Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (9): 1501-1517.doi: 10.3864/j.issn.0578-1752.2019.09.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Sowing and Harvest Dates of Winter Wheat- Summer Maize Under Double Cropping System on the Annual Climate Resource Distribution and Utilization

ZHOU BaoYuan,MA Wei,SUN XueFang,GAO ZhuoHan,DING ZaiSong,LI CongFeng,ZHAO Ming()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Production, Ministry of Agriculture, Beijing 100081
  • Received:2018-12-05 Accepted:2019-03-18 Online:2019-05-01 Published:2019-05-16
  • Contact: Ming ZHAO E-mail:zhaoming@caas.cn

Abstract:

【Objective】 The study was carried out to optimize the inter-season climatic resource distribution of traditional winter wheat-summer maize cropping system and explore the optimal two-season climatic resource distribution model, so as to further increase the annual yield potential and resource utilization efficiency of Huang-Huai-Hai region. 【Method】 In this study, five sowing dates of winter wheat and corresponding harvest dates of summer maize were set from early October to early December, and the field experiment was conducted at Xinxiang county from 2015 to 2017. Based on the field experiments, The annual yield, climate resources distribution and resources use efficiency were studied. 【Result】 With the sowing/harvest dates delayed, days of wheat growth period and amount of radiation, temperature, and precipitation resources gradually reduced, more growth time and resources were transferred to maize season, and the resources distribution rate between two seasons changed from treatmentⅠ (46%:54%, 60%:40%, 42%:58%) to treatment V (34%:66%, 49%:51%, 34%:66%), which resulted in decrease of wheat grain yield. However, due to greater number of ears and grains of ZM66, no significant difference was found in wheat yield between treatmentⅠ and treatment V. Maize grain weight increased by 13.1% and 15.5% due to 15 d, 143.8 and 120.7 MJ·m -2, 290.5 and 281.6℃, 12.4 and 25.7 mm increasing in 2016 and 2017, respectively, in maize growth duration, radiation, accumulated temperature, and precipitation, eventually the annual grain yield of treatment V increased by 7.9% and 6.7% compared than that of treatmentⅠ, respectively. In addition, the grain water content decreased to 14.4%-17.3% due to 15 d, 322.5 and 336.3 MJ·m -2, 509.6 and 497.8℃, 56.7 and 14.1 mm increasing in maize growth duration, radiation, accumulated temperature, and precipitation in 2016 and 2017, respectively. At the same time, because of radiation and temperature resources in wheat season of treatment V decreased significantly, especially the irrigation water reduced 150 mm, the radiation, temperature and water production efficiency of wheat for treatment V increased by 12.5% and 15.8%, 10.9% and 7.7%, 39.6% and 59.3% in 2016 and 2017, respectively, compared than treatmentⅠ. During maize growth season, radiation and temperature production efficiency under treatment V decreased, but water production efficiency increased significantly than that under treatmentⅠ, so the annual radiation, temperature and water production efficiency of treatment V increased by 7.3% and 9.1%, 5.6% and 5.1%, 17.3% and 29.3% in 2016 and 2017, respectively, compared than treatmentⅠ, respectively. 【Conclusion】 It is of great significance for promoting the sustainable development of winter wheat-summer maize double cropping system in the Huang-Huai-Hai plain by changing sowing and harvest dates (Wheat was sown in early December and maize was harvested in mid-November) to optimize the distribution of resources between two seasons for winter wheat-summer maize double cropping system without any input.

Key words: winter wheat-summer maize cropping system, sowing/harvest date, resource distribution, grain yield, resources use efficiency

Table 1

Scheme for winter wheat-summer maize with different sowing/harvest dates"

