%—50%,有厚实的孢子层
21%-50% coverage rate of A. flavus spores on the surface of peanut kernels, visible thick spore layers
4 籽仁表面的黄曲霉菌孢子覆盖率51%—80%,厚实的孢子层连成一片
51%-80% coverage rate of A. flavus spores on the surface of peanut kernels, thick spore layers in patches
5 籽仁表面的黄曲霉菌孢子覆盖率81%—100%,有大面积厚实的孢子层
81%-100% coverage rate of A. flavus spores on the surface of peanut kernels, large area of thick spore layer

Table 2

The evaluation criteria for peanut resistance to A. flavus infection"

侵染指数 Infection index 抗性 Resistance
0.00 免疫Immune
≤15.00 高抗Highly resistant
15.00—30.00 中抗Moderately resistant
30.00—60.00 中感Moderately susceptible
≥60.00 高感Highly susceptible

Fig. 1

Phenotypes of peanut kernels of different materials after inoculation of A. flavus A: Highly resistant control J11; B: Highly susceptible control Zhonghua 12; C: Highly resistant; D: Moderately resistant; E: Moderately susceptible; F: Highly susceptible"

Fig. 2

The frequency distribution of materials with different infection index"

Table 3

The botanical and plant type of 13 peanut accessions with stable resistance to A. flavus infection and phenotypic data of kernels harvested from different “environments”"

编号
Number
侵染指数Infection index 植物学类型
Botanical type
株型
Plant type
CA2020 CS2020 CS2021
C115 20.33 19.00 26.67 普通型var. hypogaea 直立Erect type
C130 23.33 16.00 16.33 普通型var. hypogaea 半蔓生Semi-prostrate type
C172 16.67 16.33 11.00 普通型var. hypogaea 直立Erect type
C174 23.33 24.00 25.50 珍珠豆型var. vulgaris 直立Erect type
C203 12.67 4.33 2.33 普通型var. hypogaea 蔓生Prostrate type
C206 14.00 10.33 6.00 普通型var. hypogaea 直立Erect type
C220 28.00 23.00 22.78 普通型var. hypogaea 直立Erect type
C270 23.67 17.33 26.67 普通型var. hypogaea 直立Erect type
C273 20.33 17.00 5.33 普通型var. hypogaea 半蔓生Semi-prostrate type
C331 14.33 27.00 25.50 普通型var. hypogaea 半蔓生Semi-prostrate type
C344 20.67 18.67 23.00 普通型var. hypogaea 蔓生Prostrate type
C354 12.33 20.33 26.33 普通型var. hypogaea 蔓生Prostrate type
C368 19.33 22.00 15.00 普通型var. hypogaea 半蔓生Semi-prostrate type

Table 4

The phenotypic variations of infection index"

收获地点
Harvest location
极小值
Min
极大值
Max
均值
Mean
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
CA2020 12.33 100.00 64.78 22.27 34.38 -0.42 -0.73
CS2020 4.33 96.67 52.74 20.25 38.39 0.24 -0.70
CS2021 2.33 98.67 53.44 22.28 41.68 0.18 -0.73

Table 5

Analysis of variances (ANOVA) for infection index"

性状
Trait
来源
Source
Ⅲ型平方和
Type sum of squares
自由度
df
均方
Mean squares
F P 遗传力
Heritability
侵染指数Infection index 环境Environment 112954.1490 2 56477.0740 364.2900 0.000*** 0.83
基因型Genotype 1032836.0000 321 3217.5580 20.7540 0.000***
基因型✕环境Genotype✕Environment 402614.2190 642 627.1249 4.0451 0.000***
误差Error 305966.0480 1932 158.3680

Fig. 3

Frequency distribution and correlation analysis of A. flavus infection index under three “environments”"

Fig. 4

Correlations between A. flavus infection index and quality traits of investigated materials at Yuanyang in 2020 II: Infection index; Suc: Sucrose; Pr: Protein; Oa: Oleic acid; La: Linoleic acid; Pa: Palmitic acid; Sa: Stearic acid; Aa: Arachidic acid; Beh: Behenic acid; Ara: Arachidonic acid; Thr: Threonine; Val: Valine; Met: Methionine; Ile: Isoleucine; Leu: Leucine; Phe: Phenylalanine; Lys: Lysine; His: Histidine; Arg: Arginine; *: Significant correlated at P≤0.05 level; **: Significant correlated at P≤0.01 level. The same as below"

Fig. 5

Correlations between A. flavus infection index and quality traits of investigated materials at Shangqiu in 2020"

