Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (9): 1681-1694.doi: 10.3864/j.issn.0578-1752.2018.09.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Key Research Priorities for Multiple Cropping Systems

WU WenBin, YU QiangYi, LU Miao, XIANG MingTao, XIE AnKun, YANG Peng, TANG HuaJun   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture, Beijing 100081
  • Received:2017-06-06 Online:2018-05-01 Published:2018-05-01

Abstract: To feed the China’s growing population, more food needs to be produced using currently available cropland. Further expansion of cropland seems to be unlikely as it largely conflicts with biodiversity conservation, greenhouse gas emission mitigations, and hydrological changes. Crop yield growth is also confronting with large challenges as it becomes more difficult to sustain further yield increase as farmers’ yields approach the potential threshold. Increasing cropping intensity may thus provide another promising opportunity to increase food production. An increase in cropping intensity by increasing the number of crops per cropping cycle or intercropping with other crops can increase the frequency of harvests each year, resulting in increased food supplies without additional cropland expansion. This paper, from the perspective of agricultural land systems, proposed the overall study framework of multiple cropping systems and provided an overview of current research progresses in the three key research priorities. It was indicated that: (1) Multi-faceted patterns and processes of multiple cropping systems were the basis for subsequent analysis. It should consider not only the quantity, spatial distribution, regional difference of potential or actual multiple cropping systems, but also the cropping intensity gaps so as to expand the harvest areas by closing these gaps. (2) Understanding of the effects of multiple cropping systems on socio-economic and biophysical systems was the core task. Currently, most of studies were focused on the positive contribution of multiple cropping systems to food production, and less attention was paid to its impacts on eco-environment. Interdisciplinary approaches and cross-scale integration are critically necessary for better understanding the complex effects and feedbacks of multiple cropping systems on regional resource allocation, socio-economic development and eco-environment health. (3) How to sustainably increase the multiple cropping indexes was facing great challenges. It was important to link the multiple cropping systems with other parallel systems to understand their synergies and trade-offs, in order to build up a sustainable pathway for increasing future cropping intensity. All these solutions would substantially promote the interdisciplinary integration and would contribute to better understand the coupled human-environment interactions across time, space and scales.

Key words: cropland, multiple cropping index, pattern and process, function and effect, optimization and regulation, trade-off, sustainable

[1]    金涛. 中国粮食生产时空变化及其耕地利用效应. 自然资源学报, 2014, 29(6): 911-919.
Jin T. Effects of cultivated land use on temporal-spatial variation of grain production in China. Journal of Natural Resources, 2014, 29(6): 911-919. (in Chinese)
[2]    Chen M, Liu W, Tao X. Evolution and assessment on China's urbanization 1960-2010: Under-urbanization or over-urbanization? Habitat International, 2013, 38: 25-33.
[3]    Deng X, Huang J, Rozelle S, Zhang J, Li Z. Impact of urbanization on cultivated land changes in China. Land Use Policy, 2015, 45:1-7.
[4]    吴大放, 刘艳艳, 董玉祥, 陈梅英, 王朝晖. 我国耕地数量、质量与空间变化研究综述. 热带地理, 2010, 30(2): 108-113.
Wu D F, Liu Y Y, Dong Y X, Chen M Y, Wang Z H. Review on the research of quantity, quality and spatial changes of cultivated land in China. Tropical Geography, 2010, 30(2): 108-113. (in Chinese)
[5]    杨洋, 麻馨月, 何春阳. 基于GlobeLand30的耕地资源损失过程研究—以环渤海地区为例. 中国土地科学, 2016, 30(7): 72-79.
Yang Y, Ma X Y, He C Y. The loss process of cultivated land based on GlobeLand30: A case study of Bohai Rim. China Land Sciences, 2016, 30(7): 72-79. (in Chinese)
[6]    杨晓光, 刘志娟. 作物产量差研究进展. 中国农业科学, 2014, 37(14): 2731-2741.
Yang X G, Liu Z J. Advances in research on crop yield gaps. Scientia Acricultura Sinica, 2014, 37(14): 2731-2741. (in Chinese)
[7]    刘保花, 陈新平, 崔振岭, 孟庆峰, 赵明. 三大粮食作物产量潜力与产量差研究进展. 中国生态农业学报, 2015, 23(5): 525-534.
Liu B H, Chen X P, Cui Z L, Meng Q F, Zhao M. Research advance in yield potential and yield gap of three major cereal crops. Chinese Journal of Eco-Agriculture, 2015, 23(5): 525-534. (in Chinese)
[8]    石全红, 刘建刚, 王兆华, 陶婷婷, 陈阜, 褚庆全. 南方稻区水稻产量差的变化及其气候影响因素. 作物学报, 2012, 38(5): 896-903.
Shi Q H, Liu J G, Wang Z H, Tao T T, Chen F, Chu Q Q. Changes of rice yield gaps and influential climatic factors in southern China. Acta Agronomica Sinica, 2012, 38(5): 896-903. (in Chinese)
[9]    Lobell D B, Cassman K G, Field C B. Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 2009, 34(1): 179-204.
[10]   Licker R, Johnston M, Foley J A, Barford C, Kucharik C J, Monfreda C, Ramankutty N. Mind the gap: How do climate and agricultural management explain the 'yield gap' of croplands around the world? Global Ecology and Biogeography, 2010, 19(6): 769-782.
[11]   Mueller N D, Gerber J S, Johnston M, Ray D K, Ramankytty N, Foley J A. Closing yield gaps through nutrient and water management. Nature, 2012, 490(7419): 254-257.
[12]   Kravchenko A N, Snappa S S, Robertsona G P. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proceeding of the National Academy of Sciences of the United States of America, 2017, 114(5): 926-931.