年份
Year
处理
Treatment
小麦季Wheat 玉米季Maize
品种
Variety
播种期
Sowing date
(M-D)
成熟期
Maturity date
(M-D)
灌水量
Water use
(mm)
种植密度
Planting density
(×104·hm-2)
品种
Variety
播种期
Sowing date
(M-D)
成熟期
Maturity date
(M-D)
收获期
Harvest date
(M-D)
灌水量
Water use
(mm)
种植密度
Planting density
(×104·hm-2)
2015-2016 AK58 10-11 06-02 300 300 ZD958 06-11 09-25 150 6.75
ZM66 10-11 06-01 300 300 XY335 06-11 09-25 150 6.75
AK58 10-26 06-02 300 405 ZD958 06-11 10-10 10-10 150 6.75
ZM66 10-26 06-01 300 405 XY335 06-11 10-08 10-08 150 6.75
AK58 11-10 06-04 300 510 ZD958 06-11 10-10 10-25 150 6.75
ZM66 11-10 06-02 300 510 XY335 06-11 10-08 10-23 150 6.75
AK58 11-24 06-06 225 615 ZD958 06-11 10-10 11-09 150 6.75
ZM66 11-24 06-04 225 615 XY335 06-11 10-08 11-07 150 6.75
AK58 12-8 06-07 150 720 ZD958 06-11 10-10 11-24 150 6.75
ZM66 12-8 06-06 150 720 XY335 06-11 10-08 11-22 150 6.75
2016-2017 AK58 10-13 06-05 300 300 ZD958 06-12 09-28 150 6.75
ZM66 10-13 06-04 300 300 XY335 06-12 09-28 150 6.75
AK58 10-28 06-05 300 405 ZD958 06-12 10-13 10-13 150 6.75
ZM66 10-28 06-04 300 405 XY335 06-12 10-10 10-10 150 6.75
AK58 11-11 06-07 300 510 ZD958 06-12 10-13 10-28 150 6.75
ZM66 11-11 06-05 300 510 XY335 06-12 10-10 10-25 150 6.75
AK58 11-25 06-09 225 615 ZD958 06-12 10-13 11-12 150 6.75
ZM66 11-25 06-07 300 615 XY335 06-12 10-10 11-09 150 6.75
AK58 12-10 06-09 150 720 ZD958 06-12 10-13 11-27 150 6.75
ZM66 12-10 06-08 300 720 XY335 06-12 10-10 11-24 150 6.75

Fig. 1

Total growth duration of winter wheat-summer maize with different sowing/harvest dates A is the wheat season in 2015-2016, B is the maize season in 2016, C is the wheat season in 2016-2017, D is the maize season in 2017. Different letters within a column mean significant at 5% level. The same as below"

Table 2

Distribution of accumulated temperature between winter wheat and summer maize with different sowing/harvest dates"

年份
Year
处理
Treatment
小麦季Wheat 玉米季Maize 周年Annual
积温
Accumulated temperature (℃)
分配率
Distribution rate (%)
积温
Accumulated temperature (℃)
分配率
Distribution rate
(%)
积温
Accumulated temperature (℃)
两季比
Rate between two seasons
2015-2016 2457.8a 46a 2894.1d 54d 5351.9a 0.8a
2281.5b 42b 3184.6c 58c 5466.1a 0.7b
2071.3c 38c 3381.2bc 62b 5452.5a 0.6c
1960.8d 36d 3517.4b 64ab 5478.2a 0.6c
1877.7e 34e 3694.2a 66a 5571.9a 0.5d
2016-2017 2392.8a 46a 2862.5d 54d 5255.2b 0.8a
2254.0b 42b 3144.1c 58c 5397.9ab 0.7b
2009.6c 38c 3361.5b 62b 5371.1ab 0.6c
1916.2d 36d 3475.7b 64ab 5391.9ab 0.6c
1853.5e 34e 3641.9a 66a 5495.4a 0.5d
年份Year (Y) 0.016 0.696 0.005 0.489 0.002 0.488
处理Treatment (T) 0.001 0.007 0.001 0.002 0. 101 0.001
Y×T 0.575 0.549 0.132 0.521 0.320 0.642

Table 3

Distribution of radiation between winter wheat and summer maize with different sowing/harvest dates"

年份
Year
处理
Treatment
小麦 Wheat 玉米Maize 周年Annual
辐射
Radiation
(MJ·m-2)
分配率
Distribution rate
(%)
辐射
Radiation
(MJ·m-2)
分配率
Distribution rate (%)
辐射
Radiation
(MJ·m-2)
两季比
Rate between two seasons
2015-2016 2528.5a 59a 1727.1d 41c 4285.6a 1.5a
2459.6a 57a 1870.9c 43c 4330.5a 1.3b
2258.3b 53b 1978.0b 47b 4236.3a 1.1c
2192.9bc 52b 2056.5b 48b 4249.3a 1.1c
2105.7c 49c 2193.4a 51a 4299.1a 1.0d
2016-2017 2423.3a 60a 1628.3e 40c 4051.7a 1.5a
2326.8a 57b 1749.0d 43c 4075.8a 1.3b
2208.2b 54c 1854.6c 46b 4062.8a 1.2c
2088.6c 52c 1955.2b 48b 4043.7a 1.1d
2012.0c 49d 2085.3a 51a 4097.3a 1.0e
年份Year (Y) 0.006 0.286 0.009 0.589 0.002 0.590
处理Treatment (T) 0.001 0.007 0.003 0.002 0.192 0.001
Y×T 0.575 0.771 0.925 0.977 0.676 0.874

