Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (1): 1-9.doi: 10.3864/j.issn.0578-1752.2025.01.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Research Progress on Seed Shattering of Rice

LÜ ShuWei(), TANG Xuan*(), LI Chen*()   

  1. Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Rice Science and Technology/ Guangdong Rice Engineering Laboratory, Guangzhou 510640
  • Received:2024-05-16 Accepted:2024-06-07 Online:2025-01-01 Published:2025-01-07
  • Contact: TANG Xuan, LI Chen

Abstract:

Seed shattering is a major factor limiting rice production, and breeding new rice varieties with moderate seed shattering is a key challenge faced by rice breeders worldwide. Rice is the most important cereal crop in China, plays a vital role for national food security. Seed shattering is one of the most important traits during rice domestication, and the abscission zone is the important region to control seed shattering. Compared with wild rice, cultivar has eliminated the seed shattering with partially developed abscission layer. Seed shattering not only has a direct impact on the yield, but also affects the way of its mechanical harvest. In order to breed rice varieties with moderate seed shattering in agricultural production, it is necessary to mine and utilize important seed shattering genes and introduce them into excellent rice varieties for genetic improvement, so as to breed new rice varieties suitable for mechanical harvesting with moderate seed shattering. Several seed shattering genes had been identified by map-based cloning, such as SH4/SHA1, qSH1, OsSh1/ObSH3, and their functional mechanisms had been analyzed. At the same time, new rice materials with moderate seed shattering have been successfully developed through CRISPR/Cas9 gene editing technology, gamma ray mutagenesis technology and gene introduction methods. Seed shattering has an important effect on grain yield and rice harvesting methods, in this paper, we reviewed the methods, physiologic basis, the identification of seed shattering genes and genetic mechanism of seed shattering in rice. At the same time, it is proposed that by using the important genes in excellent rice germplasm resources, could provide reference for exploring the mechanism of rice seed shattering, and breed new rice varieties suitable for mechanical harvesting with moderate seed shattering.

Key words: rice, seed shattering, gene cloning, genetic mechanism, yield

Fig. 1

The schematic of rice abscission layer A1-A2: Confocal microscopy images of abscission layer; B1-B2: SEM photographs of abscission layer (the side of rachila); C1-C2: SEM photographs of abscission layer (the side of pedicel); A1-C1: Complete abscission layer; A2-C2: Incomplete abscission layer; PS: Palea side; LS: Lemma side; bar=50 μm"

Table 1

The cloned genes of seed shattering"

基因
Gene
基因号
Genomic Locus
编码蛋白
Functional protein
染色体
Chr.
参考文献
References
SHA1/SH4/GL4 LOC_Os04g57530 Myb3转录因子Myb3 transcription factor 4 [9,18,35]
qSH1 LOC_Os01g62920 BEL1型同源异型蛋白BEL1-type homeobox 1 [19]
CPL1/sh-h LOC_Os07g10690 CTD磷酸化酶CTD phosphatase 7 [30,36]
SHAT1 LOC_Os04g55560 AP2转录因子AP2 transcription factor 4 [37]
OsSh1/ObSH3 LOC_Os03g44710 YABBY转录因子YABBY transcription factor 3 [23,38]
SH5 LOC_Os05g38120 BEL1型同源异型蛋白BEL1-type homeobox 5 [39]
OSH15 LOC_Os07g03770 KNOX家族Ⅰ类同源异型蛋白KNOX family class 1 homeobox 7 [40]
SNB/SSH1 LOC_Os07g13170 AP2转录因子AP2 transcription factor 7 [41]
OgSH11 XM_052280091 Myb转录因子Myb transcription factor 11 [42]
NPC1 LOC_Os03g61130 磷脂酶C1 Phospholipase C1 3 [43]
GRF4/PT2 LOC_Os02g47280 生长调控因子Growth-regulating factor 2 [44]
LG1 LOC_Os04g56170 SQUAMOSA启动子结合蛋白SQUAMOSA promoter-binding protein 4 [45]