Fig. 6

Correlations between A. flavus infection index and quality traits of investigated materials at Shangqiu in 2021"

Fig. 7

Boxplot of infection index in different botanical varieties of peanuts Different letters indicate significant difference at P≤0.05. Each type of botanical varieties corresponds to three “environments”, from left to right are CA2020, CS2020 and CS2021. The same as below"

Fig. 8

Boxplot of infection index in different peanuts plant type"

[1]
BUROW M D, SIMPSON C E, STARR J L, PATERSON A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159(2): 823-837.
[2]
SETTALURI V S, KANDALA C V K, PUPPALA N, SUNDARAM J. Peanuts and their nutritional aspects: a review. Food and Nutrition Sciences, 2012, 3(12): 1644-1650.
[3]
HUANG L, HE H Y, CHEN W G, REN X P, CHEN Y N, ZHOU X J, XIA Y L, WANG X L, JIANG X G, LIAO B S, JIANG H F. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2015, 128(6): 1103-1115.
[4]
万书波, 王才斌, 郭峰, 单世华. 山东花生产业现状、问题及“十二五”发展对策. 山东农业科学, 2011, 43(1): 114-118.
WAN S B, WANG C B, GUO F, SHAN S H. Present situation, problems and development countermeasures of peanut industry in Shandong province in the twelfth Five-Year Plan. Shandong Agricultural Sciences, 2011, 43(1): 114-118. (in Chinese)
[5]
CARDWELL K F, HENRY S H. Risk of exposure to and mitigation of effect of aflatoxin on human health: a west African example. Journal of Toxicology: Toxin Reviews, 2004, 23(2/3): 217-247.
[6]
FAROMBI O E. Aflatoxin contamination of foods in developing countries Implications for hepatocellular carcinoma and chemopreventive strategies. African Journal of Biotechnology, 2006, 5: 1-14.
[7]
LIAO B S, ZHUANG W J, TANG R H, ZHANG X Y, SHAN S H, JIANG H F, HUANG J Q. Peanut aflatoxin and genomics research in China: progress and perspectives. Peanut Science, 2009, 36(1): 21-28.
[8]
SONI P, GANGURDE S S, ORTEGA-BELTRAN A, KUMAR R, PARMAR S, SUDINI H K, LEI Y, NI X Z, HUAI D X, FOUNTAIN J C, et al. Functional biology and molecular mechanisms of host- pathogen interactions for aflatoxin contamination in groundnut (Arachis hypogaea L.) and maize (Zea mays L.). Frontiers in Microbiology, 2020, 11: 227.
[9]
DORNER J W. Management and prevention of mycotoxins in peanuts . Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2008, 25(2): 203-208.
[10]
CHULZE S N, PALAZZINI J M, TORRES A M, BARROS G, PONSONE M L, GEISEN R, SCHMIDT-HEYDT M, KÖHL J. Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina. Food Additives & Contaminants: Part A, 2015, 32(4): 471-479.
[11]
BHATNAGAR-MATHUR P, SUNKARA S, BHATNAGAR- PANWAR M, WALIYAR F, SHARMA K K. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Science, 2015, 234: 119-132.
[12]
MEHAN V K, MCDONALD D, RAJAGOPALAN K. Resistance of peanut genotypes to seed infection by Aspergillus flavus in field trials in India1. Peanut Science, 1987, 14(1): 17-21.
[13]
YU B L, HUAI D X, HUANG L, KANG Y P, REN X P, CHEN Y N, ZHOU X J, LUO H Y, LIU N, CHEN W G, LEI Y, PANDEY M K, SUDINI H, VARSHNEY R K, LIAO B S, JIANG H F. Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genetics, 2019, 20(1): 32.
[14]
郭静佩. 花生品种对黄曲霉菌的抗性鉴定和抗侵染机制研究[D]. 新乡: 河南师范大学, 2012.
GUO J P. Identification of resistance of peanut varieties to Aspergillus flavus and study on anti-infection mechanism[D]. Xinxiang: Henan Normal University, 2012. (in Chinese)
[15]
NIGAM S N, WALIYAR F, ARUNA R, REDDY S V, KUMAR P L, CRAUFURD P Q, DIALLO A T, NTARE B R, UPADHYAYA H D. Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Science, 2009, 36(1): 42-49.
[16]
MEHAN V K, MCDONALD D, HARAVU L J, JAYANTHI S. Groundnut Aflatoxin Problem:Review and Literature Database. India: Groundnut Aflatoxin Problem Review & Literature Database Press, 1991.
[17]
WANG H M, LEI Y, WAN L Y, YAN L Y, LV J W, DAI X F, REN X P, GUO W, JIANG H F, LIAO B S. Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus. BMC Plant Biology, 2016, 16: 54.
[18]
WANG H M, LEI Y, YAN L Y, WAN L Y, REN X P, CHEN S L, DAI X F, GUO W, JIANG H F, LIAO B S. Functional genomic analysis of Aspergillus flavus interacting with resistant and susceptible peanut. Toxins, 2016, 8(2): 46.
[19]
NAYAK S N, AGARWAL G, PANDEY M K, SUDINI H K, JAYALE A S, PUROHIT S, DESAI A, WAN L Y, GUO B Z, LIAO B S, VARSHNEY R K. Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in-vitro seed colonization. Scientific Reports, 2017, 7(1): 9659.
[20]
KORANI W A, CHU Y, HOLBROOK C, CLEVENGER J, OZIAS-AKINS P. Genotypic regulation of aflatoxin accumulation but not Aspergillus fungal growth upon post-harvest infection of peanut (Arachis hypogaea L.) seeds. Toxins, 2017, 9(7): 218.
[21]
洪彦彬, 李少雄, 刘海燕, 周桂元, 陈小平, 温世杰, 梁炫强. SSR标记与花生抗黄曲霉性状的关联分析. 分子植物育种, 2009, 7(2): 360-364.
HONG Y B, LI S X, LIU H Y, ZHOU G Y, CHEN X P, WEN S J, LIANG X Q. Correlation analysis of SSR markers and host resistance to Aspergillus flavus infection in peanut (Arachis hypogaea L.). Molecular Plant Breeding, 2009, 7(2): 360-364. (in Chinese)
[22]
王后苗. 花生抗黄曲霉菌产毒机制的研究[D]. 北京: 中国农业科学院, 2016.
WANG H M. Study on the mechanism of peanut resistance to Aspergillus flavus[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[23]
CUI M J, HAN S Y, WANG D, HAIDER M S, GUO J J, ZHAO Q, DU P, SUN Z Q, QI F Y, ZHENG Z, HUANG B Y, DONG W Z, LI P W, ZHANG X Y. Gene co-expression network analysis of the comparative transcriptome identifies hub genes associated with resistance to Aspergillus flavus L. in cultivated peanut (Arachis hypogae a L.). Frontiers in Plant Science, 2022, 13: 899177.
[24]
FU J Y, GU M, YAN H L, ZHANG M H, XIE H L, YUE X F, ZHANG Q, LI P W. Protein biomarker for early diagnosis of microbial toxin contamination: Using Aspergillus flavus as an example. Food Frontiers, 2023, 4(4): 2013-2023.
[25]
柴芃沛. 河南省花生种质黄曲霉抗性鉴定及抗性相关PAL基因家族分析[D]. 郑州: 郑州大学, 2021.
CHAI P P. Identification of Aspergillus flavus resistance of peanut germplasm in Henan Province and analysis of PAL gene family related to resistance[D]. Zhengzhou: Zhengzhou University, 2021. (in Chinese)
[26]
DING Y B, QIU X K, LUO H Y, HUANG L, GUO J B, YU B L, SUDINI H, PANDEY M, KANG Y P, LIU N, ZHOU X J, CHEN W G, CHEN Y N, WANG X, HUAI D X, YAN L Y, LEI Y, JIANG H F, VARSHNEY R, LIU K D, LIAO B S. Comprehensive evaluation of Chinese peanut mini-mini core collection and QTL mapping for aflatoxin resistance. BMC Plant Biology, 2022, 22(1): 207.