Table 4

Distribution of precipitation between winter wheat and summer maize with different sowing/harvest dates"

年份
Year
处理
Treatment
小麦 Wheat 玉米Maize 周年Annual
降水
Precipitation
(mm)
分配率
Distribution rate
(%)
降水
Precipitation
(mm)
分配率
Distribution rate (%)
降水
Precipitation
(mm)
两季比
Rate between two seasons
2015-2016 179.8a 41b 263.3d 59c 443.1b 0.7a
168.9b 37b 285.7c 63b 454.6b 0.6b
181.6a 36a 320.3b 64ab 501.9a 0.6b
174.5ab 35c 330.9ab 65ab 505.4a 0.5c
175.2ab 34c 342.4a 66a 517.6a 0.5c
2016-2017 192.4a 43a 253.1c 57c 445.5a 0.8a
168.2b 38b 278.8b 62b 447.2a 0.6b
157.9c 35c 288.7a 65ab 446.6a 0.5c
156.1c 35c 289.9a 65ab 446.3a 0.5c
149.6c 34c 292.9a 66a 442.5a 0.5c
年份Year (Y) 0.001 0.04 0.001 0.286 0.002 0.682
处理Treatment (T) 0.006 0.001 0.001 0.001 0. 001 0.013
Y×T 0.001 0.002 0.046 0.006 0.001 0.043

Table 5

Yield and yield components of winter wheat with different sowing dates"

年份
Year
播期
Sowing date
品种
Variety
产量
Grain yield
(kg·hm-2)
穗数
Spikes number
(×104/hm2)
穗粒数
Kernel number per spike
千粒重
Thousand kernel weight (g)
2015-2016 AK58 8212.9a 634.5a 32.3ab 42.3a
ZM66 8011.5ab 637.5a 33.5a 41.2ab
AK58 8141.4ab 645.1a 31.6bc 40.7abc
ZM66 7830.1bc 625.5ab 32.7ab 39.4cdef
AK58 7099.7d 598.5bc 30.8c 39.5bcdef
ZM66 6902.5d 601.5bc 31.2bcd 38.5def
AK58 6528.5e 580.5c 30.1d 38.1ef
ZM66 6346.4e 598.5bc 30.6cd 37.8f
AK58 7487.4c 634.2a 30.8cd 39.6bcde
ZM66 7859.7b 627.3ab 32.4ab 39.8bcd
2016-2017 AK58 9401.9a 663.2a 32.7bc 44.6a
ZM66 9278.7a 657.3a 34.5a 43.3abc
AK58 9225.6a 652.5a 32.2bcd 43.8ab
ZM66 9120.1a 655.4a 33.7ab 43.1abc
AK58 7775.9c 616.5b 31.2cde 41.7cde
ZM66 7925.1c 619.2b 32.4bcd 41.2de
AK58 7377.6d 601.5b 30.6e 40.4e
ZM66 7631.9cd 612.6b 31.3cde 40.1e
AK58 8630.9b 657.2a 31.1de 41.6cde
ZM66 9139.2a 654.1a 33.9ab 42.5bcd

Table 6

Yield and yield components of summer maize with different harvest dates"