Fig. 2

The genetic regulation network of rice seed shattering"

[2]
KHUSH K K, WATERS D. Lessons from the PROVE-IT trial. Higher dose of potent statin better for high-risk patients. Cleveland Clinic Journal of Medicine, 2004, 71(8): 609-616.

pmid: 15449756
[3]
胡培松, 翟虎渠, 万建民. 中国水稻生产新特点与稻米品质改良. 中国农业科技导报, 2002, 4(4): 33-39.
HU P S, ZHAI H Q, WAN J M. New characteristics of rice production and quality improvement in China. Review of China Agricultural Science and Technology, 2002, 4(4): 33-39. (in Chinese)
[4]
DOEBLEY J F, GAUT B S, SMITH B D. The molecular genetics of crop domestication. Cell, 2006, 127(7): 1309-1321.

doi: 10.1016/j.cell.2006.12.006 pmid: 17190597
[5]
ZHANG J P, JIANG L P, YU L P, HUAN X J, ZHOU L P, WANG C S, JIN J H, ZUO X X, WU N Q, ZHAO Z J, SUN H L, YU Z Y, ZHANG G P, ZHU J P, WU Z L, DONG Y J, FAN B S, SHEN C M, LU H Y. Rice’s trajectory from wild to domesticated in East Asia. Science, 2024, 384(6698): 901-906.
[6]
PURUGGANAN M D, FULLER D Q. The nature of selection during plant domestication. Nature, 2009, 457(7231): 843-848.
[7]
ESTORNELL L H, AGUSTÍ J, MERELO P, TALÓN M, TADEO F R. Elucidating mechanisms underlying organ abscission. Plant Science, 2013, 199/200: 48-60.
[8]
ISHIKAWA R, NISHIMURA A, HTUN T M, NISHIOKA R, OKA Y, TSUJIMURA Y, INOUE C, ISHII T. Estimation of loci involved in non-shattering of seeds in early rice domestication. Genetica, 2017, 145(2): 201-207.

doi: 10.1007/s10709-017-9958-x pmid: 28238052
[9]
LIN Z W, GRIFFITH M E, LI X R, ZHU Z F, TAN L B, FU Y C, ZHANG W X, WANG X K, XIE D X, SUN C Q. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226(1): 11-20.
[10]
LI F, NUMA H, HARA N, SENTOKU N, ISHII T, FUKUTA Y, NISHIMURA N, KATO H. Identification of a locus for seed shattering in rice (Oryza sativa L.)by combining bulked segregant analysis with whole-genome sequencing. Molecular Breeding, 2019, 39(3): 36.
[11]
MAITY A, LAMICHANEY A, JOSHI D C, BAJWA A, SUBRAMANIAN N, WALSH M, BAGAVATHIANNAN M. Seed shattering: A trait of evolutionary importance in plants. Frontiers in Plant Science, 2021, 12: 657773.
[12]
蒋丽芸. 水稻落粒性调控基因SSH1的克隆与功能分析[D]. 北京: 中国农业大学, 2019.
JIANG L Y. Cloning and functional analysis of the SSH1 gene regulating seed shattering in rice[D]. Beijing: China Agricultural University, 2019. (in Chinese)
[13]
吕树伟. 非洲野生稻落粒基因SH3的克隆及其分子演化[D]. 北京: 中国农业大学, 2018.
S W. Cloning and molecular evolution of ObSH3 controlling seed shattering in African wild rice (Oryza barthii A.Chev.)[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[14]
沈圣泉, 庄杰云, 王淑珍, 包劲松, 郑康乐, 舒庆尧, 夏英武. 籼稻落粒性QTL定位与环境互作效应检测. 分子植物育种, 2004, 2(5): 627-632.
SHEN S Q, ZHUANG J Y, WANG S Z, BAO J S, ZHENG K L, SHU Q Y, XIA Y W. Mapping QTLs for rice shattering trait and analysis major effects. Molecular Plant Breeding, 2004, 2(5): 627-632. (in Chinese)
[15]
王穆穆, 何艳芳, 郑永胜, 王晖, 王丽媛, 王东建, 张晗, 李汝玉. 水稻落粒基因SH8的精细定位与克隆. 作物学报, 2022, 48(8): 1948-1956.

