Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (8): 1469-1489.doi: 10.3864/j.issn.0578-1752.2024.08.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Remote Sensing Detection of Cropping System and Its Spatial-Temporal Pattern in China

ZHANG SuXin1(), SHEN Ge2, YU QiangYi1(), WU WenBin1   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land of Northern China/Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2 Institute of Land and Urban-Rural Development, Zhejiang University of Finance and Economics, Hangzhou 310018
  • Received:2023-07-07 Accepted:2023-10-09 Online:2024-04-16 Published:2024-04-24
  • Contact: YU QiangYi

Abstract:

【Objective】Cropping systems of cropland are the concrete embodiment of the mode of agricultural production, which reflect the coupled human-environment interactions. The formation is affected by natural resource elements and human land use behavior. This study aims to scientifically understand the spatial-temporal pattern of cropping systems, which helps to optimize agricultural distribution, improve agricultural production capacity, and realize the sustainable agriculture. 【Method】This study combined remote sensing monitoring with spatial decision tree models and other means to construct an inter-annual detection method system for cropping systems, which is designed for Chinese agricultural conditions, and then spatial pattern of cropping systems was analyzed. Firstly, the connotation of cropping systems was defined by identifying concepts such as cropping intensity, multiple cropping index, and considering of characteristics of “long-lasting” “periodicity” “stability”. Secondly, the indicators (i.e. continuity and frequency) were constructed, and were calculated at the pixel scale by the moving time window. Finally, the significance of the cropping intensity and characteristics of cropping system was evaluated. The decision tree method was also applied to determine the type of cropping systems, and the spatial-temporal heterogeneity of cropping systems in different regions was analyzed from the aspects of regional differences and dynamic laws. 【Result】 (1) Quantitatively, the largest area, 53.52%, is occupied by the single-cropping system, followed by the double-cropping system at 23.28%, the seasonal fallow system (i.e. 3 crops in 2 years) and the annual fallow system at 12.80% and 6.94%, respectively. (2) Spatially, the single-cropping system, double-cropping system, seasonal fallow system and annual fallow system are concentrated in Northeast China, North China, South of Yangtze River and “Sickle Bend” areas, respectively. (3) Temporally, it revealed the heterogeneity of cropping system and static multiple cropping index in the time dimension. For example, the regions with multiple cropping index of 1 in 2018 consist of 75.18% single-cropping system, 6.60% double-cropping system, 8.92% seasonal fallow system and 8.02% annual fallow system. 【Conclusion】This study proposed a method for mapping inter-annual cropping systems, combining remote sensing temporal monitoring and spatial decision tree models. It revealed the spatial pattern of cropping systems which is gathered by zone and cropping intensity is higher in the south and lower in the north. The Songnen Plain, “Sickle Bend” and other spatial gathering areas were intuitively displayed. Also, the differences between multi-cropping and cropping system were compared, which were mainly manifested in the spatial inconsistency between the cropping system and the annual multiple cropping index, as well as the periodicity of the cropping system. The results will provide case support for rationally increasing the cropland multi-cropping intensity and promoting the implementation of the “grain storage in the ground” strategy.

Key words: cropland, cropping system, multiple cropping, land fallow and crop rotation, inter-annual, spatial-temporal pattern

Fig. 1

The multiple cropping index of China in 2018"

Fig. 2

Changes in annual average multiple cropping index from 2001 to 2018"

Fig. 3

Changes in proportion of multiple cropping index from 2001 to 2018"

Fig. 4

Framework of the inter-annual cropping system classification method"

Fig. 5

The spatial and quantitative characteristics of cropping intensity"

Table 1

Proportion of each range of average cropping intensity"

年均种植强度<BOLD>A</BOLD>verage cropping intensity [0,1) 1 (1,2) 2 (2,3]
占比Proportion (%) 16.93 24.72 48.74 8.52 1.09

Fig. 6

The spatial distribution for continuity of cropping systems"

Fig. 7

The spatial distribution for frequency of cropping systems"

Fig. 8

The spatial and quantitative characteristics of cropping systems"

Fig. 9

The comparison of cropping systems and multiple cropping index"

Fig. 10

Breakdown of the types of cropping systems in the single-cropping zone in 2018"

Table 2

Consistency of cropping systems from 2001 to 2018 and cropping systems from 2001 to 2021"

