Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (14): 2803-2814.doi: 10.3864/j.issn.0578-1752.2024.14.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Influences of Long-Term Appling Different Fertilizers on the Activities and Abundances of Canocial Ammonia Oxidizers and Comammox in Paddy Soil

ZHANG XiaoQin1(), YIN Chang2, LI Zheng1, TANG Xu2, LI Yan2, WU ChunYan2()   

  1. 1 Zhejiang Agricultural Product Green Development Center, Hangzhou 310003
    2 Institute of Environmental, Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
  • Received:2023-08-02 Accepted:2024-05-13 Online:2024-07-16 Published:2024-07-24
  • Contact: WU ChunYan

Abstract:

【Objective】 This work aimed to investigate the impact of long-term applying organic and inorganic fertilizers on the abundance and activities of complete ammonia oxidizers (Comammox), ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as the abundances of Nitrospira and Nitrobacter in paddy soil, providing a scientific basis for mitigating greenhouse gas emissions and promoting sustainable agricultural production.【Method】 By utilizing multiple specific inhibitors (i.e., acetylene, 1-octyne, and DMPP) in conjunction with real-time quantitative PCR (qPCR), this work examined the differences in activities and abundances of Comammox, AOA, and AOB as well as the abundances of Nitrobacter and Nitrospira in a paddy soil under four fertilization regimes: plots without fertilizer (CK), with manure (M), with chemical fertilizer (NPK), and with combination of manure and chemical fertilizer (MNPK).【Result】 The long-term application of organic fertilizer significantly stimulated the activities of Comammox and AOA (Two-way ANOVA, P<0.001). In those plots solely receiving organic manure, Comammox accounted for as high as 64.2% of total ammonia oxidizing activity, while the inorganic fertilizer application only enhanced the activity of AOB (Two-way ANOVA, P<0.001). qPCR demonstrated that chronic organic amendment significantly increased the abundances of AOA, Nitrospira, Comammox clade A and Clade B (Two-way ANOVA, P<0.001); whereas inorganic amendment increased the abundances of AOB and Nitrobacter (Two-way ANOVA, P<0.001). The correlation analysis revealed there were positive correlations between activities of AOA and Comammox with moisture content, organic matter (OM), total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), alkaline hydrolysable nitrogen (AN), as well as AOA and Nitrospira abundances, while the activity of Comammox was positively correlated with the abundance of Comammox clade A as well. Additionally, the activity of AOB showed positive correlations with AOB and Nitrobacter abundances, nitrate content, and available potassium (AK).【Conclusion】 Comammox played an important role in nitrification of the tested paddy soil, with its abundance and activity primarily influenced by the changes in moisture content, OM, TN, TP, AP, and AN etc..

Key words: Comammox, nitrification activity, population abundance, organic fertilizers, chemical fertilizers, qPCR

Table 1

The theoretical transforming pathways of nitrate and nitrite under different inhibitor treatments"

途径 Pathway N CH DP OC
硝酸盐和亚硝酸消耗
Consumption of nitrate and nitrite
异养硝化 Heterotrophic nitrification
AOA
AOB
Comammox

Table 2

The basic soil physic-chemical properties under different fertilization treatments"

处理
Treatment
pH 含水量Water content
(%)
硝态氮
含量
NO3--N
(mg·kg-1)
铵态氮
含量
NH4+-N
(mg·kg-1)
有机质
含量
Organic matter
(g·kg-1)
全氮含量Total nitrogen
(g·kg-1)
全磷含量Total phosphorus
(g·kg-1)
全钾含量Total potassium
(g·kg-1)
有效磷
含量Available phosphorus
(mg·kg-1)
速效钾
含量Available potassium
(mg·kg-1)
碱解氮含量Alkaline hydrolyzable nitrogen
(mg·kg-1)
CK 6.09b 25.35a 17.61a 18.12a 19.74a 1.24a 0.79a 23.29a 55.39a 64.60a 102.16a
NPK 5.49a 25.71a 63.77b 18.62a 19.47a 1.30a 1.11ac 24.19a 135.71d 88.92b 112.24a
M 6.39c 29.88b 25.08a 26.13b 29.73b 1.88b 1.42bc 24.50a 180.29b 66.65a 149.62b
MNPK 5.84b 29.51b 61.50b 18.17a 34.32c 2.29c 1.86b 24.39a 248.61c 94.55b 172.28c