doi: 10.3724/SP.J.1006.2022.12049
WANG M M, HE Y F, ZHENG Y S, WANG H, WANG L Y, WANG D J, ZHANG H, LI R Y. Fine mapping and cloning of a seed shattering gene SH8 in rice (Oryza sativa L.). Acta Agronomica Sinica, 2022, 48(8): 1948-1956. (in Chinese)
[16]
TAYLOR J E, WHITELAW C A. Signals in abscission. New Phytologist, 2001, 151(2): 323-340.
[17]
TAGHIZADEH M S, CRAWFORD S, NICOLAS M E, COUSENS R D. Water deficit changes the anatomy of the fruit abscission zone in Raphanus raphanistrum (Brassicaceae). Australian Journal of Botany, 2009, 57(8): 708-714.
[18]
LI C B, ZHOU A L, SANG T. Rice domestication by reducing shattering. Science, 2006, 311(5769): 1936-1939.

doi: 10.1126/science.1123604 pmid: 16527928
[19]
KONISHI S, IZAWA T, LIN S Y, EBANA K, FUKUTA Y, SASAKI T, YANO M. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312(5778): 1392-1396.

doi: 10.1126/science.1126410 pmid: 16614172
[20]
ZEE S Y, VERGARA B S, CHU T M. Abscission layer in the rice pedicel. International Rice Research Notes, 1979, 4: 5-6.
[21]
SIMONS K J, FELLERS J P, TRICK H N, ZHANG Z C, TAI Y S, GILL B S, FARIS J D. Molecular characterization of the major wheat domestication gene Q. Genetics, 2006, 172(1): 547-555.
[25]
MAMIDI S, HEALEY A, HUANG P, GRIMWOOD J, JENKINS J, BARRY K, SREEDASYAM A, SHU S Q, LOVELL J T, FELDMAN M, WU J X, YU Y Q, CHEN C, JOHNSON J, SAKAKIBARA H, KIBA T, SAKURAI T, TAVARES R, NUSINOW D A, BAXTER I, SCHMUTZ J, BRUTNELL T P, KELLOGG E A. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nature Biotechnology, 2020, 38(10): 1203-1210.
[26]
李仕贵, 马玉清, 何平, 黎汉云, 陈英, 周开达, 朱立煌. 水稻籼粳杂交落粒性的遗传分析和基因定位. 西南农业学报, 1999, 12(S2): 77-80.
LI S G, MA Y Q, HE P, LI H Y, CHEN Y, ZHOU K D, ZHU L H. Genetic analysis and mapping the shattering habit in rice (Oryza sativa L.). Southwest China Journal Agriculture Science, 1999, 12(S2): 77-80. (in Chinese)
[27]
XIONG L Z, LIU K D, DAI X K, XU C G, ZHANG Q. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theoretical and Applied Genetics, 1999, 98(2): 243-251.
[28]
THOMSON M J, TAI T H, MCCLUNG A M, LAI X H, HINGA M E, LOBOS K B, XU Y, MARTINEZ C P, MCCOUCH S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theoretical and Applied Genetics, 2003, 107(3): 479-493.
[29]
GU X Y, KIANIAN S F, HARELAND G A, HOFFER B L, FOLEY M E. Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theoretical and Applied Genetics, 2005, 110(6): 1108-1118.
[30]
JI H S, CHU S H, JIANG W Z, CHO Y I, HAHN J H, EUN M Y, MCCOUCH S R, KOH H J. Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics, 2006, 173(2): 995-1005.
[31]
SUBUDHI P K, SINGH P K, DELEON T, PARCO A, KARAN R, BIRADAR H, COHN M A, SASAKI T. Mapping of seed shattering loci provides insights into origin of weedy rice and rice domestication. The Journal of Heredity, 2014, 105(2): 276-287.
[32]
HTUN T M, INOUE C, CHHOURN O, ISHII T, ISHIKAWA R. Effect of quantitative trait loci for seed shattering on abscission layer formation in Asian wild rice Oryza rufipogon. Breeding Science, 2014, 64(3): 199-205.
[33]
CHENG J P, HE Y Q, ZHAN C F, YANG B, XU E S, ZHANG H S, WANG Z F. Identification and characterization of quantitative trait loci for shattering in rice landrace Jiucaiqing from Taihu Lake Valley, China. The Plant Genome, 2016, 9(3): 1-9.
[34]
LEE G H, KANG I K, KIM K M. Mapping of novel QTL regulating grain shattering using doubled haploid population in rice (Oryza sativa L.). International Journal of Genomics, 2016, 2016: 2128010.
[35]
WU W G, LIU X Y, WANG M H, MEYER R S, LUO X J, NDJIONDJOP M N, TAN L B, ZHANG J W, WU J Z, CAI H W, SUN C Q, WANG X K, WING R A, ZHU Z F. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants, 2017, 3: 17064.