参照
Reference
比较
Comparison
2001—2021年种植制度
Cropping systems from 2001 to 2021
2001—2018年种植制度
Cropping systems from 2001 to 2018
组内
Group (%)
全局
Overall (%)
一年一熟
Single-cropping
56.64% 一年一熟-一年一熟Single-cropping and Single-cropping 97.79 55.39
一年一熟-一年两熟Single-cropping and Double-cropping 0.55 0.31
一年一熟-季节性休耕Single-cropping and Seasonal fallow 0.97 0.55
一年一熟-年度休耕Single-cropping and Annual fallow 0.44 0.25
一年一熟-未识别Single-cropping and Unknown 0.25 0.14
一年两熟
Double-cropping
25.36% 一年两熟-一年一熟Double-cropping and Single-cropping 1.01 0.26
一年两熟-一年两熟Double-cropping and Double-cropping 95.95 24.33
一年两熟-季节性休耕Double-cropping and Seasonal fallow 1.27 0.32
一年两熟-年度休耕Double-cropping and Annual fallow 1.25 0.32
一年两熟-未识别Double-cropping and Unknown 0.53 0.13
季节性休耕
Seasonal fallow
10.49% 季节性休耕-一年一熟Seasonal fallow and Single-cropping 6.68 0.70
季节性休耕-一年两熟Seasonal fallow and Double-cropping 4.84 0.51
季节性休耕-季节性休耕Seasonal fallow and Seasonal fallow 85.17 8.93
季节性休耕-年度休耕Seasonal fallow and Annual fallow 1.07 0.11
季节性休耕-未识别Seasonal fallow and Unknown 2.21 0.23
年度休耕
Annual fallow
5.29% 年度休耕-一年一熟Annual fallow and Single-cropping 22.65 1.20
年度休耕-一年两熟Annual fallow and Double-cropping 0.41 0.02
年度休耕-季节性休耕Annual fallow and Seasonal fallow 0.68 0.04
年度休耕-年度休耕Annual fallow and Annual fallow 72.59 3.84
年度休耕-未识别Annual fallow and Unknown 3.69 0.20
总体一致性 Overall consistency 92.50

Fig. 11

The consistency of cropping systems during different research periods"

[1]
RAY D K, GERBER J S, MACDONALD G K, WEST P C. Climate variation explains a third of global crop yield variability. Nature Communications, 2015, 6: 5989.

doi: 10.1038/ncomms6989 pmid: 25609225
[2]
WAHA K, MULLER C, BONDEAU A, DIETRICH J P, KURUKULASURIYA P, HEINKE J, LOTZE-CAMPEN H. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change, 2013, 23(1): 130-143.

doi: 10.1016/j.gloenvcha.2012.11.001
[3]
ZHU P, BURNEY J, CHANG J F, JIN Z N, MUELLER N D, XIN Q C, XU J L, YU L, MAKOWSKI D, CIAIS P. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nature Climate Change, 2022, 12: 1016-1023.

doi: 10.1038/s41558-022-01492-5
[4]
RAY D K, WEST P C, CLARK M, GERBER J S, PRISHCHEPOV A V, CHATTERJEE S. Climate change has likely already affected global food production. PLoS ONE, 2019, 14(5): e0217148.

doi: 10.1371/journal.pone.0217148
[5]
COHN A S, VANWEY L K, SPERA S A, MUSTARD J F. Cropping frequency and area response to climate variability can exceed yield response. Nature Climate Change, 2016, 6: 601-604.

doi: 10.1038/nclimate2934
[6]
HEINO M, KINNUNEN P, ANDERSON W, RAY D K, PUMA M J, VARIS O, SIEBERT S, KUMMU M. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Scientific Reports, 2023, 13(1): 3583.

doi: 10.1038/s41598-023-29378-2 pmid: 36869041
[7]
FU J, JIAN Y W, WANG X H, LI L, CIAIS P, ZSCHEISCHLER J, WANG Y, TANG Y H, MULLER C, WEBBER H, et al. Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades. Nature Food, 2023, 4(5): 416-426.

