Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (18): 3684-3694.doi: 10.3864/j.issn.0578-1752.2024.18.013

• HORTICULTURE • Previous Articles     Next Articles

Genetic Analysis of Leaf Wrinkling Traits in Non-Heading Chinese Cabbage

YE XueLian1(), CHEN JingWen1, YAO XiangTan2, QUAN XinHua2, HUANG Li1()   

  1. 1 Vegetable Research Institute, Zhejiang University, Hangzhou 310058
    2 Jiaxing Academy of Agricultural Sciences, Jiaxing 314016, Zhejiang
  • Online:2024-09-16 Published:2024-09-29
  • Contact: HUANG Li

Abstract:

【Background】 Non-heading Chinese cabbage (Brassica campestris L. ssp. chinensis (L.) Makino), a member of the Cruciferae family, is a leafy vegetable widely cultivated in the southern regions of China. Among leaf traits, the leaf wrinkling is a significant agronomic characteristic of non-heading Chinese cabbage. This trait not only determines the visual marketability of non-heading Chinese cabbage, but also significantly affects its yield, nutritional quality, stress resistance, and photosynthetic activity of the leaves. However, there is currently no clear understanding of the genetic and formation mechanisms of this trait, which limits efficient genetic improvement of this trait. 【Objective】 The objective of this study was to quantitatively describe the leaf wrinkling trait of non-heading Chinese cabbage, to explore its genetic and formation mechanisms, and to enhance the efficient selection and regulation of this trait, so as to consequently guide breeding efforts for non-heading Chinese cabbage. 【Method】 Six distinct F2 populations were constructed using Tacai (Brassica campestris ssp. chinensis var. rosularis Tsen et Lee), which with conspicuous leaf wrinkling in non-heading Chinese cabbage as one of the parents. The leaf wrinkling trait of F2 plants was quantified during the rosette stage using the indicator “number of bulges in the maximum leaf”. A genetic segregation analysis method for quantitative traits, incorporating both major gene and polygenic inheritance, was employed to investigate the genetic principles governing this trait. 【Result】 Significant variation was found among individual plants in the F2 population regarding leaf wrinkling traits, manifesting as continuous changes. The distribution curve demonstrated a normal or skewed normal distribution, suggesting that leaf wrinkling in non-heading Chinese cabbage was a quantitative trait influenced by multiple genes. Genetic analysis of these traits was then conducted utilizing a major gene + polygene genetic model calculation method. The result showed that the optimal genetic model for leaf wrinkling in non-heading Chinese cabbage was the 2MG-ADI gene model, with a major gene heritability of 99.08%. The first major gene’s dominant effected mitigates wrinkling, while the second major gene’s dominant effect intensified it. Both major genes exhibited additive effects, deepening wrinkling. Additive × additive and additive × dominant interaction effects reduced wrinkling, whereas dominant × additive and dominant × dominant interaction effects enhanced the traits. 【Conclusion】 The leaf wrinkling trait in non-heading Chinese cabbage was a quantitative characteristic governed by two pairs of major genes, with these major genes predominantly influencing its regulation.

Key words: non-heading Chinese cabbage, leaf wrinkling trait, quantitative trait, Tacai, main gene plus polygene genetic analysis

Fig. 1

The region for measuring number of bulges in maximum leaf"

Fig. 2

Construction of hybrid population The representative plants of F2 separating population showed increased leaf wrinkling from top to bottom"

Table 1

Numerical statistics of the number of bulges in the maximum leaf in the F2 populations"

杂交组合
Hybrid combinations
F2群体单株数
Numbers of F2 populations
均值±标准差
Mean±SD
变异系数
CV (%)
‘金黄乌’ב芜菁120’ Jinhuangwu×Wujing120 1121 4.92±1.731 35.18
‘金黄乌’ב芜菁151’ Jinhuangwu×Wujing151 1134 5.18±2.585 49.90
‘矮脚黄’ב花心乌’ Aijiaohuang×Huaxinwu 1021 5.77±3.388 58.72
‘花心乌’ב矮脚黄’ Huaxinwu×Aijiaohuang 1062 3.45±2.268 65.74
‘黑心乌’ב苏州青’ Heixinwu×Suzhouqing 1008 5.69±3.936 69.17
‘苏州青’ב黑心乌’ Suzhouqing×Heixinwu 1148 5.19±2.729 52.60