doi: 10.1186/s12870-022-03582-0 pmid: 35448951
[27]
王兴军, 赵传志, 李婷婷, 夏晗, 侯蕾, 马德源, 李爱芹, 仇静静, 赵术珍, 李膨呈. 一种快速鉴定花生品种对黄曲霉抗性的方法: 中国, CN106119337A. 2016-11-16.
WANG X J, ZHAO C Z, LI T T, XIA H, HOU L, MA D Y, LI A Q, QIU J J, ZHAO S Z, LI P C. A method for rapid evaluation of peanut varieties resistance to Aspergillus flavus: China, CN106119337A. 2016-11-16. (in Chinese)
[28]
张奇, 李培武, 张兆威, 丁小霞, 周海燕, 李冉, 雷永, 王圣玉. 花生黄曲霉侵染抗性鉴定方法. 中华人民共和国行业标准 NY/T2310-2013. 中华人民共和国农业部. 2013.
ZHANG Q, LI P W, ZHANG Z W, DING X X, ZHOU H Y, LI R, LEI Y, WANG S Y. Evaluation method of peanut resistance to Aspergillus flavus infection. Criterion of the People’s Republic of China NY/T 2310-2013. Ministry of Agriculture and Rural Affairs of People’s Republic of China. 2013. (in Chinese)
[29]
秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生籽仁中蔗糖含量的测定. 中国油料作物学报, 2016, 38(5): 666-671.