Fig. 1

The shift in concentrations of NO2- and NO3- of soil samples of different fertilization regimes under different inhibitor treatments"

Fig. 2

The nitrifying activities (A) of AOA, AOB, and Comammox as well as their respective contributions to total autotrophic nitrifying activity (B) under different fertilization regimes"

Table 3

The effects of inorganic and organic fertilization on ammonia oxidizers’ activities and population abundances of related functional guilds analyzed by two-way ANOVA"

项目
Item
有机肥
Organic fertilization
无机肥
Inorganic fertilization
无机肥×有机肥
Organic fertilization× Inorganic fertilization
F1,8 P F1,8 P F1,8 P
AOA活性AOA activity 82.83 <0.001 3.02 0.120 5.48 0.047
AOB活性AOB activity 0.77 0.134 24.89 <0.001 2.78 0.134
Comammox活性Comammox activity 112.82 <0.001 0.56 0.477 0.10 0.760
AOA丰度AOA abundance 85.64 <0.001 14.84 <0.001 10.85 0.002
AOB丰度AOB abundance 23.68 <0.001 1179.28 <0.001 47.10 <0.001
Comammox分枝A丰度ComA abundance 31.62 <0.001 14.15 <0.001 5.65 0.024
Comammox分枝B丰度ComB abundance 36.64 <0.001 11.04 0.002 35.65 <0.001
Nitrobacter丰度Nitrobacter abundance 59.57 <0.001 470.66 <0.001 62.40 <0.001
Nitrospira丰度Nitrospira abundance 187.22 <0.001 0.042 0.840 0.75 0.394

Fig. 3

The inhibitory effect of 1-octyne and C2H2 on the population growth of AOB in NPK and MNPK treatments"

Fig. 4

The abundances of ammonia oxidizers and nitrifiers under different fertilization treatments"

Fig. 5

The Pearson correlation coefficient matrix plot H2O: Water content; OM: Organic matter; TN: Total nitrogen; TP: Total phosphorus; TK: Total potassium; AP: Available phosphorus; AK: Available potassium; AN: Alkaline hydrolyzable nitrogen; AOA: AOA activity; AOB: AOB activity; Comammox: Comammox activity; qAOB: AOB abundance; qAOA: AOA abundance; qComA: Abundance of Comammox clade A; qComB: Abundance of Comammox clade B; qNitrobacter: Nitrobacter abundance; qNitrospira: Nitrospira abundance, respectively. Only correlation coefficient with a significance level P<0.05 was shown"

[1]
GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle. Nature, 2008, 451: 293-296.
[2]
PROSSER J I, HINK L, GUBRY-RANGIN C, NICOL G W. Nitrous oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies. Global Change Biology, 2020, 26(1): 103-118.

doi: 10.1111/gcb.14877 pmid: 31638306
[3]
DAIMS H, LÜCKER S, WAGNER M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology, 2016, 24(9): 699-712.