Fig. 3

Frequency distribution of number of bulges in the maximum leaf in the F2 population"

Table 2

Maximum likelihood and AIC values of the number of bulges in the maximum leaf"

杂交组合 Hybrid combination 模型 Model 极大似然值 MLV AIC值 AIC value
‘金黄乌’ב芜菁120’
Jinhuangwu×Wujing120
2MG-AD 6303.319 -12594.6
2MG-EA -2053.34 4112.688
1MG-AD -2103.17 4214.339
‘金黄乌’ב芜菁151’
Jinhuangwu×Wujing151
2MG-AD 14253.29 -28494.6
2MG-ADI -2303.62 4627.247
1MG-A -2589.18 5184.353
‘矮脚黄’ב花心乌’
Aijiaohuang×Huaxinwu
2MG-ADI -2392.78 4805.549
1MG-AD -2454.5 4916.997
1MG-A -2482.27 4970.536
‘花心乌’ב矮脚黄’
Huaxinwu×Aijiaohuang
2MG-A 3830.203 -7652.41
1MG-AD -2188.26 4384.519
1MG-A -2194.83 4395.666
‘黑心乌’ב苏州青’
Heixinwu×Suzhouqing
2MG-ADI -2445.67 4911.346
1MG-AD -2477.32 4962.634
1MG-NCD -2529.39 5066.782
‘苏州青’ב黑心乌’
Suzhouqing×Heixinwu
2MG-AD 2462.856 -4913.71
1MG-AD -2616.67 5241.349
2MG-ADI -2634.3 5288.6

Table 3

Test of candidate model suitability"

杂交组合
Hybrid combination
模型
Model
均匀性检验
U12
均匀性检验
U22
均匀性检验
U32
Smirnov检验
nW2
Kolmogorov检验
Dn
‘金黄乌’ב芜菁120’
Jinhuangwu×Wujing120
2MG-AD 0.3177 (0.5729) 1.796 (0.1801) 10.0979 (0.0015)** 5.2314 (0.0025)** 0.1668 (0)**
2MG-EA 0.0591 (0.8080) 0.0057 (0.9401) 0.4103 (0.5216) 3.5641 (0.0004)** 0.1203 (0) **
1MG-AD 0.0435 (0.8348) 0.0656 (0.7980) 0.0467 (0.8290) 3.5396 (0.0003)** 0.1206 (0)**
‘金黄乌’ב芜菁151’
Jinhuangwu×Wujing151
2MG-AD 0.1133 (0.7364) 1.6842 (0.1944) 15.11 (0.0001)** 2.3344 (0)** 0.1112 (0)**
2MG-ADI 0.0162 (0.8986) 0.0787 (0.7790) 0.3958 (0.5293) 2.111 (0)** 0.1211 (0)**
1MG-A 0.0239 (0.8770) 0.0534 (0.8172) 0.1058 (0.7449) 1.4513 (0)** 0.0823 (0)**
‘矮脚黄’ב花心乌’
Aijiaohuang×Huaxinwu
2MG-ADI 0.0002 (0.9988) 0.0276 (0.8681) 0.3722 (0.5419) 1.1246 (0.0013)** 0.0899 (0)**
1MG-AD 0.001 (0.9750) 0.0341 (0.8534) 0.3823 (0.5365) 1.3171 (0)** 0.0891 (0)**
1MG-A 0.3326 (0.5641) 0.3041 (0.5814) 0.0008 (0.9773) 1.7606 (0)** 0.1189 (0)**
‘花心乌’ב矮脚黄’
Huaxinwu×Aijiaohuang
2MG-A 0.0507 (0.8220) 0.056 (0.8129) 3.3053 (0.0690) 3.3465 (0)** 0.1382 (0)**
1MG-AD 0.1057 (0.7451) 0.1716 (0.6787) 0.1581 (0.6907) 2.583 (0)** 0.1105 (0)**
1MG-A 0.002 (0.9647) 0.0796 (0.7778) 0.9151 (0.3385) 2.7008 (0)** 0.1143 (0)**
‘黑心乌’ב苏州青’
Heixinwu×Suzhouqing
2MG-ADI 0.0014 (0.9702) 0.0266 (0.8705) 0.2571 (0.6120) 0.8544 (0.0054)** 0.0758 (0)**
1MG-AD 0.004 (0.9494) 0.0629 (0.8018) 0.5738 (0.4483) 0.8886 (0.0045)** 0.0806 (0)**
1MG-NCD 0.0041 (0.9491) 0.2829 (0.5948) 5.6408 (0.0176)* 1.2933 (0.0005)** 0.0958 (0)**
‘苏州青’ב黑心乌’
Suzhouqing×Heixinwu
2MG-AD 0.0956 (0.7572) 0.0001 (0.9940) 1.364 (0.2431) 1.9938 (0)** 0.0968 (0)**
1MG-AD 0.0669 (0.7959) 0.0248 (0.8749) 0.1385 (0.7100) 2.0132 (0)** 0.0957 (0)**
2MG-ADI 0.0112 (0.9158) 0.0128 (0.9098) 0.0019 (0.9651) 1.8842 (0)** 0.0863 (0)**