doi: 10.7505/j.issn.1007-9084.2016.05.018
QIN L, LIU H, DU P, DONG W Z, HUANG B Y, HAN S Y, ZHANG Z X, QI F Y, ZHANG X Y. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chinese Journal of Oil Crop Sciences, 2016, 38(5): 666-671. (in Chinese)

doi: 10.7505/j.issn.1007-9084.2016.05.018
[30]
MENG L, LI H H, ZHANG L Y, WANG J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3(3): 269-283.
[31]
禹山林. 中国花生品种及其系谱. 上海: 上海科学技术出版社, 2008.
YU S L. Peanut Varieties and Their Pedigrees in China . Shanghai: Shanghai Scientific & Technical Press, 2008. (in Chinese)
[32]
崔梦杰, 柴芃沛, 郭俊佳, 黄冰艳, 董文召, 韩锁义, 张新友. 花生抗黄曲霉菌侵染和产毒机制研究进展. 中国油料作物学报, 2021, 43(4): 562-572.
CUI M J, CHAI P P, GUO J J, HUANG B Y, DONG W Z, HAN S Y, ZHANG X Y. Progress in research on mechanism of resistance to Aspergillus flavus L. infection and aflatoxin production in peanut. Chinese Journal of Oil Crop Sciences, 2021, 43(4): 562-572. (in Chinese)
[33]
KHAN S A, CHEN H, DENG Y, CHEN Y H, ZHANG C, CAI T C, ALI N, MAMADOU G, XIE D Y, GUO B Z, VARSHNEY R K, ZHUANG W J. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea). Theoretical and Applied Genetics, 2020, 133(7): 2239-2257.
[34]
周桂元, 梁炫强, 李一聪, 黎穗临, 李少雄. 抗黄曲霉花生种皮纹理超微结构的研究. 中国油料作物学报, 1999, 21(1): 17-19.
ZHOU G Y, LIANG X Q, LI Y C, LI S L, LI S X. Comparative study on seed coat ultrastructure of resistant and susceptiblevarieties to Aspergillus flavas in peanut. Chinese Journal of Oil Crop Sciences, 1999, 21(1): 17-19. (in Chinese)
[35]
BASHA S M, MUSINGO M N, MOHANTY B, DORNER J W, COLE R J. Factors affecting phytoalexin production in peanut seed. Journal of Plant Physiology, 1990, 136(2): 143-148.
[36]
梁炫强. 花生抗黄曲霉侵染和产毒机制以及抗性遗传规律的研究[D]. 广州: 华南师范大学, 2002.
LIANG X Q. Study on the mechanism of peanut resistance to Aspergillus flavus infection and aflatoxin production and the genetic regulation of resistance[D]. Guangzhou: South China Normal University, 2002. (in Chinese)
[37]
梁炫强, 潘瑞炽, 宾金华. 花生抗黄曲霉侵染机理的研究进展. 中国油料作物学报, 2000, 22(3): 77-80.
LIANG X Q, PAN R C, BIN J H. Research progress of peanut resistance to Aspergillus flavus infection. Chinese Journal of Oil Crop Scieves, 2000, 22(3): 77-80. (in Chinese)
[38]
梁炫强, 潘瑞炽, 周桂元. 花生种子胰蛋白酶抑制剂与抗黄曲霉侵染的关系. 作物学报, 2003, 29(2): 295-299.
LIANG X Q, PAN R C, ZHOU G Y. Relationship of trypsin inhibitor in peanut seed and resistance to Aspergillus flavus invasion. Acta Agronomica Sinica, 2003, 29(2): 295-299. (in Chinese)
[39]
WANG H M, LEI Y, YAN L Y, CHENG K, DAI X F, WAN L Y, GUO W, CHENG L Q, LIAO B S. Deep sequencing analysis of transcriptomes in Aspergillus flavus in response to resveratrol. BMC Microbiology, 2015, 15: 182.
[40]
CUERO R G, OSUJI G O. Aspergillus flavus-induced chitosanase in germinating corn and peanut seeds: A. flavus mechanism for growth dominance over associated fungi and concomitant aflatoxin production. Food Additives and Contaminants, 1995, 12(3): 479-483.
[41]
孙大容. 花生育种学. 北京: 中国农业出版社, 1998.
SUN D R. Peanut Breeding. Beijing: China Agricultural Press, 1998. (in Chinese)
[1] LI XinYu, HOU MingYu, CUI ShunLi, LIU YingRu, LI XiuKun, LIU LiFeng. Construction of Near Infrared Spectrometry Model for Flavonoids Content of Peanut with Red and Black Testa [J]. Scientia Agricultura Sinica, 2025, 58(7): 1284-1295.
