Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (16): 3192-3206.doi: 10.3864/j.issn.0578-1752.2024.16.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Phosphorus Fertilization on the Yield and Phosphorus Absorption and Utilization of Dryland Winter Wheat Under Different Precipitation Year Types

JIA BingLi1(), LI YanXing1, YANG WenJie1, YU Jie1, YUAN AiJing1, LI NingNa1, QIU WeiHong1(), WANG ZhaoHui1,2   

  1. 1 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi
    2 State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
  • Received:2023-09-19 Accepted:2023-10-30 Online:2024-08-16 Published:2024-08-27
  • Contact: QIU WeiHong

Abstract:

【Objective】 The effects of phosphorus (P) fertilization on the yield, P uptake and utilization of dryland wheat under different precipitation patterns and summer-season precipitation were investigated to provide the theoretical basis and practical guidance for optimizing the management of P fertilizer application and increasing yield of dryland winter wheat.【Method】 This study was based on a winter wheat P fertilization experiment that started in July 2018 at three sites in Weibei dryland area of Plateau Loess, China. The field experiment included two treatments: optimized P application (+P), and no P application (-P). The precipitation, winter wheat yield, precipitation efficiency, soil water storage, P fertilizer use efficiency, wheat P uptake, and soil P budget under different precipitation years were analyzed over three years. 【Result】 The wheat yields in dry and intermediate years were 3 432 and 4 549 kg·hm-2, respectively, while the wheat yield in wet year was 7 634 kg·hm-2. Compared with the -P treatment, the +P treatment significantly increased the wheat yield by 5.8%. Overall, the winter wheat yield showed a linear plus platform correlation with annual precipitation and precipitation in the summer fallow season. In the dry years, the annual and summer-seasonal precipitation use efficiency under +P treatment were significantly lower than those in the -P treatment, with a decrease of 9.5% and 8.0%, respectively; however, in the wet year, they were significantly higher by 13.1% and 12.9% than those under -P treatment. Soil water storage in 0-100 cm soil layers in intermediate year was significantly lower by 10.5% and 10.8% than that under the dry and wet years, respectively, while in the wet year, the application of P fertilizer had no significant effects on soil water storage in 0-300 cm soil layers. Additionally, in the dry and intermediate years, the +P treatment significantly increased the topsoil available phosphorus contents by 29.1% and 17.8%, respectively. The P use efficiency increased with the increasing annual precipitation and summer-season precipitation and the partial factor productivity and agronomic efficiency of P fertilizer were the highest in the wet year, with increases of 74.0% and 176.3%, respectively, compared with the dry year. The soil P budget under +P treatment in the wet year was the lowest, significantly reduced by 67.9% and 62.9% than that in the dry and intermediate years, respectively. The soil P budget under -P treatment was deficient, and it was significantly higher in wet year than that in dry year and intermediate year. 【Conclusion】 Under P fertilizer input, winter wheat yield and P uptake and utilization had different effects in different precipitation year patterns. Therefore, it was necessary to consider the changes in precipitation when applying P fertilizer in dryland winter wheat production. Based on the similar results under the precipitation in summer season and annual precipitation, more attention should be paid to the precipitation in summer season, by which it could predict the target yield and optimize the P fertilizer application rate, in order to ensure the reasonable application of P fertilizer and improve crop yield.

Key words: dryland, wheat, precipitation, optimized phosphorus application, phosphorus absorption, soil phosphorus budget

Table 1

The basic physical and chemical properties of topsoil (0-20 cm) at the beginning of experiment in different sites"

地点
Experiment site
有机质
Organic matter
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
速效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
pH
蒲城Pucheng 12.10 0.85 10.70 201.5 8.17
乾县Qianxian 8.67 0.51 15.96 122.3 8.41
永寿Yongshou 11.90 0.72 13.00 124.2 8.35

Table 2

Phosphorus application rate, annual precipitation and precipitation year types in different sites"