doi: S0966-842X(16)30045-2 pmid: 27283264
[4]
PROSSER J I, NICOL G W. Archaeal and bacterial ammonia- oxidisers in soil: The quest for niche specialisation and differentiation. Trends in Microbiology, 2012, 20(11): 523-531.
[5]
DAIMS H, LEBEDEVA E V, PJEVAC P, HAN P, HERBOLD C, ALBERTSEN M, JEHMLICH N, PALATINSZKY M, VIERHEILIG J, BULAEV A, KIRKEGAARD R H, VON BERGEN M, RATTEI T, BENDINGER B, NIELSEN P H, WAGNER M. Complete nitrification by Nitrospira bacteria. Nature, 2015, 528: 504-509.
[6]
HU H W, HE J Z. Comammox-a newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments, 2017, 17(12): 2709-2717.
[7]
HU J J, ZHAO Y X, YAO X W, WANG J Q, ZHENG P, XI C W, HU B L. Dominance of comammox Nitrospira in soil nitrification. Science of the Total Environment, 2021, 780: 146558.
[8]
WANG X M, WANG S Y, JIANG Y Y, ZHOU J M, HAN C, ZHU G B. Comammox bacterial abundance, activity, and contribution in agricultural rhizosphere soils. Science of the Total Environment, 2020, 727: 138563.
[9]
WANG S Y, WANG X M, JIANG Y Y, HAN C, JETTEN M S M, SCHWARK L, ZHU G B. Abundance and functional importance of complete ammonia oxidizers and other nitrifiers in a riparian ecosystem. Environmental Science and Technology, 2021, 55(8): 4573-4584.

doi: 10.1021/acs.est.0c00915 pmid: 33733744
[10]
TAYLOR A E, VAJRALA N, GIGUERE A T, GITELMAN A I, ARP D J, MYROLD D D, SAYAVEDRA-SOTO L, BOTTOMLEY P J. Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing thaumarchaea and bacteria. Applied and Environmental Microbiology, 2013, 79(21): 6544-6551.

doi: 10.1128/AEM.01928-13 pmid: 23956393
[11]
YIN C, FAN X P, CHEN H, JIANG Y S, YE M J, YAN G C, PENG H Y, WAKELIN S A, LIANG Y C. 3, 4-Dimethylpyrazole phosphate is an effective and specific inhibitor of soil ammonia-oxidizing bacteria. Biology and Fertility of Soils, 2021, 57(6): 753-766.
[12]
ZHAO J, BELLO M O, MENG Y Y, PROSSER J I, GUBRY- RANGIN C. Selective inhibition of ammonia oxidising archaea by simvastatin stimulates growth of ammonia oxidising bacteria. Soil Biology and Biochemistry, 2020, 141: 107673.
[13]
SUN D Y, TANG X F, LI J, LIU M, HOU L J, YIN G Y, CHEN C, ZHAO Q, KLÜMPER U, HAN P. Chlorate as a comammox Nitrospira specific inhibitor reveals nitrification and N2O production activity in coastal wetland. Soil Biology and Biochemistry, 2022, 173: 108782.
[14]
OUYANG Y, NORTON J M, STARK J M, REEVE J R, HABTESELASSIE M Y. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biology and Biochemistry, 2016, 96: 4-15.
[15]
TAN C, YIN C, LI W J, FAN X P, JIANG Y S, LIANG Y C. Comammox Nitrospira play a minor role in N2O emissions from an alkaline arable soil. Soil Biology and Biochemistry, 2022, 171: 108720.
[16]
JIANG L P, YU J, WANG S Y, WANG X M, SCHWARK L, ZHU G B. Complete ammonia oxidization in agricultural soils: High ammonia fertilizer loss but low N2O production. Global Change Biology, 2023, 29(7): 1984-1997.
[17]
SHEN J P, ZHANG L M, DI H J, HE J Z. A review of ammonia- oxidizing bacteria and archaea in Chinese soils. Frontiers in Microbiology, 2012, 3: 296.
[18]
TOURNA M, FREITAG T E, NICOL G W, PROSSER J I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology, 2008, 10(5): 1357-1364.

doi: 10.1111/j.1462-2920.2007.01563.x pmid: 18325029
[19]
ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63(12): 4704-4712.

