Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (7): 1355-1365.doi: 10.3864/j.issn.0578-1752.2025.07.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River

WANG Bin1(), WU PengHao1, LU JianWei1, REN Tao1, CONG RiHuan1, LU ZhiFeng1, LI XiaoKun1,2()   

  1. 1 College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) in Ministry of Agriculture and Rural Affairs/ Microelement Research Center, Huazhong Agricultural University, Wuhan 430070
    2 Shuangshui and Shuanglü Research Institute, Huazhong Agricultural University, Wuhan 430070
  • Received:2024-06-09 Accepted:2024-09-24 Online:2025-04-08 Published:2025-04-08
  • Contact: LI XiaoKun

Abstract:

【Objective】This study aimed to clarify the water demand characteristics of the rice-oilseed rape rotation system in the middle reaches of the Yangtze River, so as to provide the theoretical support for water allocation in this cropping system.【Method】This study analyzed the water demand of the rice-oilseed rape rotation system in the middle reaches of the Yangtze River using the single crop coefficient method. The supplementary irrigation amount was calculated based on the effective precipitation, and the water surplus/deficit characteristics of the rotation system were identified according to the crop water surplus-deficit index.【Result】The rice-oilseed rape rotation pattern in the Middle Reaches of the Yangtze River required an average annual water demand of 1 172 mm, with rice accounting for approximately 898 mm (76.6%) and oilseed rape accounting for approximately 274 mm (23.4%). Rice required an average annual supplementary irrigation of 643 mm, while oilseed rape required drainage of 54 mm on average per year. Years with moderate, severe, and extreme drought in the rice accounted for 77.5%, 15%, and 2.5%, respectively. Years with moderate, severe, and extreme flooding in the oilseed rape accounted for 10%, 17.5%, and 2.5%, respectively. Special attention should be paid to the field water conditions during the tillering, joint-booting, and heading and filling stages of rice, and flood prevention measures should be taken during the seedling and maturity stages of oilseed rape. The early rice-late rice-oilseed rape rotation pattern required an average annual water demand of 1 161 mm, with early rice accounting for approximately 550 mm, late rice accounting for approximately 401 mm. The total water demand of the two seasons accounts for 82.0% of the total water demand of the whole rotation system. while oilseed rape accounting for approximately 210 mm (18.0%). Early rice required an average annual supplementary irrigation of 322 mm, late rice requires 272 mm, and oilseed rape requires drainage of 59 mm on average per year. Years with moderate, severe, and extreme drought in the rice season account for 40%, 15%, and 1.3%, respectively. Years with moderate, severe, and extreme flooding in the oilseed rape season account for 12.5%, 17.5%, and 17.5%, respectively. The special attention should be paid to the water conditions during the joint-booting and heading and filling stages of late rice, and flood prevention measures should be taken during the seedling and maturity stages of oilseed rape.【Conclusion】In the middle reaches of the Yangtze River, the water demand of rice-oilseed rape rotation mode was 1 172 mm, and the water demand of rice and oilseed rape accounted for 76.6% and 23.4%, respectively. The water demand of early rice-late rice-oilseed rape rotation mode was 1 161 mm, and the water demand of rice and oilseed rape accounted for 82.0% and 18.0%, respectively. Supplementary irrigation was required to prevent water deficits during the rice season, while drainage measures were necessary during the oilseed rape season. In years with extreme precipitation, special attention should be paid to excess water conditions during the seedling stage of rice and the seedling and maturity stages of oilseed rape, and corresponding measures should be taken. In years with extreme drought, special monitoring of water deficits should be conducted during the tillering, joint-booting, heading and filling stages of rice and the flowering stage of oilseed rape, and the timely supplementary irrigation should be provided.