[13]   孙通, 封志明, 杨艳昭. 2003—2013年中国县域单元粮食增产格局及贡献因素研究. 自然资源学报, 2017, 32(2): 177-185.
Sun T, Feng Z M, Yang Y Z. Study on spatiotemporal patterns and contribution factors of China’s grain output increase at the county level during 2003-2013. Journal of Natural Resources, 2017, 32(2): 177-185. (in Chinese)
[14]   Ray D K, Ramankutty N, Mueller N D, West P C, Foley J A. Recent patterns of crop yield growth and stagnation. Nature Communications, 2012, 3: 1293.
[15]   Grassini P, Eskridge K M, Cassman K G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 2013, 4: 2918.
[16]   Pugh T A M, Muller C, Elliott J, Deryng D, Folberth C, Olin S, Schmid E, Arneth A. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nature Communications, 2016, 7: 12608.
[17]   Ray D K, Mueller N D, West P C, FOLEY J A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 2013, 8(6): e66428.
[18] Zhang T, Yang X, Wang H, Li Y, Ye Q. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis. Global Change Biology, 2014, 20(4): 1289-1298.
[19]   吴文斌, 唐华俊, 杨鹏, 周清波, 陈仲新, Shibasaki Ryosuke. 基于空间模型的全球粮食安全评价. 地理学报, 2010, 65(8): 907-918.
Wu W B, Tang H J, Yang P, Zhou Q B, Chen Z X, Shibasaki R. Model-based assessment of food security at a global scale. Acta Geographica Sinica, 2010, 65(8): 907-918. (in Chinese)
[20]   Wu W, Yu Q, Verburg P H, You L, Yang P, Tang H. How could agricultural land systems contribute to raise food production under global change? Journal of Integrative Agriculture, 2014, 13(7): 1432-1442.
[21]   唐华俊, 吴文斌, 余强毅, 夏天, 杨鹏, 李正国. 农业土地系统研究及其关键科学问题. 中国农业科学, 2015, 48(5): 900-910.
Tang H J, Wu W B, Yu Q Y, XIA T, Yang P, Li Z G. Key research priorities for agricultural land system studies. Scientia Agricultura Sinica, 2015, 48(5): 900-910. (in Chinese)
[22]   唐华俊, 吴文斌, 杨鹏, 周清波, 陈仲新. 农作物空间格局遥感监测研究进展. 中国农业科学, 2010, 43(14): 2879-2888.
Tang H J, Wu W B, Yang P, Zhou Q B, Chen Z X. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies. Scientia Agricultura Sinica, 2010, 43(14): 2879-2888. (in Chinese)
[23]   刘巽浩. 论我国耕地种植指数(复种)的潜力. 作物杂志, 1997(3): 1-3.
Liu X H. Multiple cropping index in cultivated land of China. Crops, 1997(3): 1-3. (in Chinese)
[24]   徐新良, 刘洛. 中国农田熟制资源地理分布数据. 地理学报, 2014, 69(增刊): 49-53.
Xu X L, Liu L. CropSysChina. Acta Geographica Sinica, 2014, 69(supplement): 49-53. (in Chinese)
[25]   刘巽浩, 陈阜, 吴尧. 多熟种植—中国农业的中流砥柱. 作物杂志, 2015(6): 1-9.
Liu X H, Chen F, Wu Y. Multiple cropping—Mainstay of China’s agriculture. Crops, 2015(6): 1-9. (in Chinese)
[26]   黄国勤, 孙丹平. 中国多熟种植的发展现状与研究进展. 中国农学通报, 2017, 33(3): 35-43.
Huang G Q, Sun D P. Development situation and research progress of multiple cropping in China. Chinese Agricultural Science Bulletin, 2017, 33(3): 35-43. (in Chinese)
[27]   吴文斌, 杨鹏, 唐华俊, Ongaro Luca, Shibasaki Ryosuke. 土地利用对土壤性质影响的区域差异研究. 中国农业科学, 2007, 40(8): 1697-1702.
Wu W B, Yang P, Tang H J, Ongaro L, Shibasaki R. Regional variability of effects of land use system on soil properties. Scientia Agricultura Sinica, 2007, 40(8): 1697-1702. (in Chinese)
[28]   李琳凤, 李孟刚. 提高复种指数是保障我国粮食安全的有效途径. 管理探索, 2012(3): 26-28.
Li L F, Li M G. Improving the multiple cropping index is an effective approach to ensure national food security in China. Management Exploration, 2012(3): 26-28. (in Chinese)
[29]   闫慧敏, 刘纪远, 曹明奎. 近20年中国耕地复种指数的时空变化. 地理学报, 2005, 60(4): 559-566.
Yan H M, Liu J Y, Cao M K. Remote sensing multiple cropping index variations in China during 1980-2000. Acta Geographica Sinica, 2005, 60(4): 559-566. (in Chinese)
[30]   Erb K, Haberl H, Jepsen M R, KUEMMERLE T, LINDNER  M, MULLER D, VERBURG P H, REENBERG A. A conceptual framework for analysing and measuring land-use intensity. Current Opinion in Environmental Sustainability, 2013, 5: 464-470.
[31]   左丽君, 张増祥, 董婷婷, 汪潇. 耕地复种指数研究的国内外进展. 自然资源学报, 2009, 24(3): 553-560.
Zuo L J, Zhang Z X, Dong T T, Wang X. Progress in the research on the multiple cropping index. Journal of Natural Resources, 2009, 24(3): 553-560. (in Chinese)
[32]   刘巽浩. 农作制与中国农作制区划. 中国农业资源与区划, 2002, 23(5): 11-15.
Liu X H. Farming system and farming system regional planning in China. Journal of China Agricultural Resources and Regional Planning, 2002, 23(5): 11-15. (in Chinese)
[33]   范锦龙, 吴炳方. 基于GIS的复种指数潜力研究. 遥感学报, 2004, 8(6): 637-644.