地点
Experimental site
年份
Year
氮肥施用量
N fertilizer rate
(kg·hm-2)
磷肥施用量
P fertilizer rate
(kg·hm-2)
钾肥施用量
K fertilizer rate
(kg·hm-2)
年降水量
Annual precipitation (mm)
夏闲期降水量
Summer-season precipitation (mm)
降水年型
Precipitation year
蒲城
Pucheng
2018—2019 83 99 30 200 145 干旱年Dry year
2019—2020 119 77 30 492 313 平水年Intermediate year
2021—2022 154 62 30 911 698 丰水年Wet year
乾县
Qianxian
2018—2019 105 58 30 415 245 干旱年Dry year
2019—2020 185 62 46 613 277 平水年Intermediate year
2021—2022 163 65 43 753 511 丰水年Wet year
永寿
Yongshou
2018—2019 64 41 30 358 254 干旱年Dry year
2019—2020 150 73 30 500 307 平水年Intermediate year
2021—2022 169 79 40 685 394 丰水年Wet year

Fig. 1

Effect of P fertilizer application on winter wheat yield under different precipitation year types The different small letters represent the differences between the two treatments (P<0.05) and the capital letters represent the differences among the different precipitation years (P<0.05). The same as below"

Fig. 2

The relationship between winter wheat yield and annual precipitation, summer-season precipitation under -P (a, b) and +P (c, d) treatments The dotted line represents the average yield of 3 years under each treatment; *** Indicate the significant at 0.001 level"

Fig. 3

The change of precipitation efficiency in different P treatments and precipitation year types"

Fig. 4

The soil water storage of 1 m (a, b, c, d) in three years at different sits and the soil water storage of 1-2 m (e) and 2-3 m (f) in each experimental site in wet years ns: Represents no significant difference"

Fig. 5

Changes of available phosphorus content in surface soil under different precipitation year types"

Fig. 6

P partial factor productivity (a, b, c) and P agronomy efficiency (d, e, f) and their relationship to precipitation *, ** and *** Indicate significance different at P<0.05, P<0.01 and P<0.001"

Table 3

Phosphorus uptake and utilization efficiency of wheat under different treatments"

地点
Experiment
site
年型
Precipitation
year types
100 kg籽粒吸磷量
P uptake for producing 100 kg grain (kg)
籽粒磷吸收量
Grain P uptake (kg·hm-2)
总磷吸收量
Total P uptake (kg·hm-2)
磷收获指数
P harvest index (%)
-P +P -P +P -P +P -P +P
蒲城
Pucheng
干旱年Dry year 0.47bA 0.59aA 4.2aC 3.8aC 5.3aC 5.2aC 79.2aB 72.7bB
平水年Intermediate year 0.28aB 0.35aB 7.6aB 10.1aB 8.5aB 11.5aB 89.7aAB 88.4aA
丰水年Wet year 0.20aB 0.21aB 12.6bA 15.7aA 13.6bA 17.5aA 92.7aA 89.6aA
乾县
Qianxian
干旱年Dry year 0.29aA 0.32aA 8.8aB 10.4aB 12.8aB 14.5aB 69.1aC 71.2aB
平水年Intermediate year 0.33aA 0.38aA 12.8bB 15.4aAB 14.7bB 17.4aAB 87.2aA 88.7aA
丰水年Wet year 0.33aA 0.33aA 19.0aA 19.8aA 24.4aA 25.7aA 77.8aB 76.7aAB
永寿
Yongshou
干旱年Dry year 0.34aA 0.37aA 14.8aA 13.8aC 17.3aB 16.5aB 85.6aA 83.7aA
平水年Intermediate year 0.31aA 0.35aA 16.3aA 18.0aB 18.6aAB 20.6aB 87.7aA 87.4aA
丰水年Wet year 0.35aA 0.37aA 18.8aA 22.6aA 25.6aA 30.6aA 73.6aB 74.2aB
平均
Average
干旱年Dry year 0.37aA 0.43aA 9.3aA 9.3aB 11.8aB 12.1aC 77.9aB 75.9aB
平水年Intermediate year 0.31bA 0.36aA 12.2bA 14.5aAB 13.9bB 16.5aB 88.2aA 88.2aA
丰水年Wet year 0.29aA 0.31aA 16.8aA 19.4aA 21.2bA 24.6aA 81.4aB 80.2aB
总平均 All Average 0.32b 0.37a 12.8b 14.4a 15.6b 17.7a 82.5a 81.4b

Fig. 7

Changes of soil phosphorus budget under different precipitation year types"