doi: 10.1038/nplants.2017.64 pmid: 28481332
[36]
JI H, KIM S R, KIM Y H, KIM H, EUN M Y, JIN I D, CHA Y S, YUN D W, AHN B O, LEE M C, LEE G S, YOON U H, LEE J S, LEE Y H, SUH S C, JIANG W Z, YANG J I, JIN P, MCCOUCH S R, AN G, KOH H J. Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. The Plant Journal, 2010, 61(1): 96-106.
[37]
ZHOU Y, LU D F, LI C Y, LUO J H, ZHU B F, ZHU J J, SHANGGUAN Y Y, WANG Z X, SANG T, ZHOU B, HAN B. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. The Plant Cell, 2012, 24(3): 1034-1048.
[38]
LV S W, WU W G, WANG M H, MEYER R S, NDJIONDJOP M N, TAN L B, ZHOU H Y, ZHANG J W, FU Y C, CAI H W, SUN C Q, WING R A, ZHU Z F. Genetic control of seed shattering during African rice domestication. Nature Plants, 2018, 4(6): 331-337.

doi: 10.1038/s41477-018-0164-3 pmid: 29872176
[39]
YOON J, CHO L H, KIM S L, CHOI H, KOH H J, AN G. The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. The Plant Journal, 2014, 79(5): 717-728.
[40]
NAGASAKI H, SAKAMOTO T, SATO Y, MATSUOKA M. Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. The Plant Cell, 2001, 13(9): 2085-2098.
[41]
JIANG L Y, MA X, ZHAO S S, TANG Y Y, LIU F X, GU P, FU Y C, ZHU Z F, CAI H W, SUN C Q, TAN L B. The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. The Plant Cell, 2019, 31(1): 17-36.

doi: 10.1105/tpc.18.00304 pmid: 30626621
[42]
NING J, HE W, WU L H, CHANG L Q, HU M, FU Y C, LIU F X, SUN H Y, GU P, NDJIONDJOP M N, SUN C Q, ZHU Z F. The MYB transcription factor Seed Shattering 11 controls seed shattering by repressing lignin synthesis in African rice. Plant Biotechnology Journal, 2023, 21(5): 931-942.
[43]
CAO H S, ZHUO L, SU Y, SUN L X, WANG X M. Non-specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. The Plant Journal, 2016, 86(4): 308-321.