Fan J L, Wu B F. A methodology for retrieving cropping index from NDVI profile. Journal of Remote Sensing, 2004, 8(6): 628-636. (in Chinese)
[34]   杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响Ⅰ.气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010, 43(2): 329-336.
Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China I. The possible effects of climate warming on northern limits of cropping systems and crop yields in China. Scientia Agricultura Sinica, 2010, 43(2): 329-336. (in Chinese)
[35]   史俊通, 刘孟君, 李军. 论复种与我国粮食生产的可持续发展. 干旱地区农业研究, 1998, 16(1): 51-57.
Shi J T, Liu M J, Li J. Multicropping and sustainable development in grain production in China. Agricultural Research in the Arid Areas, 1998, 16(1): 51-57. (in Chinese)
[36]   张厚瑄. 中国种植制度对全球气候变化响应的有关问题Ⅰ.气候变化对我国种植制度的影响. 中国农业气象, 2000, 21(1): 9-13.
Zhang H X. The problems of concerning the response of China’s cropping systems to global climatic changes I: The effects of climatic changes on cropping system in China. Agricultural Meteorology, 2000, 21(1): 9-13. (in Chinese)
[37]   王馥棠. 近十年来我国气候变暖影响研究的若干进展. 应用气象学报, 2002, 13(6): 755-766.
Wang F T. Advances in climate warming impact research in China in recent ten years. Journal of Applied Meteorological Science, 2002, 13(6): 755-766. (in Chinese)
[38]   赖纯佳, 千怀遂, 段海来, 宋秋洪, 俞芬, 张轶秀, 张静芬. 淮河流域小麦-水稻种植制度的气候适宜性. 中国农业科学, 2011, 44(14): 2868-2875.
Lai C J, Qian H S, Duan H L, Song Q H, Yu F, Zhang Y X, Zhang J F. Climate suitability of wheat-rice double copping system in Huaihe watershed. Scientia Agricultura Sinica, 2011, 44(14): 2868-2875. (in Chinese)
[39]   张志国. 河南省复种指数的时空特征及其与粮食产量关系研究. 湖北农业科学, 2011, 50(17): 3653-3656.
Zhang Z G. Spatial-temporal characteristics of multiple cropping index and relationship between multiple cropping index and grain yield in Henan province. Hubei Agricultural Sciences, 2011, 50(17): 3653-3656. (in Chinese)
[40]   Deng X, Huang J, Rozelle S, Uchida E. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy, 2006, 23(4): 372-384.
[41]   Wu W, Shibasaki R, Yang P, Tan G, Matsumura K, Sugimoto K. Global-scale modelling of future changes in sown areas of major crops. Ecological Modelling, 2007, 208(2/4): 378-390.
[42]   Liu L, Xu X, Zhuang D, Chen X, Li S. Changes in the potential multiple cropping system in response to climate change in China from 1960-2010. PLoS ONE, 2013, 8(12): e80990.
[43]   Verburg P H, Chen Y, Veldkamp A. Spatial explorations of land use change and grain production in China. Agriculture Ecosystems and Environment, 2000, 82(1): 333-354.
[44]   Qiu J, Tang H, Frolking S, Qin X. Mapping single-, double- and triple-crop agriculture in China at 0.5°×0.5° by combining county-scale census data with a remote sensing-derived land cover map. Geocarto International, 2003, 18(2): 3-13.
[45]   谢花林, 刘桂英. 1998-2012年中国耕地复种指数时空差异及动因. 地理学报, 2015, 70(4): 604-614.
Xie H L, Liu G Y. Spatiotemporal difference and determinants of multiple cropping index in China during 1998-2012. Acta Geographica Sinica, 2015, 70(4): 604-614. (in Chinese)
[46]   黄国勤. 论提高我国南方耕地复种指数. 自然资源, 1995, 17(1): 30-37.
Huang G Q. On the increase of multiple cropping index of cultivated land in southern China. Resources Science, 1995, 17(1):30-37. (in Chinese)
[47]   梁书民. 我国各地区复种发展潜力与复种行为研究. 农业经济问题, 2007, 28(5): 85-90.
Liang S M. Probing potentials of multiple cropping in the selected provinces in China. Issues in Agricultural Economy, 2007, 28(5): 85-90. (in Chinese)
[48]   段红平. 湖南省耕作制度50年(1949-1998年)演变分析. 耕作与栽培, 2001(3):1-4.
Duan H P. Evolution of farming system over 50 years (1949-1998) in Hunan province. Tillage and Cultivation, 2001(3): 1-4. (in Chinese)
[49]   杨丹, 叶长盛. 基于县域单元的江西省复种指数时空格局分析. 农业现代化研究, 2013, 34(6): 722-727.
Yang D, Ye C S. Analysis on spatial and temporal pattern of multiple cropping index in Jiangxi province by taking county as a unit. Research of Agricultural Modernization, 2013, 34(6): 722-727. (in Chinese)
[50]   张志国, 李琳. 河南省复种指数时序变化及预测. 水土保持研究, 2011, 18(4): 241-243.
Zhang Z G, Li L. Temporal variation and prediction of multiple cropping index in Henan province. Research of Soil and Water Conservation, 2011, 18(4): 241-243. (in Chinese)
[51]   唐鹏钦, 姚艳敏, 吴文斌, 杨鹏. 基于遥感技术的耕地复种指数研究进展. 中国农业资源与区划, 2010, 31(2): 21-27.
Tang P Q, Yao Y M, Wu W B, Yang P. Progress in multiple crop index based on remote sensing technology. Chinse Journal of Agricultural Resources and Regional Planning, 2010, 31(2): 21-27. (in Chinese)
[52]   Canisius F, Turral H, Molden D. Fourier analysis of historical NOAA time series data to estimate bimodal agriculture. International Journal of Remote Sensing, 2007, 28(24): 5503-5522.