Key words: rice, oilseed rape, crop rotation, water demand, the Middle Reaches of the Yangtze River

Table1

Data sampling points"

省 Province 市 City
湖北省
Hubei
十堰市,宜昌市,襄阳市,荆门市,潜江市,天门市,随州市,仙桃市,咸宁市,武汉市,鄂州市,黄石市
Shiyan, Yichang, Xiangyang, Jingmen, Qianjiang, Tianmen, Suizhou, Xiantao, Xianning, Wuhan, Ezhou, Huangshi
湖南省
Hunan
怀化市,邵阳市,永州市,常德市,娄底市,益阳市,衡阳市,湘潭市,长沙市,郴州市,岳阳市,株洲市
Huaihua, Shaoyang, Yongzhou, Changde, Loudi, Yiyang, Hengyang, Xiangtan, Changsha, Chenzhou, Yueyang, Zhuzhou
江西省
Jiangxi
宜春市,新余市,赣州市,吉安市,南昌市,九江市,鹰潭市,景德镇市,上饶市
Yichun, Xinyu, Ganzhou, Ji'an, Nanchang, Jiujiang, Yingtan, Jingdezhen, Shangrao

Table 2

Crop coefficients for oilseed rape (Kc)"

苗期
Seedling
蕾薹期
Budding
开花期
Flowering
成熟期
Maturity
作物系数
Crop coefficient (Kc)
0.35 0.77 1.14 0.34

Table 3

Levels of crop water surplus/deficit index"

等级
Level
作物水分亏缺指数
Crop water surplus/deficit index (%)
等级
Level
作物水分亏缺指数
Crop water surplus/deficit index (%)
轻涝 Light flooding 45<CWSDI≤55 轻旱 Light drought -55≤CWSDI<-45
中涝 Medium flooding 55<CWSDI≤70 中旱 Medium drought -70≤CWSDI<-55
重涝 Heavy flooding 70<CWSDI≤85 重旱 Heavy drought -85≤CWSDI<-70
特涝 Extreme flooding CWSDI>85 特旱 Extreme drought CWSDI<-85

Fig. 1

Trends in precipitation and effective precipitation inthe Middle Reaches of the Yangtze River"

Fig. 2

Seasonal distribution of effective precipitation and crop water demand in the Middle Reaches of the Yangtze River"

Fig. 3

Crop water demand of two rotation modes in the Middle Reaches of the Yangtze River The horizontal lines inside the box represent the mean values, the upper and lower boundaries represent 75% and 25% of the points, and the upper and lower horizontal lines connected outside the box represent the maximum and minimum values; Numbers in parentheses represent the number of samples. The same as below"

Fig. 4

Crop supplementary irrigation amount of two rotation modes in the Middle Reaches of the Yangtze River"

Fig. 5

Characteristics of annual changes in water surplus/deficit index for two rotation modes in the Middle Reaches of the Yangtze River RG-S, T-S, JB-S, HF-S, YR-S, W-S represent the return-green stage, tillering stage, joint-booting stage, heading and filling stage, yellow-ripen stage, whole stage of rice, respectively; S-S, B-S, F-S, M-S, W-S represent the seedling stage, budding stage, flowering stage, and maturity stage, whole stage of oilseed rape, respectively"

[1]
YOUSAF M, LI J F, LU J W, REN T, CONG R H, FAHAD S, LI X K. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Scientific Reports, 2017, 7: 1270.