[1]
国家统计局. 国家统计局关于2022年粮食产量数据的公告. 中国信息报, 2022-12-13(1).
National Bureau of Statistics. Announcement of the National Bureau of Statistics on grain production data for 2022. China Information News, 2022-12-13(1). (in Chinese)
[2]
LI Y, GUAN K Y, SCHNITKEY G D, DELUCIA E, PENG B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Global Change Biology, 2019, 25(7): 2325-2337.

doi: 10.1111/gcb.14628 pmid: 31033107
[3]
BACHMAIR S, TANGUY M, HANNAFORD J, STAHL K. How well do meteorological indicators represent agricultural and forest drought across Europe? Environmental Research Letters, 2018, 13(3): 034042.
[4]
HOU E Q, CHEN C R, LUO Y Q, ZHOU G Y, KUANG Y W, ZHANG Y G, HEENAN M, LU X K, WEN D Z. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 2018, 24(8): 3344-3356.

doi: 10.1111/gcb.14093 pmid: 29450947
[5]
李龙, 毛新国, 王景一, 李超男, 柳玉平, 景蕊莲. 小麦抗旱性研究进展与展望. 干旱地区农业研究, 2023, 41(3): 11-20.
LI L, MAO X G, WANG J Y, LI C N, LIU Y P, JING R L. Progress and prospect of wheat research on drought resistance. Agricultural Research in the Arid Areas, 2023, 41(3): 11-20. (in Chinese)
[6]
ROWE H, WITHERS P J A, BAAS P, CHAN N I, DOODY D, HOLIMAN J, JACOBS B, LI H G, MACDONALD G K, MCDOWELL R, SHARPLEY A N, SHEN J B, TAHERI W, WALLENSTEIN M, WEINTRAUB M N. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutrient Cycling in Agroecosystems, 2016, 104(3): 393-412.
[7]
卜容燕, 任涛, 鲁剑巍, 李小坤, 丛日环, 李云春, 汪洋, 鲁君明. 水稻-油菜轮作条件下磷肥效应研究. 中国农业科学, 2014, 47(6): 1227-1234. doi: 10.3864/j.issn.0578-1752.2014.06.019.
BU R Y, REN T, LU J W, LI X K, CONG R H, LI Y C, WANG Y, LU J M. Analysis of P fertilizer efficiency under rice-rapeseed rotation system. Scientia Agricultura Sinica, 2014, 47(6): 1227-1234. doi: 10.3864/j.issn.0578-1752.2014.06.019. (in Chinese)
[8]
ZHANG J M, ZHANG S Q, CHENG M, JIANG H, ZHANG X Y, PENG C H, LU X H, ZHANG M X, JIN J X. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. International Journal of Environmental Research and Public Health, 2018, 15(5): 839.
[9]
DHANDA S S, SETHI G S. Tolerance to drought stress among selected Indian wheat cultivars. The Journal of Agricultural Science, 2002, 139(3): 319-326.
[10]
QIU W H, MA X L, CAO H B, HUANG T M, SHE X, HUANG M, WANG Z H, LIU J S. Improving wheat yield by optimizing seeding and fertilizer rates based on precipitation in the summer fallow season in drylands of the Loess Plateau. Agricultural Water Management, 2022, 264: 107489.
[11]
GAO Z Y, CAO H B, HUANG M, BAO M, QIU W H, LIU J S. Winter wheat yield and soil critical phosphorus value response to yearly rainfall and P fertilization on the Loess Plateau of China. Field Crops Research, 2023, 296: 108921.
[12]
陈丽, 寇心悦, 党亚爱, 牛一楠, 包书尚, 沈玉芳. 麦季施磷量对小麦-玉米轮作产量及土壤有效磷的影响. 麦类作物学报, 2024, 44(2): 185-194.
CHEN L, KOU X Y, DANG Y A, NIU Y N, BAO S S, SHEN Y F. Effects of phosphorus application rates in wheat season on wheat-maize rotation yield and available phosphorus in soil. Journal of Triticeae Crops, 2024, 44(2): 185-194. (in Chinese)
[13]
黄倩楠, 党海燕, 黄婷苗, 侯赛宾, 王朝辉. 我国主要麦区农户施肥评价及减肥潜力分析. 中国农业科学, 2020, 53(23): 4816-4834. doi: 10.3864/j.issn.0578-1752.2020.23.009.
HUANG Q N, DANG H Y, HUANG T M, HOU S B, WANG Z H. Evaluation of farmers’ fertilizer application and fertilizer reduction potentials in major wheat production regions of China. Scientia Agricultura Sinica, 2020, 53(23): 4816-4834. doi: 10.3864/j.issn.0578-1752.2020.23.009. (in Chinese)
[14]
赵护兵, 王朝辉, 高亚军, 张卫峰. 陕西省农户小麦施肥调研评价. 植物营养与肥料学报, 2016, 22(1): 245-253.
ZHAO H B, WANG Z H, GAO Y J, ZHANG W F. Investigation and evaluation of household wheat fertilizer application in Shaanxi Province. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 245-253. (in Chinese)
[15]
都江雪, 韩天富, 曲潇林, 马常宝, 柳开楼, 黄晶, 申哲, 张璐, 刘立生, 谢建华, 张会民. 中国主要粮食作物磷肥偏生产力时空演变特征及驱动因素. 植物营养与肥料学报, 2022, 28(2): 191-204.
DU J X, HAN T F, QU X L, MA C B, LIU K L, HUANG J, SHEN Z, ZHANG L, LIU L S, XIE J H, ZHANG H M. Spatial-temporal evolution characteristics and driving factors of partial phosphorus productivity in major grain crops in China. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 191-204. (in Chinese)
[16]
LI J J, YANG C, ZHOU H K, SHAO X Q. Responses of plant diversity and soil microorganism diversity to water and nitrogen additions in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 2020, 22: e01003.
[17]
HE M Z, DIJKSTRA F A. Drought effect on plant nitrogen and phosphorus: a meta-analysis. The New Phytologist, 2014, 204(4): 924-931.
[18]
裴雪霞, 党建友, 张定一, 张晶, 王姣爱, 程麦风, 武雪萍. 不同降水年型下旱地深翻时间和施肥方式对小麦产量及水肥利用率的影响. 麦类作物学报, 2018, 38(3): 330-339.
PEI X X, DANG J Y, ZHANG D Y, ZHANG J, WANG J A, CHENG M F, WU X P. Effects of deep plowing time during fallow period and fertilization method on yield, water and nutrition use efficiency of dryland wheat in different precipitation years in South Shanxi. Journal of Triticeae Crops, 2018, 38(3): 330-339. (in Chinese)
[19]
JIN K, CORNELIS W M, SCHIETTECATTE W, LU J J, YAO Y Q, WU H J, GABRIELS D, DE NEVE S, CAI D X, JIN J Y, HARTMANN R. Effects of different management practices on the soil-water balance and crop yield for improved dryland farming in the Chinese Loess Plateau. Soil and Tillage Research, 2007, 96(1/2): 131-144.
[20]
ZHANG D, NG E L, HU W L, WANG H Y, GALAVIZ P, YANG H D, SUN W T, LI C X, MA X W, FU B, ZHAO P Y, ZHANG F L, JIN S Q, ZHOU M D, DU L F, PENG C, ZHANG X J, XU Z Y, XI B, LIU X X, SUN S Y, CHENG Z H, JIANG L H, WANG Y F, GONG L, KOU C L, LI Y, MA Y H, HUANG D F, ZHU J, YAO J W, LIN C W, QIN S, ZHOU L Q, HE B H, CHEN D L, LI H C, ZHAI L M, LEI Q L, WU S X, ZHANG Y T, PAN J T, GU B J, LIU H B. Plastic pollution in croplands threatens long-term food security. Global Change Biology, 2020, 26(6): 3356-3367.