[53]   吴文斌, 杨鹏, 唐华俊, 周清波, Shibasaki Ryosuke, 张莉. 两种NDVI 时间序列数据拟合方法比较. 农业工程学报, 2009, 25(11): 183-188.
Wu W B, Yang P, Tang H J, Zhou Q B, Shibasaki R, Zhang L. Comparison of two fitting methods of NDVI time series datasets. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(11): 183-188. (in Chinese)
[54]   唐鹏钦, 吴文斌, 姚艳敏, 杨鹏. 基于小波变换的华北平原耕地复种指数提取. 农业工程学报, 2011, 27(7): 220-225.
Tang P Q, Wu W B, Yao Y M, Yang P. New method for extracting multiple cropping index of North China Plain based on wavelet transform. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(7): 220-225. (in Chinese)
[55]   Galford G L, Mustard J F, Melillo J, Gendrin A, Cerri C C, Cerri C E P. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sensing of Environment, 2008, 112(2): 576-587.
[56]   范锦龙, 吴炳方. 复种指数遥感监测方法. 遥感学报, 2004, 8(6): 628-636.
Fan J L, Wu B F. A methodology for retrieving cropping index from NDVI profile. Journal of Remote Sensing, 2004, 8(6): 628-636. (in Chinese)
[57]   朱孝林, 李强, 沈妙根, 陈晋, 吴锦. 基于多时相NDVI数据的复种指数提取方法研究. 自然资源学报, 2008, 23(3): 534-544.
Zhu X L, Li Q, Shen M G, Chen J, Wu J. A methodology for multiple cropping index extraction based on NDVI time-series. Journal of Natural Resources, 2008, 23(3): 534-543. (in Chinese)
[58]   吴文斌, 杨鹏, 唐华俊, Shibasaki Ryosuke, 周清波, 张莉. 基于NDVI数据的华北地区耕地物候空间格局. 中国农业科学, 2009, 42(2): 552-560.
Wu W B, Yang P, Tang H J, Shibasaky R, Zhou Q B, Zhang L. Monitoring spatial patterns of cropland phenology in North China based on NOAA NDVI data. Scientia Agricultura Sinica, 2009, 42(2): 552-560. (in Chinese)
[59]   辜智慧. 中国农作物复种指数的遥感估算方法研究—基于SPOT/VGT多时相NDVI遥感数据[D]. 北京: 北京师范大学, 2003.
Gu Z H. A study of calculating multiple cropping index of crop in China using SPOT/VGT multi-temporal NDVI data. Beijing: Beijing Normal University, 2003. (in Chinese)
[60]   左丽君, 董婷婷, 汪潇, 赵小丽, 易玲. 基于MODIS/EVI的中国北方耕地复种指数提取. 农业工程学报, 2009, 25(8): 141-146.
Zuo L J, Dong T T, Wang X, Zhao X L, Yi L. Multiple cropping index of northern China based on MODIS/EVI. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(8): 141-146. (in Chinese)
[61]   刘爽, 马欣, 李玉娥, 张平究. 基于滑动分割算法的我国耕地熟制识别研究. 资源科学, 2014, 36(9):1969-1976.
Liu S, Ma X, Li Y E, Zhang P J. Farmland cropping system identification in China based on a sliding segmentation algorithm. Resources Science, 2014, 36(9): 1969-1976. (in Chinese)
[62]   高应波, 柳钦火, 李静, 杨乐. 基于时序植被指数特征时相识别的多熟制耕地提取新方法. 遥感技术与应用, 2015, 30(3): 431-438.
Gao Y B, Liu Q H, Li J, Yang L. A new methodology for extracting multiple cropping land based on distinguishing characteristic phases of time series vegetation index. Remote Sensing Technology and Application, 2015, 30(3): 431-438. (in Chinese)
[63]   丁明军, 陈倩, 辛良杰, 李兰晖, 李秀彬. 1999-2013年中国耕地复种指数的时空演变格局. 地理学报, 2015, 70(7): 1080-1090.
Ding M J, Chen Q, Xin L J, Li L H, Li X B. Spatial and temporal variations of multiple cropping index in China based on SPOT-NDVI during 1999-2013. Acta Geographica Sinica, 2015, 70(7): 1080-1090. (in Chinese)
[64]   杨婷, 赵文利, 王哲怡, 陆星彤, 卢珊. 基于遥感影像NDVI数据的中国种植制度分布变化. 中国农业科学, 2015, 48(10): 1915-1925.
Yang T, Zhao W L, Wang Z Y, Lu X T, Lu S. Changes of cropping system in China based on remotely sensed NDVI data. Scientia Agricultura Sinica, 2015, 48(10): 1915-1925. (in Chinese)
[65]   彭代亮, 黄敬峰, 金辉民. 基于MODIS-NDVI的浙江省耕地复种指数监测. 中国农业科学, 2006, 39(7): 1352-1357.
Peng D L, Huang J F, Jin H M. The monitoring for sequential cropping index of arable land in Zhejiang province using MODIS-NDVI. Scientia Agricultura Sinica, 2006, 39(7): 1352-1357. (in Chinese)
[66]   何月, 张小伟, 李仁忠, 樊高峰, 蔡菊珍. 浙江省作物多熟种植制度遥感反演及其时空格局. 生态学杂志, 2011, 30(12): 2827-2835.
He Y, Zhang X W, Li R Z, Fan G F, Cai J Z. Remote sensing retrieving of multiple cropping systems and their spatiotemporal patterns in Zhejiang province. Chinese Journal of Ecology, 2011, 30(12): 2827-2835. (in Chinese)
[67]   徐昔保, 杨桂山. 太湖流域1995-2010年耕地复种指数时空变化遥感分析. 农业工程学报, 2013, 29(3):148-155.