doi: 10.1038/s41598-017-01412-0 pmid: 28455510
[2]
李洁静. 太湖地区稻-油轮作及江西红壤双季稻农田生态系统净碳汇效应及收益评估[D]. 南京: 南京农业大学, 2009.
LI J J. Net carbon sink effect and benefit evaluation of rice-tanker farming in Taihu Lake area and red soil double cropping rice farmland ecosystem in Jiangxi Province[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[3]
中华人民共和国水利部. 中国水资源公报-2022. 北京: 中国水利水电出版社, 2023: 1-2.
Ministry of Water Resources of the People's Republic of China. China Water Resources Bulletin-2022. Beijing: China Water & Power Press, 2023: 1-2. (in Chinese)
[4]
金佳鑫, 肖园园, 金君良, 朱求安, 雍斌, 季盈盈. 长江流域极端水文气象事件时空变化特征及其对植被的影响. 水科学进展, 2021, 32(6): 867-876.
JIN J X, XIAO Y Y, JIN J L, ZHU Q A, YONG B, JI Y Y. Spatial-temporal variabilities of the contrasting hydrometeorological extremes and the impacts on vegetation growth over the Yangtze River basin. Advances in Water Science, 2021, 32(6): 867-876. (in Chinese)
[5]
MA M M, QU Y P, LYU J, ZHANG X J, SU Z C, GAO H, YANG X J, CHEN X X, JIANG T L, ZHANG J X, SHEN M Y, WANG Z. The 2022 extreme drought in the Yangtze River Basin: Characteristics, causes and response strategies. River, 2022, 1(2): 162-171.
[6]
FU J, JIAN Y W, WANG X H, LI L, CIAIS P, ZSCHEISCHLER J, WANG Y, TANG Y H, MÜLLER C, WEBBER H, YANG B, WU Y L, WANG Q H, CUI X Q, HUANG W C, LIU Y Q, ZHAO P J, PIAO S L, ZHOU F. Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades. Nature Food, 2023, 4: 416-426.
[7]
YANG J L, YANG P, ZHANG S Q, WANG W Y, CAI W, HU S. Evaluation of water resource carrying capacity in the middle reaches of the Yangtze River Basin using the variable fuzzy-based method. Environmental Science and Pollution Research, 2023, 30(11): 30572-30587.
[8]
ALLEN R G, PEREIRA L S, RAES D, SMITH M. Crop evapotranspiration-guidelines for computing crop water demands- FAO irrigation and drainage paper 56. Food and Agriculture Organization of the United, 1998: 152-223.
[9]
蒋静, 冯绍元, 王永胜, 霍再林. 灌溉水量和水质对土壤水盐分布及春玉米耗水的影响. 中国农业科学, 2010, 43(11): 2270-2279. doi: 10.3864/j.issn.0578-1752.2010.11.010.
JIANG J, FENG S Y, WANG Y S, HUO Z L. Effect on water-salt distribution and evapotranspiration of spring maize under different water quantities and qualities. Scientia Agricultura Sinica, 2010, 43(11): 2270-2279. doi: 10.3864/j.issn.0578-1752.2010.11.010. (in Chinese)
[10]
李梦哲, 张维宏, 张永升, 党红凯, 王磊, 何立谦, 李科江, 李雁鸣, 杜雄. 不同水分管理下全田土下微膜覆盖的冬小麦耗水特性. 中国农业科学, 2013, 46(23): 4893-4904. doi: 10.3864/j.issn.0578-1752.2013.23.005.
LI M Z, ZHANG W H, ZHANG Y S, DANG H K, WANG L, HE L Q, LI K J, LI Y M, DU X. Water consumption characteristics of winter wheat with soil-coated ultrathin plastic-film mulching under different water managements. Scientia Agricultura Sinica, 2013, 46(23): 4893-4904. doi: 10.3864/j.issn.0578-1752.2013.23.005. (in Chinese)
[11]
王卫光, 彭世彰, 孙风朝, 邢万秋, 罗玉峰, 徐俊增. 气候变化下长江中下游水稻灌溉需水量时空变化特征. 水科学进展, 2012, 23(5): 656-664.
WANG W G, PENG S Z, SUN F C, XING W Q, LUO Y F, XU J Z. Spatiotemporal variations of rice irrigation water requirements in the mid-lower reaches of Yangtze River under changing climate. Advances in Water Science, 2012, 23(5): 656-664. (in Chinese)
[12]
李勇, 杨晓光, 叶清, 黄晚华. 1961—2007年长江中下游地区水稻需水量的变化特征. 农业工程学报, 2011, 27(9): 175-183.
LI Y, YANG X G, YE Q, HUANG W H. Variation characteristics of rice water requirement in middle and lower reaches of Yangtze River during 1961-2007. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(9): 175-183. (in Chinese)
[13]
罗玉峰, 彭世彰, 王卫光, 缴锡云, 孙勇, 韩冰. 气候变化对水稻灌溉需水量的影响: 以高邮灌区为例. 武汉大学学报(工学版), 2009, 42(5): 609-613.
LUO Y F, PENG S Z, WANG W G, JIAO X Y, SUN Y, HAN B. Impacts of climate change on irrigation water requirements of rice: A case study of Gaoyou Irrigation District. Engineering Journal of Wuhan University, 2009, 42(5): 609-613. (in Chinese)
[14]
罗万琦, 吕辛未, 吴从林, 杨洋, 崔远来, 罗玉峰. 中国主要稻区水稻灌溉需求变化及其规律分析. 节水灌溉, 2021(12): 1-7.
LUO W Q, X W, WU C L, YANG Y, CUI Y L, LUO Y F. Analysis of rice irrigation demands and its change law in major rice areas of China. Water Saving Irrigation, 2021(12): 1-7. (in Chinese)
[15]
LIU Z H, YANG P, WU W B, YOU L Z. Spatiotemporal changes of cropping structure in China during 1980-2011. Journal of Geographical Sciences, 2018, 28(11): 1659-1671.