年份Year 处理
Treatment
品种
Variety
产量
Grain yield
(kg·hm-2)
穗数
Ears number
(×104/hm2)
穗粒数
Grain number per ear
千粒重
Thousand kernel weight (g)
籽粒含水量
Water content
(%)
2016 XY335 9524.5d 6.2a 478.1ab 321.3d 38.8a
ZD958 8979.6e 6.3a 463.9b 315.4d 39.7a
XY335 10340.4bc 6.4a 481.6ab 343.9bc 30.7c
ZD958 9879.8cd 6.3a 475.9ab 338.7c 32.7b
XY335 10901.2a 6.3a 479.6ab 365.7a 22.9e
ZD958 10738.8ab 6.3a 475.1ab 356.0abc 25.5d
XY335 11058.6a 6.4a 483.6ab 366.3a 18.5g
ZD958 10759.3ab 6.3a 479.9ab 359.4ab 21.4f
XY335 11188.1a 6.3a 486.8a 363.9a 14.9i
ZD958 10922.9a 6.4a 481.3ab 356.5ab 17.3h
2017 XY335 9089.4e 6.5a 422.1b 329.9c 38.9a
ZD958 9202.9e 6.6a 439.2ab 320.7c 40.0a
XY335 9718.8d 6.5a 429.0ab 352.3b 31.8c
ZD958 9924.2cd 6.5a 436.6ab 359.5b 33.4b
XY335 10413.1bc 6.6a 425.6b 372.5ab 23.7e
ZD958 10536.9ab 6.6a 440.8ab 370.1ab 26.1d
XY335 10617.5ab 6.5a 428.1ab 376.8a 18.9g
ZD958 10926.9a 6.5a 448.5a 373.5ab 21.4f
XY335 10490.2ab 6.6a 431.6ab 374.2ab 14.4i
ZD958 10746.5ab 6.4a 442.2ab 377.2a 16.5h

Table 7

The ANOVA analyses for yield and yield components of winter wheat and summer maize by years, treatment, and variety"

小麦Wheat 玉米Maize
产量
Grain yield
穗数
Spikes
number
穗粒数
Kernel number per spike
千粒重
Thousand kernel weight
产量
Grain yield
穗数
Ears
number
穗粒数
Grain number per ear
千粒重
Thousand kernel weight
籽粒含水量
Water content
年份
Year (Y)
0.001 0.011 0.001 0.003 0.002 0.001 0.001 0.001 0.199
处理
Treatment (T)
0.002 0.263 0.003 0.001 0.001 0.984 0.333 0.001 0.003
品种
Variety (V)
0.701 0.817 0.002 0.043 0.169 0.817 0.258 0.033 0.001
Y×T 0.262 0.656 0.988 0.585 0.230 0.713 0.971 0.584 0.172
Y×V 0.060 0.701 0.084 0.539 0.001 0.847 0.003 0.149 0.597
T×V 0.003 0.887 0.063 0.235 0.600 0.864 0.947 0.591 0.093
Y×T×V 0.888 0.979 0.922 0.975 0.762 0.731 0.915 0.672 0.990

Fig. 2

Grain yield of winter wheat-summer maize double cropping system with different treatments A is grain yield in 2015-2016, B is grain yield in 2016-2017"

Table 8

Production efficiency of accumulated temperature and radiation for winter wheat and summer maize with different sowing/ harvest dates"

年份
Year
处理
Treatment
积温生产效率
Production efficiency of temperature (kg·hm-2·℃-1)
光能生产效率
Production efficiency of radiation (g·MJ-1)
小麦
Wheat
玉米
Maize
周年
Annual
小麦
Wheat
玉米
Maize
周年
Annual
2015-2016 3.30c 3.20ab 3.24b 0.32b 0.54ab 0.41b
3.66b 3.27a 3.43a 0.32b 0.56a 0.43a
3.37c 3.20ab 3.25b 0.31b 0.55ab 0.42ab
3.28c 3.10b 3.17b 0.29c 0.53b 0.41b
4.09a 3.08b 3.42a 0.36a 0.50c 0.44a
2016-2017 3.90c 3.18ab 3.45b 0.38b 0.56ab 0.44b
4.20b 3.24a 3.63a 0.39b 0.58a 0.47a
3.85c 3.18ab 3.44b 0.35c 0.56ab 0.45ab
3.82c 3.04bc 3.32b 0.35c 0.54b 0.44b
4.79a 3.01c 3.62a 0.44a 0.51c 0.48a
年份Year (Y) 0.001 0.590 0.017 0.001 0.069 0.002
处理Treatment (T) 0.001 0.347 0.049 0.002 0.001 0. 022
Y×T 0.412 0.899 0.698 0.031 0.977 0.867

Table 9

Production efficiency of water for winter wheat-summer maize with different sowing/harvest dates"