doi: 10.1128/aem.63.12.4704-4712.1997 pmid: 9406389
[20]
JIANG R, WANG J G, ZHU T, ZOU B, WANG D Q, RHEE S K, AN D, JI Z Y, QUAN Z X. Use of newly designed primers for quantification of complete ammonia-oxidizing (Comammox) bacterial clades and strict nitrite oxidizers in the genus Nitrospira. Applied and Environmental Microbiology, 2020, 86(20): e01775-20.
[21]
WERTZ S, POLY F, LE ROUX X, DEGRANGE V. Development and application of a PCR-denaturing gradient gel electrophoresis tool to study the diversity of Nitrobacter-like nxrA sequences in soil. FEMS Microbiology Ecology, 2008, 63(2): 261-271.
[22]
HONG Y G, JIAO L J, WU J P. New primers, taxonomic database and cut-off value for processing nxrB gene high-throughput sequencing data by MOTHUR. Journal of Microbiological Methods, 2020, 173: 105939.
[23]
LI C Y, HU H W, CHEN Q L, CHEN D L, HE J Z. Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil Biology and Biochemistry, 2019, 138: 107609.
[24]
王智慧. 土壤中全程和半程硝化微生物的生态位分化及功能重要性研究[D]. 重庆: 西南大学, 2021.
WANG Z H. Niche differentiation and functional importance of complete and incomplete nitrifiers in the soil[D]. Chongqing: Southwest University, 2021. (in Chinese)
[25]
YIN C, FAN X P, CHEN H, YE M J, YAN G C, LI T Q, PENG H Y, E S Z, CHE Z X, WAKELIN S A, LIANG Y C. Inhibition of ammonia- oxidizing bacteria promotes the growth of ammonia-oxidizing archaea in ammonium-rich alkaline soils. Pedosphere, 2022, 32(4): 532-542.
[26]
HE J Z, HU H W, ZHANG L M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology and Biochemistry, 2012, 55: 146-154.
[27]
XIA W W, ZHANG C X, ZENG X W, FENG Y Z, WENG J H, LIN X G, ZHU J G, XIONG Z Q, XU J, CAI Z C, JIA Z J. Autotrophic growth of nitrifying community in an agricultural soil. The ISME Journal, 2011, 5(7): 1226-1236.
[28]
TOURNA M, STIEGLMEIER M, SPANG A, KÖNNEKE M, SCHINTLMEISTER A, URICH T, ENGEL M, SCHLOTER M, WAGNER M, RICHTER A, SCHLEPER C. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8420-8425.
[29]
DONG W L, LI X, WANG E Z, LIU X D, WANG M, SONG A L, YIN H Q, FAN F L. Linking microbial taxa and the effect of mineral nitrogen forms on residue decomposition at the early stage in arable soil by DNA-qSIP. Geoderma, 2021, 400: 115127.
[30]
HINK L, GUBRY-RANGIN C, NICOL G W, PROSSER J I. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. The ISME Journal, 2018, 12(4): 1084-1093.
[31]
LEVIČNIK-HÖFFERLE Š, NICOL G W, AUSEC L, MANDIĆ-MULEC I, PROSSER J I. Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiology Ecology, 2012, 80(1): 114-123.
[32]
LIU H Y, QIN S Y, LI Y, ZHAO P, NIE Z J, LIU H E. Comammox Nitrospira and AOB communities are more sensitive than AOA community to different fertilization strategies in a fluvo-aquic soil. Agriculture, Ecosystems and Environment, 2023, 342: 108224.
[33]
SUN P, ZHANG S X, WU Q H, ZHU P, RUAN Y Z, WANG Q. pH and ammonium concentration are dominant predictors of the abundance and community composition of comammox bacteria in long-term fertilized Mollisol. Applied Soil Ecology, 2021, 168: 104139.
[34]
PALOMO A, PEDERSEN A G, FOWLER S J, DECHESNE A, SICHERITZ-PONTÉN T, SMETS B F. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. The ISME Journal, 2018, 12(7): 1779-1793.
[35]
JONES C M, HALLIN S. Geospatial variation in co-occurrence networks of nitrifying microbial guilds. Molecular Ecology, 2019, 28(2): 293-306.