doi: 10.1038/s43016-023-00753-6
[8]
U.S. Department of Agriculture. Action plan for climate adaptation and resilience. 2021, https://www.sustainability.gov/pdfs/usda-2021-cap.pdf.
[9]
刘巽浩, 陈阜, 吴尧. 多熟种植——中国农业的中流砥柱. 作物杂志, 2015(6): 1-9.
LIU X H, CHEN F, WU Y. Multiple cropping: The principal part of China’s agriculture. Crops, 2015(6): 1-9. (in Chinese)
[10]
杨婷, 赵文利, 王哲怡, 陆星彤, 卢珊. 基于遥感影像NDVI数据的中国种植制度分布变化. 中国农业科学, 2015, 48(10): 1915-1925. doi: 10.3864/j.issn.0578-1752.2015.10.005.
YANG T, ZHAO W L, WANG Z Y, LU X T, LU S. Changes of cropping system in China based on remotely sensed NDVI data. Scientia Agricultura Sinica, 2015, 48(10): 1915-1925. doi: 10.3864/j.issn.0578-1752.2015.10.005. (in Chinese)
[11]
吴文斌, 余强毅, 陆苗, 项铭涛, 谢安坤, 杨鹏, 唐华俊. 耕地复种指数研究的关键科学问题. 中国农业科学, 2018, 51(9): 1681-1694. doi: 10.3864/j.issn.0578-1752.2018.09.006.
WU W B, YU Q Y, LU M, XIANG M T, XIE A K, YANG P, TANG H J. Key research priorities for multiple cropping systems. Scientia Agricultura Sinica, 2018, 51(9): 1681-1694. doi: 10.3864/j.issn.0578-1752.2018.09.006. (in Chinese)
[12]
WAHA K, DIETRICH J P, PORTMANN F T, SIEBERT S, THORNTON P K, BONDEAU A, HERRERO M. Multiple cropping systems of the world and the potential for increasing cropping intensity. Global Environmental Change: Human and Policy Dimensions, 2020, 64: 102131.

doi: 10.1016/j.gloenvcha.2020.102131
[13]
唐华俊, 吴文斌, 余强毅, 夏天, 杨鹏, 李正国. 农业土地系统研究及其关键科学问题. 中国农业科学, 2015, 48(5): 900-910. doi: 10.3864/j.issn.0578-1752.2015.05.08.
TANG H J, WU W B, YU Q Y, XIA T, YANG P, LI Z G. Key research priorities for agricultural land system studies. Scientia Agricultura Sinica, 2015, 48(5): 900-910. doi: 10.3864/j.issn.0578-1752.2015.05.08. (in Chinese)
[14]
POORE J, NEMECEK T. Reducing food’s environmental impacts through producers and consumers. Science, 2018, 360(6392): 987-992.

doi: 10.1126/science.aaq0216
[15]
WANG X, LI X B. Impacts of land fragmentation and cropping system on the productivity and efficiency of grain producers in the North China Plain: Taking Cangxian County of Hebei Province as an example. Journal of Resources and Ecology, 2020, 11(6): 580-588.

doi: 10.5814/j.issn.1674-764x.2020.06.005
[16]
UDDIN M J, HOODA P S, MOHIUDDIN A S M, SMITH M, WALLER M. Land inundation and cropping intensity influences on organic carbon in the agricultural soils of Bangladesh. Catena, 2019, 178: 11-19.

doi: 10.1016/j.catena.2019.03.002
[17]
HUANG M, TIAN A L, CHEN J N, CAO F B, CHEN Y M, LIU L S. Soil bacterial communities in three rice-based cropping systems differing in productivity. Scientific Reports, 2020, 10(1): 9867.

doi: 10.1038/s41598-020-66924-8 pmid: 32555234
[18]
XIONG Z Q, LIU Y L, WU Z, ZHANG X L, LIU P L, HUANG T Q. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China. Scientific Reports, 2015, 5: 17774.

doi: 10.1038/srep17774 pmid: 26626733
[19]
GAO J Q, YANG X G, ZHENG B Y, LIU Z J, ZHAO J, SUN S, LI K N, DONG C Y. Effects of climate change on the extension of the potential double cropping region and crop water requirements in Northern China. Agricultural and Forest Meteorology, 2019, 268: 146-155.

doi: 10.1016/j.agrformet.2019.01.009
[20]
JEONG S J, HO C H, PIAO S L, KIM J W, CIAIS P, LEE Y B, JHUN J G, PARK S K. Effects of double cropping on summer climate of the North China Plain and neighbouring regions. Nature Climate Change, 2014, 4(7): 615-619.