Xu X B, Yang G S. Spatial and temporal changes of multiple cropping index in 1995-2010 in Taihu Lake basin, China. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 148-155. (in Chinese)
[68]   杨忍, 刘彦随, 陈玉福, 李婷婷. 环渤海地区耕地复种指数时空变化遥感反演及影响因素探测. 地理科学, 2013, 33(5): 588-593.
Yang R, Liu Y S, Chen Y F, Li T T. The remote sensing inversion for spatial and temporal changes of multiple cropping index and detection for influencing factors around Bohai Rim in China. Scientia Geographica Sinica, 2013, 33(5): 588-593. (in Chinese)
[69]   申健, 常庆瑞, 李粉玲, 秦占飞, 谢宝妮. 2000—2013年关中地区耕地复种指数遥感动态监测. 农业机械学报, 2016, 47(8): 280-287.
Shen J, Chang Q R, Li F L, Qin Z F, Xie B N. Dynamic monitoring of cropping index in Guanzhong area using remote sensing in 2000-2013. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 280-287. (in Chinese)
[70]   Yan H, Xiao X, Huang H, Liu J, Chen J, Bai X. Multiple cropping intensity in China derived from agro-meteorological observation and MODIS data. Chinese Geographical Science, 2014, 24(2): 205-219.
[71]   闫慧敏, 曹明奎, 刘纪远, 庄大方, 郭建坤, 刘明亮. 基于多时相遥感信息的中国农业种植制度空间格局研究. 农业工程学报, 2005, 21(4): 85-90.
Yan H M, Cao M K, Liu J Y, Zhuang D F, Guo J K, Liu M L. Characterizing spatial patterns of multiple cropping system in China from multi-temporal remote sensing images. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(4): 85-90. (in Chinese)
[72]   闫慧敏, 肖向明, 黄河清. 黄淮海多熟种植农业区作物历遥感检测与时空特征. 生态学报, 2010, 30(9): 2416-2423.
Yan H M, Xiao X M, Huang H Q. Satellite observed crop calendar and its spatio-temporal characteristics in multiple cropping area of Huang-Huai-Hai Plain. Acta Ecologica Sinica, 2010, 30(9): 2146-2423. (in Chinese)
[73]   闫慧敏, 黄河清, 肖向明, 姜鲁光. 鄱阳湖农业区多熟种植时空格局特征遥感分析. 生态学报, 2008, 28(9): 4517-4523.
Yan H M, Huang H Q, Xiao X M, Jiang L G. Spatio-temporal distribution of multiple cropping systems in the Poyang Lake region. Acta Ecologica Sinica, 2008, 28(9): 4517-4523. (in Chinese)
[74]   梁守真, 马万栋, 施平, 陈劲松. 基于MODIS NDVI数据的复种指数监测—以环渤海地区为例. 中国生态农业学报, 2012, 20(12): 1657-1633.
Liang S Z, Ma W D, Shi P, Chen J S. Monitoring multiple cropping index using MODIS NDVI data— A case study of Bohai Rim. Chinese Journal of Eco-Agriculture, 2012, 20(12): 1657-1633. (in Chinese)
[75]   周辉, 王卫东, 李星敏, 王钊, 权文婷. 基于长时间序列NDVI的陕西省耕地复种指数遥感监测分析. 干旱地区农业研究, 2014, 32(3): 189-195.
Zhou H, Wang W D, Li X M, Wang Z, Quan W T. Remote sensing monitoring analysis for the multiple cropping index of the cultivated land in Shaanxi province based on the long time-series NDVI. Agricultural Research in the Arid Areas, 2014, 32(3): 189-195. (in Chinese)
[76]   钱晨晨, 黄国勤, 赵其国. 中国轮作休耕制度的应用进展. 农学学报, 2017, 7(3): 37-41.
Qin C C, Huang G Q, Zhao Q G. Application advance of rotation fallow system in China. Journal of Agriculture, 2017, 7(3): 37-41. (in Chinese)
[77]   谭永忠, 赵越, 俞振宁, 曹宇. 代表性国家和地区耕地休耕补助政策及其对中国的启示. 农业工程学报, 2017, 33(19): 249-257.
Tan Y Z, Zhao Y, Yu Z N, Cao Y. Subsidy policies on fallow of cultivated land in selected countries and regions and their enlightenment to China. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 249-257. (in Chinese)
[78]   江娟丽, 杨庆媛, 阎建忠. 耕地休耕的研究进展与现实借鉴. 西南大学学报(自然科学版), 2017, 39(1): 165-171.
Jiang J L, Yang Q Y, Yan J Z. Research progress and realistic role for reference in farmland fallowing. Journal of Southwest University (Natural Science Edition), 2017, 39(1): 165-171. (in Chinese)
[79]   寻舸, 宋彦科, 程星月. 轮作休耕对我国粮食安全的影响及对策. 农业现代化研究, 2017, 38(4): 681-687.
Xun G, Song Y K, Cheng X Y. Impacts of the land fallow and crop rotation practice on grain security in China and solutions. Research of Agricultural Modernization, 2017, 38(4): 681-687. (in Chinese)
[80]   Dong J, Liu J, Tao F, Xu X, Wang J. Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems. Climate Research, 2009, 40(1): 37-48.
[81]   Yang X, Chen F, Lin X, Liu Z, Zhang H, Zhao J, Li K, Ye Q, Li Y, Lv S, Yang P, Wu W, Li Z, Lal R, Tang H. Potential benefits of climate change for crop productivity in China. Agricultural and Forest Meteorology, 2015, 208: 76-84.
[82]   Zhang G, Dong J, Zhou C, Xu X, Wang M, Ouyang H, Xiao X. Increasing cropping intensity in response to climate warming in Tibetan Plateau, China. Field Crops Research, 2013, 142: 36-46.