doi: 10.1111/tpj.13165 pmid: 26991499
[44]
SUN P Y, ZHANG W H, WANG Y H, HE Q, SHU F, LIU H, WANG J, WANG J M, YUAN L P, DENG H F. OsGRF4 controls grain shape, panicle length and seed shattering in rice. Journal of Integrative Plant Biology, 2016, 58(10): 836-847.
[45]
ISHII T, NUMAGUCHI K, MIURA K, YOSHIDA K, THANH P T, HTUN T M, YAMASAKI M, KOMEDA N, MATSUMOTO T, TERAUCHI R, ISHIKAWA R, ASHIKARI M. OsLG1 regulates a closed panicle trait in domesticated rice. Nature Genetics, 2013, 45: 462-465.
[46]
WIN K T, YAMAGATA Y, DOI K, UYAMA K, NAGAI Y, TODA Y, KANI T, ASHIKARI M, YASUI H, YOSHIMURA A. A single base change explains the independent origin of and selection for the nonshattering gene in African rice domestication. The New Phytologist, 2017, 213(4): 1925-1935.
[47]
YOON J, CHO L H, ANTT H W, KOH H J, AN G. KNOX protein OSH15 induces grain shattering by repressing lignin biosynthesis genes. Plant Physiology, 2017, 174(1): 312-325.

doi: 10.1104/pp.17.00298 pmid: 28351912
[48]
LIU H J, YAN J B. Rice domestication: An imperfect African solution. Nature Plants, 2017, 3: 17083.

doi: 10.1038/nplants.2017.83 pmid: 28585552
[49]
LI L F, OLSEN K M. To have and to hold: Selection for seed and fruit retention during crop domestication. Current Topics in Developmental Biology, 2016, 119: 63-109.

doi: 10.1016/bs.ctdb.2016.02.002 pmid: 27282024
[50]
NAKANO T, ITO Y. Molecular mechanisms controlling plant organ abscission. Plant Biotechnology, 2013, 30(3), 209-216.
[51]
叶兴锋, 徐林峰, 施聪, 童川, 沈圣泉. 中等落粒性的改良型超级稻‘协青早A/M9308’应用价值评价. 中国农学通报, 2012, 28(21): 131-134.
YE X F, XU L F, SHI C, TONG C, SHEN S Q. Application evaluation on improved type of the super rice ‘Xieqingzao A/M9308’with medium shattering habit. Chinese Agricultural Science Bulletin. 2012, 28(21): 131-134. (in Chinese)
[52]
BELHAJ K, CHAPARRO-GARCIA A, KAMOUN S, PATRON N J, NEKRASOV V. Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 2015, 32: 76-84.

doi: S0958-1669(14)00194-3 pmid: 25437637
[53]
ROMERO F M, GATICA-ARIAS A. CRISPR/Cas9: Development and application in rice breeding. Rice Science, 2019, 26(5): 265-281.

doi: 10.1016/j.rsci.2019.08.001
[54]
FIAZ S, AHMAD S, NOOR M A, WANG X K, YOUNAS A, RIAZ A, ALI F. Applications of the CRISPR/Cas9 system for rice grain quality improvement: perspectives and opportunities. International Journal of Molecular Sciences, 2019, 20(4): 888.
[24]
WANG H, NUSSBAUM-WAGLER T, LI B L, ZHAO Q, VIGOUROUX Y, FALLER M, BOMBLIES K, LUKENS L, DOEBLEY J F. The origin of the naked grains of maize. Nature, 2005, 436(7051): 714-719.
[23]
LIN Z W, LI X R, SHANNON L M, YEH C T, WANG M L, BAI G H, PENG Z, LI J R, TRICK H N, CLEMENTE T E, DOEBLEY J, SCHNABLE P S, TUINSTRA M R, TESSO T T, WHITE F, YU J M. Parallel domestication of the Shattering1 genes in cereals. Nature Genetics, 2012, 44(6): 720-724.
[22]
POURKHEIRANDISH M, HENSEL G, KILIAN B, SENTHIL N, CHEN G X, SAMERI M, AZHAGUVEL P, SAKUMA S, DHANAGOND S, SHARMA R, MASCHER M, HIMMELBACH A, GOTTWALD S, NAIR S K, TAGIRI A, YUKUHIRO F, NAGAMURA Y, KANAMORI H, MATSUMOTO T, WILLCOX G, MIDDLETON C P, WICKER T, WALTHER A, WAUGH R, FINCHER G B, STEIN N, KUMLEHN J, SATO K, KOMATSUDA T. Evolution of the grain dispersal system in barley. Cell, 2015, 162(3): 527-539.