doi: 10.1111/mec.14893 pmid: 30307658
[36]
DAEBELER A, BODELIER P L E, YAN Z, HEFTING M M, JIA Z J, LAANBROEK H J. Interactions between thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. The ISME Journal, 2014, 8(12): 2397-2410.
[37]
GAO W L, FU Y J, FAN C H, ZHANG W, WANG Y S, LI N, LIU H R, CHEN X, LIU Y Q, WU X L, LI Q F, CHEN M. Factors predictive of the biogeographic distribution of comammox Nitrospira in terrestrial ecosystems. Soil Biology and Biochemistry, 2023, 184: 109079.
[38]
LIN Y X, HU H W, YE G P, FAN J B, DING W X, HE Z Y, ZHENG Y, HE J Z. Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: A meta-analysis. Geoderma, 2021, 404: 115395.
[39]
HUANG X R, ZHAO J, SU J, JIA Z, SHI X L, WRIGHT A, ZHU-BARKER X, JIANG X J. Neutrophilic bacteria are responsible for autotrophic ammonia oxidation in an acidic forest soil. Soil Biology and Biochemistry, 2018, 119: 83-89.
[40]
ZHANG Q, LI Y, HE Y, LIU H Y, DUMONT M, BROOKES P, XU J M. Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soils. Soil Biology and Biochemistry, 2019, 131: 229-237.
[41]
PICONE N, POL A, MESMAN R, VAN KESSEL M A H J, CREMERS G, VAN GELDER A H, VAN ALEN T A, JETTEN M S M, LÜCKER S, OP DEN CAMP H J M. Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium. The ISME Journal, 2021, 15: 1150-1164.
[42]
HAYATSU M, TAGO K, UCHIYAMA I, TOYODA A, WANG Y, SHIMOMURA Y, OKUBO T, KURISU F, HIRONO Y, NONAKA K, AKIYAMA H, ITOH T, TAKAMI H. An acid-tolerant ammonia- oxidizing γ-proteobacterium from soil. The ISME Journal, 2017, 11(5): 1130-1141.
[43]
LI C Y, HE Z Y, HU H W, HE J Z. Niche specialization of comammox Nitrospira in terrestrial ecosystems: Oligotrophic or copiotrophic? Critical Reviews in Environmental Science and Technology, 2023, 53(2): 161-176.
[44]
LIU T L, WANG Z H, WANG S L, ZHAO Y P, WRIGHT A L, JIANG X J. Responses of ammonia-oxidizers and comammox to different long-term fertilization regimes in a subtropical paddy soil. European Journal of Soil Biology, 2019, 93: 103087.
[45]
LIN Y, YE G, DING W, HU H W, ZHENG Y, FAN J B, WAN S, DUAN C J, HE J Z. Niche differentiation of comammox Nitrospira and canonical ammonia oxidizers in soil aggregate fractions following 27-year fertilizations. Agriculture, Ecosystems and Environment, 2020, 304: 107147.
[1] ZHANG Ying, YUAN QingYun, REN Fang, HU GuoJun, FAN XuDong, DONG YaFeng. Establishment of RT-qPCR Detection Technology for GINV and Its Spatial and Temporal Distribution in Different Grape Rootstocks [J]. Scientia Agricultura Sinica, 2024, 57(14): 2771-2780.
[2] WANG XiaoYang, PENG Zhen, XING AiShuang, ZHAO YingRui, MA XinLi, LIU Fang, DU XiongMing, HE ShouPu. Identification and Expression Analysis of Fuzz Fiber Development Related Long Noncoding RNAs in Gossypium arboreum [J]. Scientia Agricultura Sinica, 2023, 56(23): 4565-4584.