doi: 10.1111/gcb.15043 pmid: 32281177
[21]
HE G, WANG Z H, LI F C, DAI J, LI Q, XUE C, CAO H B, WANG S, MALHI S S. Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China. Agricultural Water Management, 2016, 171: 1-9.
[22]
曹寒冰, 王朝辉, 师渊超, 杜明叶, 雷小青, 张文忠, 张璐, 蒲岳建. 渭北旱地冬小麦监控施氮技术的优化. 中国农业科学, 2014, 47(19): 3826-3838. doi: 10.3864/j.issn.0578-1752.2014.19.011.
CAO H B, WANG Z H, SHI Y C, DU M Y, LEI X Q, ZHANG W Z, ZHANG L, PU Y J. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on Weibei dryland. Scientia Agricultura Sinica, 2014, 47(19): 3826-3838. doi: 10.3864/j.issn.0578-1752.2014.19.011. (in Chinese)
[23]
蒋龙刚, 黄明, 宋庆赟, 苑爱静, 李嘉华, 邱炜红, 王朝辉. 基于土壤有机质含量推荐的旱地冬小麦施氮量研究. 中国农业科学, 2020, 53(10): 2020-2033. doi: 10.3864/j.issn.0578-1752.2020.10.009.
JIANG L G, HUANG M, SONG Q Y, YUAN A J, LI J H, QIU W H, WANG Z H. Research on nitrogen fertilizer application recommended method based on soil organic matter in dryland wheat production. Scientia Agricultura Sinica, 2020, 53(10): 2020-2033. doi: 10.3864/j.issn.0578-1752.2020.10.009. (in Chinese)
[24]
陶林威, 马洪, 葛芬莉. 陕西省降水特性分析. 陕西气象, 2000(5): 6-9.
TAO L W, MA H, GE F L. Analysis of precipitation characteristics in Shaanxi Province. Journal of Shaanxi Meteorology, 2000(5): 6-9. (in Chinese)
[25]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[26]
于琦, 李军, 周栋, 王淑兰, 王浩, 李敖, 张元红, 宁芳, 王小利, 王瑞. 不同降水年型黄土旱塬冬小麦免耕与深松轮耕蓄墒增收效应. 中国农业科学, 2019, 52(11): 1870-1882. doi: 10.3864/j.issn.0578-1752.2019.11.003.
YU Q, LI J, ZHOU D, WANG S L, WANG H, LI A, ZHANG Y H, NING F, WANG X L, WANG R. Effects of No-tillage/subsoiling rotational tillage system on increasing soil water storage and crop yield under different precipitation patterns of winter wheat in the loess plateau. Scientia Agricultura Sinica, 2019, 52(11): 1870-1882. doi: 10.3864/j.issn.0578-1752.2019.11.003. (in Chinese)
[27]
WANG Y Q, GAO F L, YANG J P, ZHAO J Y, WANG X G, GAO G Y, ZHANG R, JIA Z K. Spatio-temporal variation in dryland wheat yield in northern Chinese areas: relationship with precipitation, temperature and evapotranspiration. Sustainability, 2018, 10(12): 4470.
[28]
ZHOU T R, HAN C, QIAO L J, REN C J, WEN T, ZHAO C M. Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau. Journal of Arid Land, 2021, 13(10): 1015-1025.