Table 4

Estimation of genetic parameters of leaf wrinkling trait of non-heading Chinese cabbage"

杂交组合
Hybrid combination
da db ha hb i jab jba l 主基因遗传率
Heritability (Major-Gene) (%)
‘金黄乌’ב芜菁151’
Jinhuangwu×Wujing151
3.4998 0.9998 -1.2495 0.5001 -0.5002 -0.0005 2.2495 1.2732 99.0796
[1]
CHENG F, WU J, CAI C C, FU L X, LIANG J L, BORM T, ZHUANG M, ZHANG Y Y, ZHANG F L, BONNEMA G, WANG X W. Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection. Scientific Data, 2016, 3: 160119.
[2]
侯喜林, 李英, 黄菲艺. 不结球白菜(Brassica campestris ssp. chinensis)主要性状及育种技术的分子生物学研究新进展. 园艺学报, 2020, 47(9): 1663-1677.
HOU X L, LI Y, HUANG F Y. New advances in molecular biology of main characters and breeding technology in non heading Chinese cabbage (Brassica campestris ssp. chinensis). Acta Horticulturae Sinica, 2020, 47(9): 1663-1677. (in Chinese)
[3]
FAMBRINI M, DEGL’INNOCENTI E, GUIDI L, PUGLIESI C. The dominant Basilicum Leaf mutation of sunflower controls leaf development multifariously and modifies the photosynthetic traits. Flora, 2010, 205(12): 853-861.
[4]
FAISAL S, GUO Y, DU C L, ZHANG D S, LV J Y, CHANNA S A, QU G P, HU S W. Morphological, physiological and genetic analyses of an upward-curling leaf mutant in Brassica napus L. Acta Physiologiae Plantarum, 2020, 42(4): 46.
[5]
朱高翔, 张美迪, 宋晓飞, 崔浩楠, 李晓丽, 朱雪云, 闫立英. 黄瓜皱叶突变体的表型鉴定及遗传分析. 中国瓜菜, 2022, 35(3): 9-15.
ZHU G X, ZHANG M D, SONG X F, CUI H N, LI X L, ZHU X Y, YAN L Y. Phenotypic evaluation and genetic analysis of a crinkled leaf mutant (lc) in cucumber. China Cucurbits and Vegetables, 2022, 35(3): 9-15. (in Chinese)
[6]
NATH U, CRAWFORD B C W, CARPENTER R, COEN E. Genetic control of surface curvature. Science, 2003, 299(5611): 1404-1407.

doi: 10.1126/science.1079354 pmid: 12610308
[7]
LIU Z Y, JIA L G, MAO Y F, HE Y K. Classification and quantification of leaf curvature. Journal of Experimental Botany, 2010, 61(10): 2757-2767.