[83]   金姝兰, 徐彩球, 潘华华. 我国粮食主产区耕地复种指数变化特征与潜力分析. 贵州农业科学, 2011, 39(4): 201-204.
Jin S L, Xu C Q, Pan H H. Change characteristics and potential analysis for multiple cropping index of cropland in major grain producing areas in China. Guizhou Agricultural Sciences, 2011, 39(4): 201-204. (in Chinese)
[84]   赵永敢, 李玉义, 逢焕成, 任天志, 王龙昌. 西南地区耕地复种指数变化特征和发展潜力分析. 农业现代化研究, 2010, 31(1): 100-104.
Zhao Y G, Li Y Y, Pang H C, Ren T Z, Wang L C. Changing characteristics and developmental potentials on multiple cropping index of arableland in southwestern China. Research of Agricultural Modernization, 2010, 31(1): 100-104. (in Chinese)
[85]   金姝兰, 刘春燕, 毛端谦. 长江中下游地区耕地复种指数变化特征与潜力分析. 浙江农业学报, 2011, 23(2): 239-243.
Jin S L, Liu C Y, Mao D Q. Variation characteristics and developmental potentials on multiple cropping index of arable land in the middle and lower reaches of Yangtze river. Acta Agriculturae Zhejiangensis, 2011, 23(2): 239-243. (in Chinese)
[86]   陶文星. 云南省耕地复种指数特征及其潜力研究. 中国农学通报, 2014, 30(32): 288-294.
Tao W X. Research on characteristics and potentials of multiple crop index in Yunnan province. Chinese Agricultural Science Bulletin, 2014, 30(32): 288-294. (in Chinese)
[87]   何文斯, 吴文斌, 余强毅, 胡文君, 谭杰扬, 胡亚楠. 1980—2010年中国耕地复种可提升潜力空间格局变化. 中国农业资源与区划, 2016, 37(11): 7-14.
He W S, Wu W B, Yu Q Y, Hu W J, Tan J Y, Hu Y N. Changes in spatio-temporal distribution of potential increment multiple cropping in China during 1980-2010. Chinse Journal of Agricultural Resources and Regional Planning, 2016, 37(11): 7-14. (in Chinese)
[88]   Yu Q, Wu W, You L, Zhu T, van Vliet J, Verburg P H, Liu Z, Li Z, Yang P, Zhou Q, Tang H. Assessing the harvested area gap in China. Agricultural Systems, 2017, 153: 212-220.
[89]   逄焕成, 陈阜. 黄淮平原不同多熟模式生产力特征与资源利用效率研究. 自然资源学报, 1998,13(3): 199-206.
Pang H C, Chen F. Research on productivity and resources utilization rate of various multiple cropping patterns in Huang-Huai Plain. Journal of Natural Resources, 1998, 13(3): 199-206. (in Chinese)
[90]   Spera S, Galford G, Coe M, Macedo M, Mustard J F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Global Change Biology, 2016, 22(10): 3405-3413.
[91]   赵印英. 作物组合种植高效用水试验. 山西农业科学, 2004, 32(1): 72-75.
Zhao Y Y. An experiment of efficient water using by intercropping. Journal of Shanxi Agricultural Sciences, 2004, 32(1): 72-75. (in Chinese)
[92]   胡兵辉, 王维, 张红芳. 干热河谷旱地覆盖间作两熟种植模式的水分效应. 水土保持学报, 2015, 29(1): 274-278.
Hu B H, Wang W, Zhang H F. Water effects of mulching intercropping patterns of dryland in dry-hot valley. Journal of Soil and Water Conservation, 2015, 29(1): 274-278. (in Chinese)
Xu N. Research on productivity, ecological environmental effect and the characteristics of energy-nutrient flow under the multiple cropping rotations systems[D]. Nanchang: Jiangxi Agricultural University, 2013. (in Chinese)
[94]   廖婧琳, 苏跃, 李航, 刘方, 冯泽蔚. 喀斯特山区不同复种指数条件下的土壤质量变化—以普定县猫洞小流域为例. 中国岩溶, 2009, 28(3): 308-313.
Liao J L, Su Y, Li H, Liu F, Feng Z W. Change of soil quality with different multiple crop index in karst hills—A case study in Madong small basin, Puding county. Carsologica Sinica, 2009, 28(3): 308-313. (in Chinese)
[95]   李向东, 季书勤, 王汉芳, 郭瑞, 张德奇, 杨铁刚. 麦棉套种模式的生态功能与利用. 生态学杂志, 2009, 28(12): 2607-2612.
Li X D, Ji S Q, Wang H F, Guo R, Zhang D Q, Yang T G. Ecological functions of wheat/cotton intercropping system. Chinse Journal of Ecology, 2009, 28(12): 2607-2612. (in Chinese)
[96]   Bommarco R, Kleijn D, Potts S G. Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology & Evolution, 2013, 28(4): 230-238.
[97]   张新焕, 杨德刚, 王昌燕, 侯艳军. 基于地块尺度的耕地集约利用与环境压力关系—以塔里木河流域780个地块为例. 中国生态农业学报, 2012, 20(5): 635-642.
Zhang X H, Yang D G, Wang C Y, Hou Y J. Relationship between intensive utilization and environmental pressure of cultivated land: A case study on 780 cropland parcels in Tarim river basin. Chinse Journal of Eco-Agriculture, 2012, 20(5): 635-642. (in Chinese)
[98]   孔祥斌, 张凤荣, 齐伟, 姜广辉, 颜国强. 集约化农区土地利用变化对水资源的影响—以河北省曲周县为例. 自然资源学报, 2004, 19(6): 747-743.