年份
Year
处理
Treatment
小麦季Wheat 玉米季Maize 周年Annual
耗水量
Water use
(mm)
水分生产效率
Water use efficiency
(kg·hm-2·mm-1)
耗水量
Water use
(mm)
水分生产效率
Water use efficiency (kg·hm-2mm-1)
耗水量
Water use
(mm)
水分生产效率
Water use efficiency (kg·hm-2·mm-1)
2015-2016 479.8a 16.9b 413.3d 22.4b 593.1b 19.6bc
468.9a 17.0b 435.7c 23.9a 604.6b 20.5ab
481.6a 14.5d 470.3bc 23.0ab 651.9a 18.7c
399.5b 16.1c 480.9ab 22.7b 655.4a 19.4c
325.2c 23.6a 492.4a 22.5b 667.6a 23.0a
2016-2017 492.4a 19.0b 403.1b 22.6b 595.5a 20.8bc
468.2b 19.6b 428.8a 23.5ab 597.2a 21.5b
457.9b 16.9c 438.7a 23.6ab 596.6a 20.3c
381.1c 19.2b 439.9a 24.0a 596.3a 21.6b
299.6d 29.7a 442.9a 24.1a 592.5a 26.9a
年份Year (Y) 0.018 0.002 0.001 0.186 0.001 0.001
处理Treatment (T) 0.001 0.001 0.004 0.073 0.017 0.003
Y×T 0.007 0.006 0.069 0.226 0.001 0.012
[1] 中华人民共和国农业部. 中国农业统计资料. 北京: 中国农业出版社, 2015.
Ministry of Agriculture of the Peoples’ Republic of China. China Agriculture Statistical Report . Beijing: China Agriculture Press, 2015. ( in Chinese)
[2] WANG H X, LIU C M, ZHANG L . Water-saving agriculture in China: An overview. Advances in Agronomy, 2002,75:135-171.
doi: 10.1016/S0065-2113(02)75004-9
[3] 费宇红, 张兆吉, 张凤娥, 王昭, 陈宗宇, 陈京生, 钱永, 李亚松 . 气候变化和人类活动对华北平原水资源影响分析. 地球学报, 2007,28(6):567-571.
doi: 10.3321/j.issn:1006-3021.2007.06.009
FEI Y H, ZHANG Z J, ZHANG F E, WANG Z, CHEN Z Y, CHEN J S, QIAN Y, LI Y S . An analysis of the influence of human activity and climate change on water resources of the North China Plain. Acta Geoscientica Sinica, 2007,28(6):567-571. (in Chinese)
doi: 10.3321/j.issn:1006-3021.2007.06.009
[4] 陈阜, 逄焕成 . 冬小麦/春玉米/夏玉米间套作复合群体的高产机理探讨. 中国农业大学学报, 2000,5(5):12-16.
doi: 10.3321/j.issn:1007-4333.2000.05.003
CHEN F, PANG H C . Research on mechanism for maximum yield of intercropping pattern wheat/corn/corn. Journal of China Agricultural University, 2000,5(5):12-16. (in Chinese)
doi: 10.3321/j.issn:1007-4333.2000.05.003
[5] 赵秉强, 张福锁, 李增嘉, 李风超, 劳秀荣, 史春余, 董庆裕, 张骏, 刘嘉军, 杨恩学 . 黄淮海农区集约种植制度的超高产特性研究. 中国农业科学, 2001,34(6):649-655.
doi: 10.3321/j.issn:0578-1752.2001.06.013
ZHAO B Q, ZHANG F S, LI Z J, LI F C, LAO X R, SHI C Y, DONG Q Y, ZHANG J, LIU J J, YANG E X . Studies on the super-high yield characteristics of three intensive multiple cropping systems in Huanghuaihai area. Scientia Agricultura Sinica, 2001,34(6):649-655. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2001.06.013
[6] 李立娟, 王美云, 薛庆林, 崔彦宏, 侯海鹏, 葛均筑, 赵明 . 黄淮海双季玉米产量性能与资源效率的研究. 作物学报, 2011,37(7):1229-1234.
doi: 10.3724/SP.J.1006.2011.01229
LI L J, WANG M Y, XUE Q L, CUI Y H, HOU H P, GE J Z, ZHAO M . Yield performance and resource efficiency of double-cropping maize in the Yellow, Huai and Hai river valleys region. Acta Agronomica Sinica, 2011,37(7):1229-1234. (in Chinese)
doi: 10.3724/SP.J.1006.2011.01229
[7] MENG Q F, SUN Q P, CHEN X P, CUI Z L, YUE S C, ZHANG F S, VOLKER R . Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agriculture, Ecosystems and Environment, 2012,146(1):93-102.
doi: 10.1016/j.agee.2011.10.015
[8] 周宝元, 王志敏, 岳阳, 马玮, 赵明 . 冬小麦-夏玉米与双季玉米种植模式产量及光温资源利用特征比较. 作物学报, 2015,41(9):1373-1385.
doi: 10.3724/SP.J.1006.2015.01393
ZHOU B Y, WANG Z M, YUE Y, MA W, ZHAO M . Comparison of yield and light-temperature resource use efficiency between wheat-maize and maize-maize cropping systems. Acta Agronomica Sinica, 2015,41(9):1373-1385. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01393