doi: 10.1038/nclimate2266
[21]
YANG X G, CHEN F, LIN X M, LIU Z J, ZHANG H L, ZHAO J, LI K N, YE Q, LI Y, LV S, YANG P, WU W B, LI Z G, LAL R, TANG H J. Potential benefits of climate change for crop productivity in China. Agricultural and Forest Meteorology, 2015, 208: 76-84.

doi: 10.1016/j.agrformet.2015.04.024
[22]
李宇, 邱炳文, 何玉花, 陈功, 叶智燕. 基于MODIS数据的2001—2018年中国耕地复种指数反演研究. 地理科学进展, 2020, 39(11): 1874-1883.

doi: 10.18306/dlkxjz.2020.11.008
LI Y, QIU B W, HE Y H, CHEN G, YE Z Y. Cropping intensity based on MODIS data in China during 2001-2018. Progress in Geography, 2020, 39(11): 1874-1883. (in Chinese)

doi: 10.18306/dlkxjz.2020.11.008
[23]
YAN H M, LIU F, QIN Y W, NIU Z E, DOUGHTY R, XIAO X M. Tracking the spatio-temporal change of cropping intensity in China during 2000-2015. Environmental Research Letters, 2019, 14: 035008.

doi: 10.1088/1748-9326/aaf9c7
[24]
XIANG M T, YU Q Y, WU W B. From multiple cropping index to multiple cropping frequency: Observing cropland use intensity at a finer scale. Ecological Indicators, 2019, 101: 892-903.

doi: 10.1016/j.ecolind.2019.01.081
[25]
QIU B W, HU X, CHEN C C, TANG Z H, YANG P, ZHU X L, YAN C, JIAN Z Y. Maps of cropping patterns in China during 2015-2021. Scientific Data, 2022, 9(1): 479.

doi: 10.1038/s41597-022-01589-8 pmid: 35931696
[26]
QIU B W, WANG Z Z, TANG Z H, CHEN C C, FAN Z L, LI W J. Automated cropping intensity extraction from isolines of wavelet spectra. Computers and Electronics in Agriculture, 2016, 125: 1-11.

doi: 10.1016/j.compag.2016.04.015
[27]
RAMANKUTTY N, MEHRABI Z, WAHA K, JARVIS L, KREMEN C, HERRERO M, RIESEBERG L H. Trends in global agricultural land use: Implications for environmental health and food security. Annual Review of Plant Biology, 2018, 69: 789-815.

doi: 10.1146/annurev-arplant-042817-040256 pmid: 29489395
[28]
HENRY R C, ENGSTRÖM K, OLIN S, OLIN S, ALEXANDER P, ARNETH A, ROUNSEVELL M D A. Food supply and bioenergy production within the global cropland planetary boundary. PLoS ONE, 2018, 13(3): e0194695.

doi: 10.1371/journal.pone.0194695
[29]
IIZUMI T, RAMANKUTTY N. How do weather and climate influence cropping area and intensity? Global Food Security, 2015, 4: 46-50.
[30]
刘珍环, 杨鹏, 吴文斌, 李正国, 游良志. 近30年中国农作物种植结构时空变化分析. 地理学报, 2016, 71(5): 840-851.

doi: 10.11821/dlxb201605012
LIU Z H, YANG P, WU W B, LI Z G, YOU L Z. Spatio-temporal changes in Chinese crop patterns over the past three decades. Acta Geographica Sinica, 2016, 71(5): 840-851. (in Chinese)

doi: 10.11821/dlxb201605012
[31]
蒋敏, 李秀彬, 辛良杰, 谈明洪. 南方水稻复种指数变化对国家粮食产能的影响及其政策启示. 地理学报, 2019, 74(1): 32-43.

doi: 10.11821/dlxb201901003
JIANG M, LI X B, XIN L J, TAN M H. The impact of paddy rice multiple cropping index changes in Southern China on national grain production capacity and its policy implications. Acta Geographica Sinica, 2019, 74(1): 32-43. (in Chinese)

doi: 10.11821/dlxb201901003
[32]
冀正欣, 王秀丽, 李玲, 关小克, 蔚霖, 许月卿. 南阳盆地区耕地利用效率演变及其影响因素. 自然资源学报, 2021, 36(3): 688-701.