[3] TANG Wei, ZHANG ChengLing, YANG DongJing, MA JuKui, CHEN JingWei, GAO FangYuan, XIE YiPing, SUN HouJun. Complete Genomic Sequence Characteristics and Establishment of qPCR Detection Technique of Sweet Potato Virus E in China [J]. Scientia Agricultura Sinica, 2023, 56(20): 4010-4020.
[4] CAO Peng, XU JianJian, LI ChuXin, WANG XinLiang, WANG ChunQing, SONG ChenHu, SONG Zhen. Real-Time Quantitative PCR Detection of Citrus Yellow Mosaic Virus and Its Spatial and Temporal Distribution in Host Plants [J]. Scientia Agricultura Sinica, 2023, 56(18): 3574-3584.
[5] YU YongChao, FAN WenJing, LIU Ming, ZHANG QiangQiang, ZHAO Peng, JIN Rong, WANG Jing, ZHU XiaoYa, TANG ZhongHou. Genome-Wide Association Study of Nitrogen Use Efficient Traits in Sweetpotato Seeding Stage and Screening and Validation of Candidate Genes [J]. Scientia Agricultura Sinica, 2023, 56(18): 3500-3510.
[6] LI YunJing, XIAO Fang, WU YuHua, LI Jun, GAO HongFei, ZHAI ShanShan, LIANG JinGang, WU Gang. Establishment and Standardization of Event-Specific Real-Time Quantitative PCR Detection Method of Stress-Resistant Soybean IND-ØØ41Ø-5 [J]. Scientia Agricultura Sinica, 2023, 56(13): 2443-2460.
[7] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[8] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[9] WANG JinYu,CHENG WenLong,HUAI ShengChang,WU HongLiang,XING TingTing,YU WeiJia,WU Ji,LI Min,LU ChangAi. Effects of Deep Plowing and Organic-Inorganic Fertilization on Soil Water and Nitrogen Leaching in Rice Field [J]. Scientia Agricultura Sinica, 2021, 54(20): 4385-4395.
[10] ZHAO LiQun,QIU YanHong,ZHANG XiaoFei,LIU Hui,YANG JingJing,ZHANG Jian,ZHANG HaiJun,XU XiuLan,WEN ChangLong. The Detection of Citrullus lanatus Cryptic Virus Using TaqMan-qPCR Method [J]. Scientia Agricultura Sinica, 2021, 54(20): 4337-4347.
[11] TIAN Yuan,WANG Li,LONG Feng,ZAN LinSen,CHENG Gong. Codon Optimization of Human Lysozyme and High-Efficiency Expression in Bovine Mammary Cells [J]. Scientia Agricultura Sinica, 2020, 53(18): 3805-3817.
[12] Lü ZhenZhen,LIU XiuMei,ZHONG JinFeng,LAN XianJin,HOU HongQian,JI JianHua,FENG ZhaoBin,LIU YiRen. Effects of Long-Term Fertilization on Mineralization of Soil Organic Carbon in Red Paddy Soil [J]. Scientia Agricultura Sinica, 2019, 52(15): 2636-2645.
[13] WANG HuiYing, XU MingGang, ZHOU BaoKu, MA Xiang, DUAN YingHua. Response and Driving Factors of Bacterial and Fungal Community to Long-Term Fertilization in Black Soil [J]. Scientia Agricultura Sinica, 2018, 51(5): 914-925.
[14] GE Bo, WANG BaoBao, GUO Cheng, SUN SuLi, CHEN GuoKang, WANG XiaoMing, ZHU ZhenDong, DUAN CanXing. Composition and quantitative analysis of Fusarium species in maize rhizosphere soil [J]. Scientia Agricultura Sinica, 2018, 51(19): 3683-3693.
[15] YANG QingLong, LIU Peng, DONG ShuTing, ZHANG JiWang, ZHAO Bin, LI RongFa, REN Hao, REN Han, HAN XiangFei. Effects of Combined Application of Manure and Chemical Fertilizers on Loss of Gaseous Nitrogen and Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2018, 51(13): 2476-2488.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!