Kong X B, Zhang F R, Qi W, Jiang G H, Yan G Q. The effects of land use change on water resource in intensive agriculture region—A case study of Quzhou county in Hebei province. Journal of Natural Resources, 2004, 19(6): 747-743. (in Chinese)
[99]   Foley J A, DeFries R, Asner G P, Barford C, Bonan G, Carpenter S R, Chapin F S, Coe M T, Daily G C, Gibbs H K, Helkowski J H, Holloway T, Howard E A, Kucharik C J, Monfreda C, Patz J A, Prentice I C, Ramankutty N, Snyder P K. Global consequences of land use. Science, 2005, 309(5734): 570-574.
[100]Smith P, House J, Bustamante M, Sobocka J, Harper R, Pan G, West P C, Clark J M, Adhya T, Rumpel C, Paustian K, Kuikman P, Cotrufo M F, Elliott J A, Mcdowell R, Griffiths R, Asakawa S, Bondeau A, Jain A, Merrsmans J, Pugh T A M. Global change pressures on soils from land use and management. Global Change Biology, 2016, 22(3): 1008-1028.
[101]吕晓, 牛善栋, 李振波, 黄贤金, 钟太洋. 中国耕地集约利用研究现状及趋势分析. 农业工程学报, 2015, 31(18): 212-224.
Lü X, Niu S D, Li Z B, Huang X J, Zhong T Y. Present situation and trends in research on cultivated land intensive use in China. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(18): 212-224. (in Chinese)
[102]叶笃正, 符淙斌. 全球变化的主要科学问题. 大气科学, 1994, 7(4): 498-510.
Ye D Z, Fu Z B. Major issues of global change sciences. Scientia Atmospherica Sinica, 1994, 7(4): 498-510. (in Chinese)
[103]向晶. 集约化农业及其环境效应—以简阳石盘镇大球盖菇和水稻轮作为例[D]. 成都: 四川大学, 2006. (in Chinese)
Xiang J. Intensive agriculture and its environmental impacts—A case study from Jianyang, Sichuan Province of China[D]. Chengdu: Sichuan University, 2006. (in Chinese)
[104]石淑芹, 曹玉青, 吴文斌, 杨鹏, 蔡为民, 陈佑启. 耕地集约化评价指标体系与评价方法研究进展. 中国农业科学, 2017, 50(7): 1210-1222.
Shi S Q, Cao Y Q, Wu W B, YanG P, Cai W M, Chen Y Q. Progresses in research of evaluation index system and its method on arable land intensification: A review. Scientia Agricultura Sinica, 2017, 50(7): 1210-1222. (in Chinese)
[105]费罗成, 程久苗, 王秉建, 李琴, 樊小凤. 耕地集约利用研究进展与展望. 土壤, 2009, 41(5): 696-702.
Fei L C, CheNG J M, Wang B J, Li Q, Fan X F. Advances and prospects of intensive cultivated land use researches. Soils, 2009, 41(5): 696-702. (in Chinese)
[106]Kuemmerle T, Erb K, Meyfroidt P, Müller D, Verburg P H, Estel S, Haberl H, Hostert P, Jepsen M R, Kaster T, Levers C. Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability, 2013, 5(5): 482-493.
[107]Pretty J, Bharucha Z P. Sustainable intensification in agricultural systems. Annals of Botany, 2014, 114(8):1571-1596.
[108]Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks D P M. Solutions for a cultivated planet. Nature, 2011, 478(7369): 337-342.
[109]Garnett T, Appleby M C, Balmford A, Bateman I J, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffmann I, Smith P, Thornton P K, Toulmin C, Vermeulen S J, Godfray H C J. Sustainable intensification in agriculture: Premises and policies. Science, 2013, 341(6141): 33-34.
[110]Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, Wetterstrand H, Declerck F, Shah M, Steduto P, de Fraiture C, Hatibu N, Unver O, Brid J, Sibanda L, Smith J. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 2016, 46(1): 1-14.
[111]Lu Y, Chadwick D, Norse D, Shi W. Sustainable intensification of China's agriculture: The key role of nutrient management and climate change mitigation and adaptation. Agriculture Ecosystems and Environment, 2015, 209: 1-4.
[112]黄国勤, 刘秀英, 刘隆旺, 叶方, 张明林, 苏艳红. 红壤旱地多熟种植系统的综合效益评价. 生态学报, 2006, 26(8): 2532-2539.
Huang G Q, Liu X Y, Liu L W, Ye F, Zhang M L, Su Y H. Evaluation on comprehensive benefits of multiple cropping systems in upland red soil. Acta Ecologica Sinica, 2006, 26(8): 2532-2539. (in Chinese)
[113]王开磊, 黄国勤, 罗奇祥, 李祖章. 江南丘陵区稻田多熟种植系统的生态服务价值评估. 江西农业学报, 2010, 22(11): 157-160.
Wang K L, Huang G Q, Luo Q X, Li Z Z. Evaluation on ecosystem service value of rice multiple cropping systems in southern hilly regions of China. Acta Agriculturae Jiangxi, 2010, 22(11): 157-160. (in Chinese)
[114]孙卫民, 黄国勤, 程建峰, 刘彬彬. 江西省双季稻田多作复合种植系统的能值分析. 中国农业科学, 2014, 47(3): 514-527.
Sun W M, Huang G Q, Cheng J F, Liu B B. Analyses on the energies of multiple compound cropping systems from double- cropping paddy fields in Jiangxi province. Scientia Agricultura Sinica, 2014, 47(3): 514-527. (in Chinese)
[115]姚成胜, 黄琳, 吕晞, 段敏. 基于能值理论的中国耕地利用集约度时空变化分析. 农业工程学报, 2014, 30(8): 1-12.
Yao C S, Huang L, Lü X, Dun M. Temporal and spatial change of cultivated land use intensity in China based on energy theory. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(8): 1-12. (in Chinese)
[116]谢花林, 邹金浪, 彭小琳. 基于能值的鄱阳湖生态经济区耕地利用集约度时空差异分析. 地理学报, 2012, 67(7): 889-902.