doi: 10.31497/zrzyxb.20210312
JI Z X, WANG X L, LI L, GUAN X K, YU L, XU Y Q. The evolution of cultivated land utilization efficiency and its influencing factors in Nanyang Basin. Journal of Natural Resources, 2021, 36(3): 688-701. (in Chinese)

doi: 10.31497/zrzyxb.20210312
[33]
YAO Z Y, ZHANG L J, TANG S H, LI X X, HAO T T. The basic characteristics and spatial patterns of global cultivated land change since the 1980s. Journal of Geographical Sciences, 2017, 27: 771-785.

doi: 10.1007/s11442-017-1405-5
[34]
武兰芳, 陈阜, 欧阳竹. 种植制度演变与研究进展. 耕作与栽培, 2002(3): 1-5, 14.
WU L F, CHEN F, OUYANG Z. The evolution and research progress of cropping system. Tillage and Cultivation, 2002(3): 1-5, 14. (in Chinese)
[35]
BLANCO-CANQUI H, LAI R. Cropping systems//Principles of Soil Conservation and Management. Dordrecht: Springer, 2010: 165-193.
[36]
SHEN G, YU Q Y, ZHOU Q B, WANG C, WU W B. From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity. Agricultural Systems, 2023, 204: 103535.

doi: 10.1016/j.agsy.2022.103535
[37]
苏康传, 杨庆媛, 张忠训, 毕国华. 中国耕地差异化休耕模式及技术措施探讨. 农业工程学报, 2020, 36(9): 283-291.
SU K C, YANG Q Y, ZHANG Z X, BI G H. Investigation of differential fallow patterns and technical measures for cultivated land in China. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 283-291. (in Chinese)
[38]
黄国勤, 赵其国. 中国典型地区轮作休耕模式与发展策略. 土壤学报, 2018, 55(2): 283-292.
HUANG G Q, ZHAO Q G. Mode of rotation/fallow management in typical areas of China and its development strategy. Acta Pedologica Sinica, 2018, 55(2): 283-292. (in Chinese)
[39]
董金玮, 吴文斌, 黄健熙, 尤南山, 何盈利, 闫慧敏. 农业土地利用遥感信息提取的研究进展与展望. 地球信息科学学报, 2020, 22(4): 772-783.

doi: 10.12082/dqxxkx.2020.200192
DONG J W, WU W B, HUANG J X, YOU N S, HE Y L, YAN H M. State of the art and perspective of agricultural land use remote sensing information extraction. Journal of Geo-Information Science, 2020, 22(4): 772-783. (in Chinese)
[40]
石淑芹, 曹玉青, 吴文斌, 杨鹏, 蔡为民. 耕地集约化评价指标体系与评价方法研究进展. 中国农业科学, 2017, 50(7): 1210-1222. doi: 10.3864/j.issn.0578-1752.2017.07.004.
SHI S Q, CAO Y Q, WU W B, YANG P, CAI W M. Progresses in research of evaluation index system and its method on arable land intensification: A review. Scientia Agricultura Sinica, 2017, 50(7): 1210-1222. doi: 10.3864/j.issn.0578-1752.2017.07.004. (in Chinese)
[41]
HIGO M, TATEWAKI Y, IIDA K, YOKOTA K, ISOBE K. Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems. Scientific Reports, 2020, 10(1): 6039.

doi: 10.1038/s41598-020-58942-3 pmid: 32245995
[42]
YAN Z Z, ZHANG X Y, RASHID M A, LI H J, JING H C, HOCHMAN Z. Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change. Agricultural Systems, 2020, 178: 102745.

doi: 10.1016/j.agsy.2019.102745
[43]
LIU Y, YU Q Y, ZHOU Q B, WANG C, BELLINGRATH-KIMURA S D, WU W B. Mapping the complex crop rotation systems in Southern China considering cropping intensity, crop diversity and their seasonal dynamics. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9584-9598.