doi: 10.1093/jxb/erq111 pmid: 20400533
[8]
WANG Y W, SUN Z M, WANG L, CHEN L L, MA L N, LV J Y, QIAO K K, FAN S L, MA Q F. GhBOP1 as a key factor of ribosomal biogenesis: development of wrinkled leaves in upland cotton. International Journal of Molecular Sciences, 2022, 23(17): 9942.
[9]
TU Z, YU L, WEN S, ZHAI X, LI W, LI H. Identification and analysis of HD-Zip genes involved in the leaf development of Liriodendron chinense using multidimensional analysis. Plant Biology, 2022, 24(5): 874-886.
[10]
许双双. 小白菜皱瓣突变体遗传特性及转录组分析[D]. 杭州: 浙江农林大学, 2018.
XU S S. Analysis of inheritance characteristics and transcriptome of petal shrinkage mutant in pakchoi[D]. Hangzhou: Zhejiang A & F University, 2018. (in Chinese)
[11]
张美迪. 大白菜三种叶片表型相关突变体的鉴定[D]. 沈阳: 沈阳农业大学, 2020.
ZHANG M D. Identification of three type leaf phenotypic related mutants in Chinese cabbage[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese)
[12]
WU Y J, XIN Y, ZOU J Q, HUANG S N, WANG C, FENG H. BrCWM mutation disrupted leaf flattening in Chinese cabbage (Brassica rapa L. ssp. pekinensis). International Journal of Molecular Sciences, 2023, 24(6): 5225.
[13]
盖钧镒. 植物数量性状遗传体系的分离分析方法研究. 遗传, 2005, 27(1): 130-136.
GAI J Y. Segregation analysis of genetic system of quantitative traits in plants. Hereditas, 2005, 27(1): 130-136. (in Chinese)
[14]
王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0. 作物学报, 2022, 48(6): 1416-1424.