doi: 10.1016/j.cell.2015.07.002 pmid: 26232223
[1]
SASAKI T, BURR B. International Rice Genome Sequencing Project: The effort to completely sequence the rice genome. Current Opinion in Plant Biology, 2000, 3(2): 138-141.

doi: 10.1016/s1369-5266(99)00047-3 pmid: 10712951
[55]
SHENG X B, SUN Z Z, WANG X F, TAN Y N, YU D, YUAN G L, YUAN D Y, DUAN M J. Improvement of the rice “Easy-to-Shatter” trait via CRISPR/Cas9-mediated Mutagenesis of the qSH1 gene. Frontiers in Plant Science, 2020, 11: 619.
[56]
区树俊, 汪鸿儒, 储成才. 亚洲栽培稻主要驯化性状研究进展. 遗传, 2012, 34(11): 1379-1389.
OU S J, WANG H R, CHU C C. Major domestication traits in Asian rice. Hereditas, 2012, 34(11): 1379-1389. (in Chinese)
[57]
SONG J M, XIE W Z, WANG S, GUO Y X, KOO D H, KUDRNA D, GONG C B, HUANG Y C, FENG J W, ZHANG W H, ZHOU Y, ZUCCOLO A, LONG E, LEE S, TALAG J, ZHOU R, ZHU X T, YUAN D J, UDALL J, XIE W B, WING R A, ZHANG Q F, POLAND J, ZHANG J W, CHEN L L. Two gap-free reference genomes and a global view of the centromere architecture in rice. Molecular Plant, 2021, 14(10): 1757-1767.
[58]
HUANG X H, KURATA N, WEI X H, WANG Z X, WANG A H, ZHAO Q, ZHAO Y, LIU K Y, LU H Y, LI W J, GUO Y L, LU Y Q, ZHOU C C, FAN D L, WENG Q J, ZHU C R, HUANG T, ZHANG L, WANG Y C, FENG L, FURUUMI H, KUBO T, MIYABAYASHI T, YUAN X P, XU Q, DONG G J, ZHAN Q L, LI C Y, FUJIYAMA A, TOYODA A, LU T T, FENG Q, QIAN Q, LI J Y, HAN B. A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012, 490(7421): 497-501.
[59]
LI X T, XIE Y Y, ZHU Q L, LIU Y G. Targeted genome editing in genes and cis-regulatory regions improves qualitative and quantitative traits in crops. Molecular Plant, 2017, 10(11): 1368-1370.

doi: S1674-2052(17)30308-8 pmid: 29079543
[60]
FULLER D Q. Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the Old World. Annals of Botany, 2007, 100(5): 903-924.

doi: 10.1093/aob/mcm048 pmid: 17495986
[61]
RENDÓN-ANAYA M, HERRERA-ESTRELLA A. The advantage of parallel selection of domestication genes to accelerate crop improvement. Genome Biology, 2018, 19(1): 147.
[62]
ZHANG L B, ZHU Q, WU Z Q, ROSS-IBARRA J, GAUT B S, GE S, SANG T. Selection on grain shattering genes and rates of rice domestication. New Phytologist, 2009, 184(3): 708-720.
[1] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[2] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[3] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[4] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[5] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[6] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[7] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[8] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[9] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[10] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[11] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[12] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[13] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[14] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[15] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!