doi: 10.1007/s11442-018-1535-4
[16]
郑孟静, 李岩, 贾秀领. 主要农作物多样化轮作制度研究进展及展望. 华北农学报, 2021, 36(S1): 215-221.

doi: 10.7668/hbnxb.20191971
ZHENG M J, LI Y, JIA X L. Research progress and perspective of diversified crop rotation systems in main crops. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 215-221. (in Chinese)

doi: 10.7668/hbnxb.20191971
[17]
魏童彤. 华北地区小麦-玉米轮作月尺度灌溉需水量研究[D]. 泰安: 山东农业大学, 2020.
WEI T T. Study on monthly irrigation water requirement of wheat-corn rotation in North China[D]. Taian: Shandong Agricultural University, 2020. (in Chinese)
[18]
杨晶. 基于AquaCrop模型的华北地区冬小麦和夏玉米灌溉制度研究[D]. 太谷: 山西农业大学, 2022.
YANG J. Study on irrigation schedule of winter wheat and summer maize in North China based on AquaCrop model[D]. Taigu: Shanxi Agricultural University, 2022. (in Chinese)
[19]
陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征. 作物学报, 2023, 49(5): 1327-1338.

doi: 10.3724/SP.J.1006.2023.22033
TAO Y Y, SHENG X W, XU J, SHEN Y, WANG H H, LU C Y, SHEN M X. Characteristics of heat and solar resources allocation and utilization in rice-oilseed rape double cropping systems in the Yangtze River Delta. Acta Agronomica Sinica, 2023, 49(5): 1327-1338. (in Chinese)
[20]
张帆. 冬季作物-双季稻轮作模式资源利用效率及经济效益比较研究. 农业资源与环境学报, 2021, 38(1): 87-95.
ZHANG F. Comparative study on resource utilization efficiency and economic benefits of winter crop-double cropping rice rotation system in Hunan Province. Journal of Agricultural Resources and Environment, 2021, 38(1): 87-95. (in Chinese)
[21]
靳玉婷, 刘运峰, 胡宏祥, 穆静, 高梦瑶, 李先藩, 薛中俊, 龚静静. 持续性秸秆还田配施化肥对油菜-水稻轮作周年氮磷径流损失的影响. 中国农业科学, 2021, 54(9): 1937-1951. doi: 10.3864/j.issn.0578-1752.2021.09.011.
JIN Y T, LIU Y F, HU H X, MU J, GAO M Y, LI X F, XUE Z J, GONG J J. Effects of continuous straw returning with chemical fertilizer on annual runoff loss of nitrogen and phosphorus in rice-rape rotation. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951. doi: 10.3864/j.issn.0578-1752.2021.09.011. (in Chinese)
[22]
王昆昆, 廖世鹏, 任涛, 李小坤, 丛日环, 鲁剑巍. 连续秸秆还田对油菜水稻轮作土壤磷素有效性及作物磷素利用效率的影响. 中国农业科学, 2020, 53(1): 94-104. doi: 10.3864/j.issn.0578-1752.2020.01.009.
WANG K K, LIAO S P, REN T, LI X K, CONG R H, LU J W. Effect of continuous straw returning on soil phosphorus availability and crop phosphorus utilization efficiency of oilseed rape-rice rotation. Scientia Agricultura Sinica, 2020, 53(1): 94-104. doi: 10.3864/j.issn.0578-1752.2020.01.009. (in Chinese)
[23]
YLMAZ M, KALELI A, ÇORAPSZ M F. Machine learning based dynamic super twisting sliding mode controller for increase speed and accuracy of MPPT using real-time data under PSCs. Renewable Energy, 2023, 219: 119470.
[24]
熊剑英, 刘方平. 江西水利普查灌区水稻灌溉用水定额计算方法浅析. 中国水利, 2012(12): 55-56.
XIONG J Y, LIU F P. Analysis on calculation method of rice irrigation water quota in Jiangxi water conservancy census irrigation area. China Water Resources, 2012(12): 55-56. (in Chinese)
[25]