doi: 10.3724/SP.J.1006.2022.14088
WANG J T, ZHANG Y W, DU Y W, REN W L, LI H F, SUN W X, GE C, ZHANG Y M. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits. Acta Agronomica Sinica, 2022, 48(6): 1416-1424. (in Chinese)
[15]
苏百童, 阎世江. 番茄苗期耐低温性主基因-多基因联合遗传分析. 中国瓜菜, 2023, 36(12): 54-58.
SU B T, YAN S J. Genetic analysis of chilling tolerance of tomato seedling under low temperature using major gene-polygenes inheritance model. China Cucurbits and Vegetables, 2023, 36(12): 54-58. (in Chinese)
[16]
李艳琪, 曹晓宇, 李博宇, 王亦希, 张德楷, 战祥强, 胡体旭. 番茄花序梗部长度的遗传分析. 中国蔬菜, 2023(9): 38-47.
LI Y Q, CAO X Y, LI B Y, WANG Y X, ZHANG D K, ZHAN X Q, HU T X. Genetic analysis of peduncle length in tomato. China Vegetables, 2023(9): 38-47. (in Chinese)
[17]
刘德海, 付尚谭, 金彤, 汪淑芬. 番茄萼片形态性状遗传规律及其与果实性状相关性分析. 分子植物育种, 2023: 1-13.
LIU D H, FU S T, JIN T, WANG S F. Genetic regularity of sepal morphological traits and its correlation analysis with fruit traits in tomato. Molecular Plant Breeding, 2023: 1-13. (in Chinese)
[18]
张宁, 刘文超, 李毅丰, 王帅, 曹霞, 毛秀杰. 番茄苗期节间长度的遗传规律分析. 中国果菜, 2022, 42(3): 62-66, 71.
ZHANG N, LIU W C, LI Y F, WANG S, CAO X, MAO X J. Genetic analysis of internode length in tomato seedlings stage. China Fruit & Vegetable, 2022, 42(3): 62-66, 71. (in Chinese)
[19]
马玉杰, 尚洁玉, 冯鹏龙, 邵登魁, 王亚艺, 钟启文, 李全辉. 辣椒叶长、叶宽性状的主基因+多基因遗传分析. 分子植物育种, 2023: 1-18.
MA Y J, SHANG J Y, FENG P L, SHAO D K, WANG Y Y, ZHONG Q W, LI Q H. Main gene+polygene genetic analysis of leaf length and leaf width traits in pepper (Capsicum annuum L.). Molecular Plant Breeding, 2023: 1-18. (in Chinese)
[20]
庞欣, 郭勤卫, 张婷, 刘慧琴, 刘佳, 俞佳虹, 宋秋平, 万红建. 辣椒株高主基因+多基因混合遗传模型分析. 中国蔬菜, 2023(11): 80-86.
PANG X, GUO Q W, ZHANG T, LIU H Q, LIU J, YU J H, SONG Q P, WAN H J. Genetic analysis of plant height trait in pepper with major gene plus polygene mixed model. China Vegetables, 2023(11): 80-86. (in Chinese)
[21]
杨辉, 沈火林. 辣椒抗黄瓜病毒的主基因-多基因混合遗传分析. 安徽农业科学, 2023, 51(13): 86-88.
YANG H, SHEN H L. Analysis of main gene and polygene mixture heredity in pepper to CMV. Journal of Anhui Agricultural Sciences, 2023, 51(13): 86-88. (in Chinese)
[22]
王俊涛, 冯鹏龙, 王亚艺, 李全辉. 辣椒单株结果数性状的主基因+多基因遗传分析. 西北农业学报, 2022, 31(11): 1443-1450.
WANG J T, FENG P L, WANG Y Y, LI Q H. Genetic analysis on pepper(Capsicum annuum L.) fruit number per plant by mixture model of major gene plus polygene. Acta Agriculturae Boreali- Occidentalis Sinica, 2022, 31(11): 1443-1450. (in Chinese)
[23]
王庆涛, 贺玉花, 唐伶俐, 户克云, 孔维虎, 张健, 李晓飞, 徐永阳, 赵光伟. 厚皮甜瓜果实长度的遗传分析. 中国瓜菜, 2023, 36(7): 12-17.
WANG Q T, HE Y H, TANG L L, HU K Y, KONG W H, ZHANG J, LI X F, XU Y Y, ZHAO G W. Genetic analysis of fruit length of muskmelon. China Cucurbits and Vegetables, 2023, 36(7): 12-17. (in Chinese)
[24]
陈渝文, 赵荣茺, 沈慕洁, 胡泓, 胡胜平, 于文进, 阳燕娟. 甜瓜抗枯萎病的遗传分析. 分子植物育种, 2022, 20(12): 4044-4050.
CHEN Y W, ZHAO R C, SHEN M J, HU H, HU S P, YU W J, YANG Y J. Genetic analysis of resistance to Fusarium wilt in melon. Molecular Plant Breeding, 2022, 20(12): 4044-4050. (in Chinese)
[25]
靳志恒. 甜瓜下胚轴长度的遗传分析与QTL定位[D]. 郑州: 河南农业大学, 2021.
JIN Z H. Genetic analysis and QTL mapping of hypocotyl length in melon.[D]. Zhengzhou: Henan Agricultural University, 2021. (in Chinese)
[26]
郑洁明, 李永强, 吴元彩, 王鹏, 阳燕娟, 于文进. 茄子青枯病抗性遗传效应分析. 南方农业学报, 2023, 54(12): 3502-3513.
ZHENG J M, LI Y Q, WU Y C, WANG P, YANG Y J, YU W J. Genetic effect of eggplant resistance to bacterial wilt. Journal of Southern Agriculture, 2023, 54(12): 3502-3513. (in Chinese)
[27]
房桂萍, 成玉富, 徐强. 茄子果形性状遗传研究. 蔬菜, 2023(5): 11-17.
FANG G P, CHENG Y F, XU Q. Genetic study on fruit shape traits of eggplant. Vegetables, 2023(5): 11-17. (in Chinese)
[28]
王倩, 崔庭源, 孙国胜, 马志虎, 张长青. 茄子叶色性状的主基因+多基因遗传模型分析. 金陵科技学院学报, 2020, 36(2): 88-92.
WANG Q, CUI T Y, SUN G S, MA Z H, ZHANG C Q. Genetic analysis of leaf color in eggplant with major gene plus polygene model. Journal of Jinling Institute of Technology, 2020, 36(2): 88-92. (in Chinese)
[29]
朱德宁, 吴宇军, 曹翠文, 李莲芳. 有棱丝瓜点状斑纹性状主基因+多基因遗传分析. 江西农业学报, 2023, 35(6): 54-61.
ZHU D N, WU Y J, CAO C W, LI L F. Genetic analysis of spotting traits in Luffa acutangula by mixture heredity of major gene and polygene. Acta Agriculturae Jiangxi, 2023, 35(6): 54-61. (in Chinese)
[30]
黄树苹, 谈杰, 陈霞, 张洪源, 张敏. 普通丝瓜果皮颜色性状的遗传研究. 中国农学通报, 2021, 37(25): 58-63.