doi: 10.1007/s40333-021-0021-5
[29]
MONTIEL-GONZÁLEZ C, TAPIA-TORRES Y, SOUZA V, GARCÍA-OLIVA F. The response of soil microbial communities to variation in annual precipitation depends on soil nutritional status in an oligotrophic desert. PeerJ, 2017, 5: e4007.
[30]
张孝良, 车荣晓, 段兴武, 刘开放, 宋清海, 张一平, 沙丽清, 周文君. 土壤胞外酶活性对气候变化响应的研究进展. 浙江农林大学学报, 2023, 40(4): 910-920.
ZHANG X L, CHE R X, DUAN X W, LIU K F, SONG Q H, ZHANG Y P, SHA L Q, ZHOU W J. Research progress in the response of soil extracellular enzymes activity to climate changes. Journal of Zhejiang A & F University, 2023, 40(4): 910-920. (in Chinese)
[31]
李巧丽, 刘朋召, 师祖姣, 刘苗, 陈跻, 李慧, 王小利, 王瑞, 李军. 关中平原冬小麦临界磷浓度稀释曲线的构建与磷营养诊断. 植物营养与肥料学报, 2022, 28(11): 2011-2019.
LI Q L, LIU P Z, SHI Z J, LIU M, CHEN J, LI H, WANG X L, WANG R, LI J. Construction of critical phosphorus concentration dilution curve and phosphorus nutrition diagnosis of winter wheat in Guanzhong plain. Journal of Plant Nutrition and Fertilizers, 2022, 28(11): 2011-2019. (in Chinese)
[32]
张艾明, 徐玉梅, 朱建宇, 余洪茜, 刘苏蓝. 蒙东地区水肥耦合对紫花苜蓿土壤磷组分的影响. 应用生态学报, 2021, 32(11): 4004-4010.