ANNANDALE J, JOVANOVIC N, BENADÉ N, ALLEN R. Software for missing data error analysis of Penman-Monteith reference evapotranspiration. Irrigation Science, 2002, 21(2): 57-67.
[26]
DÖLL P, SIEBERT S. Global modeling of irrigation water requirements. Water Resources Research, 2002, 38(4): 1-8.
[27]
孙爽, 杨晓光, 李克南, 赵锦, 叶清, 解文娟, 董朝阳, 刘欢. 中国冬小麦需水量时空特征分析. 农业工程学报, 2013, 29(15): 72-82.
SUN S, YANG X G, LI K N, ZHAO J, YE Q, XIE W J, DONG C Y, LIU H. Analysis of spatial and temporal characteristics of water requirement of winter wheat in China. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15): 72-82. (in Chinese)
[28]
马世浩, 杨丞, 王贵兵, 张赓, 李小坤. 水稻节水灌溉技术模式研究进展. 节水灌溉, 2021(8): 19-24.
MA S H, YANG C, WANG G B, ZHANG G, LI X K. Research progress of rice water-saving irrigation technology mode. Water Saving Irrigation, 2021(8): 19-24. (in Chinese)
[29]
张鸿, 樊红柱. 川西平原雨养条件下地膜覆盖对水稻产量的影响研究. 西南农业学报, 2011, 24(2): 446-450.
ZHANG H, FAN H Z. Effect of plastic film mulching on rice yield and yield components under rain-fed area in Chuanxi plain. Southwest China Journal of Agricultural Sciences, 2011, 24(2): 446-450. (in Chinese)
[30]
LUO W Q, CHEN M T, KANG Y H, LI W P, LI D, CUI Y L, KHAN S, LUO Y F. Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall. Agricultural Water Management, 2022, 260: 107285.
[31]
陈风波, 丁士军. 农村劳动力非农化与种植模式变迁—以江汉平原稻农水稻种植为例. 南方经济, 2006(9): 43-52.
CHEN F B, DING S J. Non-farming activities and change of cropping pattern—A case study of rice planting in Jianghan Plain. South China Journal of Economics, 2006(9): 43-52. (in Chinese)
[1] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[2] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[3] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[4] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[5] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[6] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[7] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[8] ZHENG Yu, CHEN Yi, TI JinSong, SHI LongFei, XU XiaoBo, LI YuLin, GUO Rui. Evaluation of Carbon Footprint and Economic Benefit of Different Tobacco Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(4): 733-747.
[9] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[10] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[11] YUAN HuiLin, LI YaYing, GU WenJie, XU PeiZhi, LU YuSheng, SUN LiLi, ZHOU ChangMin, LI WanLing, QIU RongLiang. Characterization and Correlation Analysis of Soil Dissolved Organic Matter and Microbial Communities Under Long-Term Application of Fresh and Composted Manure [J]. Scientia Agricultura Sinica, 2025, 58(2): 307-325.
[12] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[13] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[14] ZHANG SuXin, SHEN Ge, YU QiangYi, WU WenBin. Remote Sensing Detection of Cropping System and Its Spatial-Temporal Pattern in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1469-1489.
[15] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!