[9] 王树安 . 吨良田技术—小麦-夏玉米两茬平播亩产吨粮的理论与技术体系研究. 北京: 农业出版社, 1991.
WANG S A. Technology for Grain Production with a Yield of 15 Tons per Hectare. Theory and Technology with a High Yield Output of 15 Tons per Hectare in Winter Wheat and Summer Maize Double- Cropping System. Beijing: Agriculture Press, 1991. (in Chinese)
[10] 王树安 . 中国吨粮田建设. 北京: 北京农业大学出版社, 1994.
WANG S A. Construction of the Grain Field with a Yield of 15 Tons per Hectare in China . Beijing: Beijing Agricultural University Press, 1994. (in Chinese)
[11] SUN H Y, ZHANG X Y, CHEN S Y, PEI D, LIU C M . Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. Industrial Crops and Products, 2007,25(3):239-247.
doi: 10.1016/j.indcrop.2006.12.003
[12] 付雪丽, 张惠, 贾继增, 杜立丰, 付金东, 赵明 . 冬小麦-夏玉米“双晚”种植模式的产量形成及资源效率研究. 作物学报, 2009,35(9):1708-1714.
doi: 10.3724/SP.J.1006.2009.01708
FU X L, ZHANG H, JIA J Z, DU L F, FU J D, ZHAO M . Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. Acta Agronomica Sinica, 2009,35(9):1708-1714. (in Chinese)
doi: 10.3724/SP.J.1006.2009.01708
[13] 王志敏, 王璞, 兰林旺, 周殿玺 . 黄淮海地区优质小麦节水高产栽培研究. 中国农学通报, 2003,19(4):22-43
doi: 10.3969/j.issn.1000-6850.2003.04.007
WANG Z M, WANG P, LAN L W, ZHOU D X . A water-saving and high-yielding cultivation system for bread wheat in Huang-Huai-Hai area of China. Chinese Agricultural Science Bulletin, 2003,19(4):22-43. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2003.04.007
[14] ZHANG X Y, PEI D, HU C S . Conserving groundwater for irrigation in the North China Plain. Irrigation Science, 2003, 21,11(4) 159-166.
doi: 10.1007/s00271-002-0059-x
[15] SUN H Y, SHEN Y J, YU Q, FLERCHINGER G N, ZHANG Y Q, LIU C M, ZHANG X Y . Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agricultural Water Management, 2010,97(8):1139-1145.
doi: 10.1016/j.agwat.2009.06.004
[16] FOSTER S, GARDUNO H, EVANS R, OLSON D, TIAN Y, ZHANG W Z, HAN Z S . Quaternary aquifer of the North China Plain- assessing and achieving groundwater resource sustainability. Hydrogeology Journal, 2004,12(9):81-93.
doi: 10.1007/s10040-003-0300-6
[17] HU C S, DELGADO J A, ZHANG X Y, MA L . Assessment of groundwater use by wheat (Triticum aestivum L.) in the Luancheng Xian region and potential implications for water conservation in the northwestern North China Plain. Journal Soil Water Conservation, 2005,60(2):80-88.
[18] 张光辉, 费宇红, 刘克岩, 王金哲 . 华北平原农田区地下水开采量对降水变化响应. 水科学进展, 2006,17(1):43-48.
doi: 10.3321/j.issn:1001-6791.2006.01.007
ZHANG G H, FEI Y H, LIU K Y, WANG J Z . Regional groundwater pumpage for agriculture responding to precipitation in North China Plain. Advances in Water Science, 2006,17(1):43-48. (in Chinese)
doi: 10.3321/j.issn:1001-6791.2006.01.007
[19] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆 . 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017,50(11):2036-2043.
doi: 10.3864/j.issn.0578-1752.2017.11.009
CHAI Z W, WANG K R, GUO Y Q, XIE R Z, LI L L, MING B, HOU P, LIU C W, CHU Z D, ZHANG W X, ZHANG G Q, LIU G Z, LI S K . Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Scientia Agricultura Sinica, 2017,50(11):2036-2043. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.009
[20] 李璐璐, 王克如, 谢瑞芝, 明博, 赵磊, 李姗姗, 侯鹏, 李少昆 . 玉米生理成熟后田间脱水期间的籽粒重量与含水率变化. 中国农业科学, 2017,50(11):2052-2060.
doi: 10.3864/j.issn.0578-1752.2017.11.011