doi: 10.1109/JSTARS.2022.3218881
[44]
李忠华, 张龑, 李翠梅, 李风晶. 新疆两年三熟种植模式研究. 农村科技, 2018(12): 6-8.
LI Z H, ZHANG Y, LI C M, LI F J. The cropping pattern of triple cropping per cycle in Xinjiang, China. Rural Science & Technology, 2018(12): 6-8. (in Chinese)
[45]
WU W B, YU Q Y, YOU L Z, CHEN K, TANG H J, LIU J G. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy, 2018, 76: 515-525.

doi: 10.1016/j.landusepol.2018.02.032
[46]
余强毅, 项铭涛, 谢安坤, 申格, 杨鹏, 吴文斌. 耕地复种差研究进展. 中国农业信息, 2018, 30(5): 1-12.
YU Q Y, XIANG M T, XIE A K, SHEN G, YANG P, WU W B. Cropping intensity gap: A review. China Agricultural Informatics, 2018, 30(5): 1-12. (in Chinese)
[1] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[2] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[3] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[4] GONG ShiFei, XIAO NengWu, DING WuHan, JU XueHai, WU PingHua, YU YongSong, LI Hu. Environmental Risks Assessment of Livestock and Poultry Non- Point Source Pollution in Shiyan City Based on Arable Land Carrying Capacity [J]. Scientia Agricultura Sinica, 2023, 56(5): 920-934.
[5] HOU LiangYu, ZHANG ZhenTao, HUANG ZhaoFu, LI LuLu, GUO YaNan, MING Bo, XIE RuiZhi, HOU Peng, XUE Jun, WANG KeRu, LI ShaoKun. Reforming the Cropping System to Achieve Maize Mechanical Grain Harvesting in Northern Huang-Huai-Hai Area of China [J]. Scientia Agricultura Sinica, 2023, 56(19): 3788-3798.
[6] TIAN Yun, YIN Minhao, ZHANG Huijie. Spatial-Temporal Pattern, Influencing Factors and Spatial Spillover Effect of Rural Energy Carbon Emissions in China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2547-2562.
[7] LI YiLing, PENG XiHong, CHEN Ping, DU Qing, REN JunBo, YANG XueLi, LEI Lu, YONG TaiWen, YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[8] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[9] BiJiao MA, ZhiWen GOU, Wen YIN, AiZhong YU, ZhiLong FAN, FaLong HU, Cai ZHAO, Qiang CHAI. Effects of Multiple Cropping Green Manure After Wheat Harvest and Nitrogen Application Levels on Wheat Photosynthetic Performance and Yield in Arid Irrigated Areas [J]. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515.
[10] YaLin LI,XuBo ZHANG,FengLing REN,Nan SUN,Meng XU,MingGang XU. A Meta-Analysis of Long-Term Fertilization Impact on Soil Dissolved Organic Carbon and Nitrogen Across Chinese Cropland [J]. Scientia Agricultura Sinica, 2020, 53(6): 1224-1233.
[11] ZHOU BaoYuan, MA Wei, SUN XueFang, GAO ZhuoHan, DING ZaiSong, LI CongFeng, ZHAO Ming. Effects of Different Sowing and Harvest Dates of Winter Wheat- Summer Maize Under Double Cropping System on the Annual Climate Resource Distribution and Utilization [J]. Scientia Agricultura Sinica, 2019, 52(9): 1501-1517.
[12] WU WenBin, YU QiangYi, LU Miao, XIANG MingTao, XIE AnKun, YANG Peng, TANG HuaJun. Key Research Priorities for Multiple Cropping Systems [J]. Scientia Agricultura Sinica, 2018, 51(9): 1681-1694.
[13] LONG YuQiao, WU WenBin, HU Qiong, CHEN Di, XIANG MingTao, LU Miao, YU QiangYi. Spatio-Temporal Changes in America’s Cropland over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1134-1143.
[14] XU Meng, LI XiaoLiang, CAI XiaoBu, LI XiaoLin, ZHANG XuBo, ZHANG JunLing. Impact of Land Use Type on Soil Organic Carbon Fractionation and Turnover in Southeastern Tibet [J]. Scientia Agricultura Sinica, 2018, 51(19): 3714-3725.
[15] ZHOU Li, FU ZhiDan, DU Qing, CHEN Ping, YANG WenYu, YONG TaiWen. Effects of Reduced N Fertilization on Crop N Uptake, Soil Ammonia Oxidation and Denitrification Bacteria Diversity in Maize/Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2017, 50(6): 1076-1087.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!