doi: 10.11924/j.issn.1000-6850.casb2020-0689
HUANG S P, TAN J, CHEN X, ZHANG H Y, ZHANG M. Genetic research of pericarp color traits of Luffa cylindrica. Chinese Agricultural Science Bulletin, 2021, 37(25): 58-63. (in Chinese)
[31]
王敏, 刘微, 谢大森, 江彪, 闫晋强, 彭庆务, 何晓明, 杨松光, 刘文睿. 冬瓜首雌花节位遗传分析与基因定位. 西北农林科技大学学报(自然科学版), 2023, 51(4): 94-101, 109.
WANG M, LIU W, XIE D S, JIANG B, YAN J Q, PENG Q W, HE X M, YANG S G, LIU W R. Genetic analysis and gene mapping for position of the first female flower node (FFFN) in wax gourd. Journal of Northwest A & F University (Natural Science Edition), 2023, 51(4): 94-101, 109. (in Chinese)
[32]
苟纪权, 苏丽文, 程志魁, 黄小春, 吴雯婷, 吕海旋, 刘政国. 冬瓜果肉叶绿素含量遗传分析. 中国农学通报, 2023, 39(1): 45-50.

doi: 10.11924/j.issn.1000-6850.casb2022-0061
GOU J Q, SU L W, CHENG Z K, HUANG X C, WU W T, H X, LIU Z G. Genetic analysis of chlorophyll content in the flesh of wax gourd. Chinese Agricultural Science Bulletin, 2023, 39(1): 45-50. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-0061
[33]
周赓, 陈宸, 刘晓虹, 杨侃侃, 卢向阳, 陈惠明, 田云. 黄瓜果实空心性状的数量遗传分析. 分子植物育种, 2021, 1-13.
ZHOU G, CHEN C, LIU X H, YANG K K, LU X Y, CHEN H M, TIAN Y. Quantitative genetic analysis of fruit hollow traits in cucumber. Molecular Plant Breeding, 2021, 1-13. (in Chinese)
[34]
段春宇, 熊雄, 景梦岳, 高阳, 侯非凡, 邢国明, 李森. 黄花菜维生素E含量遗传分析及QTL定位. 河北农业大学学报, 2023, 46(4): 38-45.
DUAN C Y, XIONG X, JING M Y, GAO Y, HOU F F, XING G M, LI S. Genetic analysis and QTL localization of vitamin E content in Hemerocallis citrina Baroni. Journal of Hebei Agricultural University, 2023, 46(4): 38-45. (in Chinese)
[35]
高银, 彭家柱, 汪国平, 乔燕春. 节瓜种子大小的主基因+多基因遗传分析. 广东农业科学, 2023, 50(4): 51-59.
GAO Y, PENG J Z, WANG G P, QIAO Y C. Genetic analysis on seed size of chieh-qua by mixture model of major genes and polygenes. Guangdong Agricultural Sciences, 2023, 50(4): 51-59. (in Chinese)
[36]
牛玉, 于仁波, 韩旭, 刘昭华, 杨衍. 苦瓜苗期耐冷性的多世代联合遗传分析. 分子植物育种, 2024, 22(6): 1986-1991.
NIU Y, YU R B, HAN X, LIU Z H, YANG Y. Joint multi-generation genetic analysis on chilling tolerance of bitter gourd seedlings stage. Molecular Plant Breeding, 2024, 22(6): 1986-1991. (in Chinese)
[37]
聂启军, 任志勇, 董斌峰, 胡志伟, 李金泉, 焦春海. 地方白菜资源随州泡泡青的特性及保护利用. 湖北农业科学, 2021, 60(S2): 306-307.
NIE Q J, REN Z Y, DONG B F, HU Z W, LI J Q, JIAO C H. Characteristics and protection of local cabbage resources Suizhou Paopaoqing. Hubei Agricultural Sciences, 2021, 60(S2): 306-307. (in Chinese)
[38]
曹家树, 曹寿椿. 中国白菜及其相邻类群的分类. 中国园艺学会成立70周年纪念暨学术讨论会, 1999.
CAO J S, CAO S C. On Classification of Chinese cabbage and other groups of Brassica. The 70th anniversary of the establishment of the Chinese Horticultural Society and the Symposium, 1999. (in Chinese)
[1] BAI BingNan, QIAO Dan, GE Qun, LUAN YuJuan, LIU XiaoFang, LU QuanWei, NIU Hao, GONG JuWu, GONG WanKui, ELAMEER ELSAMMAN, YAN HaoLiang, LI JunWen, LIU AiYing, SHI YuZhen, WANG HaiZe, YUAN YouLu. QTN Mining and Candidate Gene Screening of Upland Cotton (Gossypium hirsutum L.) Seed-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(15): 2901-2913.