LI L L, WANG K R, XIE R Z, MING B, ZHAO L, LI S S, HOU P, LI S K . Corn kernel weight and moisture content after physiological maturity in field. Scientia Agricultura Sinica, 2017,50(11):2052-2060. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.011
[21] WANG J, WANG E L, YANG X G, ZHANG F S, YIN H . Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change, 2012,113(3/4):825-840.
doi: 10.1007/s10584-011-0385-1
[22] 刘志娟, 杨晓光, 王文峰 . 气候变化背景下中国农业气候资源变化Ⅳ. 黄淮海平原半湿润暖温麦-玉两熟灌溉农区农业气候资源时空变化特征. 应用生态学报, 2011,22(4):905-912.
LIU Z J, YANG X G, WANG W F . Changes of China agricultural climate resources under the background of climate change. Ⅳ.Spatiotemporal change characteristics of agricultural climate resources in sub-humid warm-temperate irrigated wheat-maize agricultural area of Huang-Huai-Hai Plain. Chinese Journal of Applied Ecology, 2011, 22(4):905-912. (in Chinese)
[23] BORRAS L, GAMBIN B L . Trait dissection of maize kernel weight: Towards integrating hierarchical scales using a plant growth approach. Field Crops Research, 2010,118(1):1-12.
doi: 10.1016/j.fcr.2010.04.010
[24] CAIRNS J E, SONDER K, ZAIDI P H, VERHULST N, MAHUKU G, BABU R, NAIR S K, DAS B, GOVAERTS B, VINAYAN M T, RASHID Z, NOOR J J, DEVI P, SAN VICENTE F M, PRASANNA B M . Maize production in a changing climate: Impacts, adaptation, and mitigation strategies//SPARKS D. Advances in Agronomy. Burlington: Academic Press, 2012,114:1-58.
[25] 杨羡敏, 曾燕, 邱新法, 姜爱军 . 1960—2000 年黄河流域太阳总辐射气候变化规律研究. 应用气象学报, 2005,16(2):243-248.
doi: 10.11898/1001-7313.20050213
YANG X M, ZENG Y, QIU X F, JIANG A J . The climatic change of global solar radiation over the Yellow River basin during 1960-2000. Journal of Applied Meteorological Science, 2005,16(2):243-248. (in Chinese)
doi: 10.11898/1001-7313.20050213
[26] 郑海霞, 封志明, 游松财 . 基于GIS的甘肃省农业生产潜力研究. 地理科学进展, 2003,22(4):400-408.
doi: 10.11820/dlkxjz.2003.04.008
ZHENG H X, FENG Z M, YOU S C . A study on potential land productivity based on GIS technology in Gansu province. Progress in Geography, 2003,22(4):400-408. (in Chinese)
doi: 10.11820/dlkxjz.2003.04.008
[27] BERGAMASCHI H, WHEELER T R, CHALLINOR A J, COMIRAN F, HECKLER B M M . Maize yield and rainfall on different spatial and temporal scales in Southern Brazil. Pesquisa Agricultural Brasil, 2007,42:603-613.
doi: 10.1590/S0100-204X2007000500001
[28] RATTALINO EDREIRA J I, BUDAKLI CARPICI E, SAMMARRO D, OTEGUI M E . Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 2011,123(2):62-73.
doi: 10.1016/j.fcr.2011.04.015
[29] ZHOU B Y, YUE Y, SUN X F, WANG X B, WANG Z M, MA W, ZHAO M . Maize grain yield and dry matter production responses to variations in weather conditions. Agronomy Journal, 2016,108(1):196-204.
doi: 10.2134/agronj2015.0196
[30] LIU Y, WANG E L, YANG X G, WANG J . Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Global Change Biology, 2010,16(8):2287-2299.
doi: 10.1111/j.1365-2486.2009.02077.x
[31] 高海涛, 王育红, 孟战赢, 席玲玲, 段国辉, 温红霞 . 小麦-玉米双晚种植对周年产量和资源利用的影响. 麦类作物学报, 2012,32(6):1102-1106.
doi: 10.7606/j.issn.1009-1041.2012.06.016
GAO H T, WANG Y H, MENG Z Y, XI L L, DUAN G H, WEN H X . Effects of later sowing of winter wheat and later harvest of summer maize cropping system on yield and resources use efficiency of whole-year. Journal of Triticeae Crops, 2012,32(6):1102-1106. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2012.06.016