doi: 10.13287/j.1001-9332.202111.028
ZHANG A M, XU Y M, ZHU J Y, YU H X, LIU S L. Effects of the coupling water and fertilizer on soil phosphorus components in alfalfa field in Eastern Inner Mongolia, China. Chinese Journal of Applied Ecology, 2021, 32(11): 4004-4010. (in Chinese)
[33]
戴健. 旱地冬小麦产量、养分利用及土壤硝态氮对长期施用氮磷肥和降水的响应[D]. 杨凌: 西北农林科技大学, 2016.
DAI J. Responses of winter wheat yield, nutrient utilization and nitrate in soil to long term nitrogen and phosphorus fertilization and precipitation on dryland[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[34]
HU Y T, HAO M D, WEI X R, CHEN X, ZHAO J. Contribution of fertilisation, precipitation, and variety to grain yield in winter wheat on the semiarid Loess Plateau of China. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2016, 66(5): 406-416.
[35]
贾建英, 方锋, 万信, 韩兰英, 王兴, 周忠文, 梁芸, 王小巍, 王帆, 黄鹏程. 1981—2020年黄土旱塬区冬小麦田耗水组分特征及其影响. 农业工程学报, 2022, 38(19): 78-86.
JIA J Y, FANG F, WAN X, HAN L Y, WANG X, ZHOU Z W, LIANG Y, WANG X W, WANG F, HUANG P C. Characteristics of the water consumption components of winter wheat fields and their effects in the Loess Plateau from 1981 to 2020. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(19): 78-86. (in Chinese)
[36]
ZHU Y J, CUI Y Q. Soil water dynamics and winter wheat performance under precipitation change in the Loess Tableland Region. Agronomy Journal, 2019, 111(5): 2184-2192.
[37]
贾建英, 贺楠, 韩兰英, 万信, 王兴, 梁芸, 王小巍, 王帆, 黄鹏程. 黄土旱塬区麦田休闲期降水与土壤贮水的变化特征. 水土保持研究, 2022, 29(6): 97-103.
JIA J Y, HE N, HAN L Y, WAN X, WANG X, LIANG Y, WANG X W, WANG F, HUANG P C. Variation characteristics of precipitation and soil water storage in winter wheat field during fallow period in rainfed area of the loess plateau. Research of Soil and Water Conservation, 2022, 29(6): 97-103. (in Chinese)
[38]
ZHANG Y J, WANG S L, WANG H, WANG R, WANG X L, LI J. Crop yield and soil properties of dryland winter wheat-spring maize rotation in response to 10-year fertilization and conservation tillage practices on the Loess Plateau. Field Crops Research, 2018, 225: 170-179.
[39]
贾振宇. 黄泛区土壤氮磷空间变异特征及影响因素分析: 以周口为例[D]. 开封: 河南大学, 2016.
JIA Z Y. Spatial variation characteristics of soil N, P and the impact factors in flooded area of the Yellow River[D]. Kaifeng: Henan University, 2016. (in Chinese)
[40]
张扬. 干旱胁迫及施肥对作物根系提水作用的影响[D]. 杨凌: 西北农林科技大学, 2009.
ZHANG Y. Effects of drought stress and fertilizer application on hydraulic lift in crop root system[D]. Yangling: Northwest A & F University, 2009. (in Chinese)
[41]
HANSEL F D, AMADO T J C, DIAZ D A R, ROSSO L H M, NICOLOSO F T, SCHORR M. Phosphorus Fertilizer Placement and Tillage Affect Soybean Root Growth and Drought Tolerance. Agronomy Journal, 2017, 109(6): 2936-2944.
[42]
王文翔, 孙敏, 林文, 任爱霞, 薛建福, 余少波, 张蓉蓉, 高志强. 不同降雨年型磷肥对旱地小麦根系特征、磷素吸收利用和产量的影响. 应用生态学报, 2021, 32(3): 895-905.

doi: 10.13287/j.1001-9332.202103.006
WANG W X, SUN M, LIN W, REN A X, XUE J F, YU S B, ZHANG R R, GAO Z Q. Effects of phosphorus fertilizer on root characteristics, uptake and utilization of phosphorus and yield of dryland wheat with contrasting yearly rainfall pattern. Chinese Journal of Applied Ecology, 2021, 32(3): 895-905. (in Chinese)
[43]
MACDONALD G K, BENNETT E M, POTTER P A, RAMANKUTTY N. Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 3086-3091.
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[7] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[8] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[9] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[10] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[11] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[12] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[13] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[14] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[15] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!