[2] LI ZiMeng, YUAN Chan, ZHANG YuQing, REN Yan, LIU PengPeng, YAN ShanShan, XI MengHan, MU PeiYuan, LAN CaiXia. Genetic Analysis of Adult Plant Resistance to Powdery Mildew in Common Wheat Arableu#1 [J]. Scientia Agricultura Sinica, 2024, 57(1): 52-64.
[3] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[4] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[5] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[6] LI YongXiang,LI ChunHui,YANG JunPin,YANG Hua,CHENG WeiDong,WANG LiMing,LI FengYan,LI HuiYong,WANG YanBo,LI ShuHua,HU GuangHui,LIU Cheng,LI Yu,WANG TianYu. Genetic Dissection of Heterosis for Huangzaosi, a Foundation Parental Inbred Line of Maize in China [J]. Scientia Agricultura Sinica, 2020, 53(20): 4113-4126.
[7] QU YuJie, SUN JunLing, GENG XiaoLi, WANG Xiao, Zareen Sarfraz, JIA YinHua, PAN ZhaoE, HE ShouPu, GONG WenFang, WANG LiRu, PANG BaoYin, DU XiongMing. Correlation Between Genetic Distance of Parents and Heterosis in Upland Cotton [J]. Scientia Agricultura Sinica, 2019, 52(9): 1488-1501.
[8] LIANG HuiZhen, DONG Wei, XU LanJie, YU YongLiang, YANG HongQi, TAN ZhengWei, XU Yang, CHEN XinWei. QTL Mapping for Main Root Length and Lateral Root Number in Soybean at the Seedling Stage in Different N, P and K Environments [J]. Scientia Agricultura Sinica, 2017, 50(18): 3450-3460.
[9] ZHANG Chang-quan, ZHAO Dong-sheng, LI Qian-feng, GU Ming-hong, LIU Qiao-quan. Progresses in Research on Cloning and Functional Analysis of Key Genes Involving in Rice Grain Quality [J]. Scientia Agricultura Sinica, 2016, 49(22): 4267-4283.
[10] XU Pan, ZHANG Zhen, ZHANG Feng, YANG Bin, DUAN Yan-yu. Identification of Candidate Genes for Hematological Traits by Integrating Gene Expression Profiling and Genome-Wide Association Study in a Porcine Model [J]. Scientia Agricultura Sinica, 2016, 49(2): 348-360.
[11] ZHU Yu-jun, CHEN Jun-yu, ZHANG Zhen-hua, ZHANG Hong-wei, FAN Ye-yang, ZHUANG Jie-yun. QTL Mapping for Standard Heterosis of Yield Traits in Rice [J]. Scientia Agricultura Sinica, 2016, 49(2): 232-238.
[12] XU Yao, MU Jian-mei, ZHANG Guo-qin, MA Jia-jia, XU Jun, LI Jun, LIU Feng-jun, SHE Xu-dong. Effect of Sulphur Availability on Nitrate Accumulation and Expression of Nitrogen and Sulphur Assimilation Related Genes in Non-Heading Chinese Cabbage [J]. Scientia Agricultura Sinica, 2016, 49(11): 2222-2233.
[13] XU Jian-Feng-1, LONG Yan-2, WU Jian-Guo-3, ZHAO Zhi-Gang-4, XU Hai-Ming-1, WEN Juan-1, MENG Jin-Ling-2, SHI Chun-Hai-1. QTL Mapping Based on Embryo and Maternal Genetic Systems for Oil and Protein Contents in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2014, 47(8): 1471-1480.
[14] JIAO Fu-Chao, LI Yong-Xiang, CHEN Lin, LIU Zhi-Zhai, SHI Yun-Su, SONG Yan-Chun, ZHANG Deng-Feng, LI Yu, WANG Tian-Yu. Genetic Dissection for Kernel Row Number in the Specific Maize Germplasm Four-Rowed Waxy Corn [J]. Scientia Agricultura Sinica, 2014, 47(7): 1256-1264.
[15] YANG Sheng-xian, NIU Yuan, LI Meng, WEI Shi-ping, LIU Xiao-fen, Lü Hai-yan, ZHANG Yuan-ming. Association Mapping of Agronomic Traits in Soybean (Glycine max L. Merr.) and Mining of Novel Alleles [J]. Scientia Agricultura Sinica, 2014, 47(20): 3941-3952.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!