[2] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[3] YANG YongQing, HU PengJu, SONG YaHui, JIN XinXin, SU Qiao, WANG Jin. QTL Mapping of Quality Traits for A Peanut Germplasm SW9721-3 with Ultra-High Oil Content [J]. Scientia Agricultura Sinica, 2025, 58(4): 635-646.
[4] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[5] ZHU YanTing, DANG Hao, NIU SiJie, LIN JingYi, YANG Hua, YANG Qiang, ZHANG Chong, CAI TieCheng, ZHUANG WeiJian, CHEN Hua. Screening of Interaction Proteins with AhSAP1 in Peanut Using the Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(21): 4376-4390.
[6] LIU Han, DING Di, WANG JiangTao, ZHENG Bin, WANG XiaoXiao, ZHU ChenXu, LIU Juan, LIU Ling, FU GuoZhan, JIAO NianYuan. Coordinated Effects of Maize Ear Type and Planting Density on Interspecific Competition in Maize-Peanut Intercropping System [J]. Scientia Agricultura Sinica, 2024, 57(19): 3758-3769.
[7] CAO Peng, ZHOU JinHuan, WANG XinLiang, LI ChuXin, LI JiaXIN, JIANG Pei, LIU JinXiang, SONG Zhen. Optimization and Application of Rapid Evaluation System for Citrus Huanglongbing Resistance Mediated by Agrobacterium rhizogenes [J]. Scientia Agricultura Sinica, 2024, 57(16): 3182-3191.
[8] HU JiaYu, GAO BingYang, GAO YiFan, YUAN ShiLun, QI Xin, HUANG YuFang, YAN JunYing, ZHAO YaNan, YE YouLiang. Effects of Magnesium Fertilizer Dosage on Nutrient Absorption and Photosynthetic Characteristics in Peanuts [J]. Scientia Agricultura Sinica, 2024, 57(16): 3220-3233.
[9] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
[10] LIU Hua, ZENG FanPei, WANG Qian, CHEN GuoQuan, MIAO LiJuan, QIN Li, HAN SuoYi, DONG WenZhao, DU Pei, ZHANG XinYou. Development and Identification of an Interspecific Hexaploid Hybrid Between an A. hypogaea Cultivar and a Wild Species Arachis sp. 30119 in Peanut [J]. Scientia Agricultura Sinica, 2024, 57(10): 1870-1881.
[11] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[12] FAN JunQiang, WU JunYan, LIU LiJun, MA Li, YANG Gang, PU YuanYuan, LI XueCai, SUN WanCang. Correlation Between Stomatal Characteristics and Cold Resistance of Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(4): 599-618.
[13] YU TianYi, YANG JiShun, WU ZhengFeng, ZHANG ZhiMeng, SHEN Pu, ZHENG YongMei, LI ShangXia, WU JuXiang, SUN QiQi, WU Yue. Comparative Analysis of the Effects of Different Types of Plastic Film on Peanut Growth and Rhizobacterial Community [J]. Scientia Agricultura Sinica, 2023, 56(24): 4842-4853.
[14] JIANG WenYang, CHEN JunNan, ZAN ZhiMan, WANG JiangTao, ZHENG Bin, LIU Ling, LIU Juan, JIAO NianYuan. Regulation of Single-Seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut [J]. Scientia Agricultura Sinica, 2023, 56(23): 4660-4670.
[15] YANG Sha, LIU KeKe, LIU Ying, GUO Feng, WANG JianGuo, GAO HuaXin, MENG JingJing, ZHANG JiaLei, WAN ShuBo. The Molecular Mechanism of Pod Yield Difference Between Single- Seeding Precision Sowing and Multi-Seeds Sowing of Peanut Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(22): 4386-4402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!