Xie H L, Zou J L, Peng X L. Spatial-temporal difference analysis of cultivated land use intensity based on energy in Poyang Lake Eco-economic Zone. Acta Geographica Sinica, 2012, 67(7): 889-902. (in Chinese)
[117]Zuo L, Wang X, Zhang Z, Zhao X, Liu F, Yi L, Liu B. Developing grain production policy in terms of multiple cropping systems in China. Land Use Policy, 2014, 40(1): 140-146.
[118]武兰芳, 陈阜, 欧阳竹. 种植制度演变与研究进展. 耕作与栽培, 2002(3): 1-5.
Wu L F, Chen F, Ouyang Z. Evolution and research progresses in cropping system. Tillage and Cultivation, 2002(3): 1-5. (in Chinese)
[119]Meng Q, Wang H, Yan P, Pan J, Lu D, Cui Z, Zhang F, Chen X. Designing a new cropping system for high productivity and sustainable water usage under climate change. Scientific Reports, 2017, 7: 41587.
[1] LONG YuQiao, WU WenBin, HU Qiong, CHEN Di, XIANG MingTao, LU Miao, YU QiangYi. Spatio-Temporal Changes in America’s Cropland over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1134-1143.
[2] XU Meng, LI XiaoLiang, CAI XiaoBu, LI XiaoLin, ZHANG XuBo, ZHANG JunLing. Impact of Land Use Type on Soil Organic Carbon Fractionation and Turnover in Southeastern Tibet [J]. Scientia Agricultura Sinica, 2018, 51(19): 3714-3725.
[3] WANG ChuanJie, XIAO Jing, CAI AnDong, ZHANG WenJu, XU MingGang. Capacity and Characteristics of Soil Microbial Biomass Under Various Climate and Fertilization Conditions Across China Croplands [J]. Scientia Agricultura Sinica, 2017, 50(6): 1067-1075.
[4] Maieryemu Yasen, Maimaiti Shawuti, Tuerxun Aishan, Ruzemaimaiti Mijiti, Yikeliman Abudumiti, Mayila Reheman. Spatial-Temporal Characteristics of Cropland in the Ugan-Kuqa River Delta Oasis [J]. Scientia Agricultura Sinica, 2017, 50(18): 3506-3518.
[5] CHEN Yin-jun, YI Xiao-yan, FANG Lin-na, YANG Rui-zhen. Analysis of Cultivated Land and Grain Production Potential in China [J]. Scientia Agricultura Sinica, 2016, 49(6): 1117-1131.
[6] NAN Feng, ZHU Hong-fen, BI Ru-tian. Hyperspectral Prediction of Soil Organic Matter Content in the Reclamation Cropland of Coal Mining Areas in the Loess Plateau [J]. Scientia Agricultura Sinica, 2016, 49(11): 2126-2135.
[7] TANG Hua-jun, WU Wen-bin, YU Qiang-yi, XIA Tian, YANG Peng, LI Zheng-guo. Key Research Priorities for Agricultural Land System Studies [J]. Scientia Agricultura Sinica, 2015, 48(5): 900-910.
[8] CHEN Xue-yuan, TANG Hua-jun, WU Yong-chang, ZHOU Qing-bo, CUI Jian. Analysis on Process and Difference of Cropland Dynamics in Anji County of Zhejiang Province [J]. Scientia Agricultura Sinica, 2015, 48(21): 4302-4313.
[9] CAI An-dong, ZHANG Wen-ju, YANG Pin-pin, HAN Tian-fu, XU Ming-gang. Effect Degree of Fertilization Practices on Soil Organic Carbon and Fraction of Croplands in China—Based on Meta-Analysis [J]. Scientia Agricultura Sinica, 2015, 48(15): 2995-3004.
[10] CAI An-dong, XU Xiang-ru, ZHANG Xu-bo, XU Ming-gang, ZHANG Wen-ju. Capacity and Characteristics of Mineral Associated Soil Organic Carbon Under Various Land Uses [J]. Scientia Agricultura Sinica, 2014, 47(21): 4291-4299.
[11] ZHANG Chao-12, LIU Guo-Bin-12, XUE Sha-12, XIAO Lie-1. Characteristic of Soil Available Trace Elements on Abandoned Cropland in the Loess Hilly Region [J]. Scientia Agricultura Sinica, 2013, 46(18): 3809-3817.
[12] TAO Jian, ZHANG Ge-Li, WANG Jun-Bang, DONG Jin-Wei. Variation of Cropland Phenology in Mid-eastern Inner Mongolia [J]. Scientia Agricultura Sinica, 2011, 44(22): 4583-4592.
[13] WANG Xiao-bin,,WU Xue-ping,,ZHAO Quan-sheng,DENG Xiang-zheng,CAI Dian-xiong. Effects of Cropland-Use Management on Potentials of Soil Carbon Sequestration and Carbon Emission Mitigation in China [J]. Scientia Agricultura Sinica, 2011, 44(11): 2284-2293 .
[14] PANG Su,LI Ting-xuan,WANG Yong-dong,YU Hai-ying,GUO Qi-ling,CHEN Dong-ming
. Spatial Variability and Influencing Factors of the Concentrations of Cu, Zn, and Cr in Cropland Soil on County Scales
[J]. Scientia Agricultura Sinica, 2010, 43(4): 737-743 .
[15] PANG Su,LI Ting-xuan,WANG Yong-dong,YU Hai-ying
. Spatial Interpolation and Sampling Numbers of the Concentration of Copper in Cropland Soil on County Scale Using Cokriging
[J]. Scientia Agricultura Sinica, 2009, 42(8): 2828-2836 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!