[32] 裴雪霞, 王娇爱, 党建友, 张定一 . 播期对优质小麦籽粒灌浆特性及旗叶光合特性的影响. 中国生态农业学报, 2008,16(1):121-128.
PEI X X, WANG J A, DANG J Y, ZHANG D Y . Characteristics of grain filling and flag leaf photosynthesis of high quality wheat under different planting dates. Chinese Journal of Eco-Agriculture, 2008,16(1):121-128. (in Chinese)
[33] 张甲元, 周苏玫, 尹钧, 刘万代, 李巧云, 石珊珊, 年力 . 适期晚播对弱春性小麦籽粒灌浆期光合性能的影响. 麦类作物学报, 2011,31(3) : 535-539.
doi: 10.7606/j.issn.1009-1041.2011.03.027
ZHANG J Y, ZHOU S M, YIN J, LIU W D, LI Q Y, SHI S S, NIAN L . Effect of suitable late sowing on photosynthetic performance of weak spring wheat during grain filling stage. Journal of Triticeae Crops, 2011,31(3):535-539. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2011.03.027
[34] WANG B, ZHANG Y H, HAO B Z, XU X X, ZHAO Z G, WANG Z M, XU Q W . Grain yield and water use efficiency in extremely-late sown winter wheat cultivars under two irrigation regimes in the North China Plain. PLoS ONE, 2016,11(4):e0153695.
doi: 10.1371/journal.pone.0153695 pmid: 27100187
[35] RACZ F, KASA S, HADI G . Daily changes in the water content of early and late maturing grain maize varieties in the later stages of over-ripening. Cereal Research Communications, 2008,36(4):583-589.
doi: 10.1556/CRC.36.2008.4.7
[36] DUTTA P K . Effects of grain moisture, drying methods, and variety on breakage susceptibility of shelled corns as measured by the Wisconsin Breakage Tester[D]. Ames: Iowa State University, 1986.
[37] JOHNSON D Q, RUSSELL W A . Genetic variability and relationships of physical grain-quality traits in the BSSS population of maize. Crop Science, 1982,22(4):805-809.
doi: 10.2135/cropsci1982.0011183X002200040025x
[38] BAUER P J, CARTER P R . Effect of seeding date plant density, moisture availability and soil nitrogen fertility on maize kernel breakage susceptibility. Crop Science, 1986,26(6):1220-1226.
doi: 10.2135/cropsci1986.0011183X002600060030x
[39] LACKEY R. Corn energy value-a comparison of harvesting corn as shelled dried corn, high moisture corn, high moisture cob corn (cob meal) and corn silage. Ministry of Agriculture Food & Rural Affairs, 2008[2017-02-09]. .
[40] 王怡 . 黄淮海麦区小麦倒春寒冻害及其防御措施. 农业科技通讯, 2014(1):139-140, 211.
doi: 10.3969/j.issn.1000-6400.2014.01.049
WANG Y . Winter injury on wheat in Huang-huai-hai wheat zone and its prevention measures. Bulletin of Agricultural Science and Technology, 2014(1):139-140, 211. (in Chinese)
doi: 10.3969/j.issn.1000-6400.2014.01.049
[41] LI X N, CAI J, LIU F L, DAI T B, CAO W X, JIANG D . Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Functional Plant Biology, 2014,41:690-703.
doi: 10.1071/FP13306
[42] LIU Y E, XIE R Z, HOU P, LI S K, ZHANG H B, MING B, LONG H L, LIANG S M . Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Research, 2013,144:192-199.
doi: 10.1016/j.fcr.2013.01.003
[1] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[2] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[3] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[4] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[5] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[6] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[7] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[8] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[9] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
[10] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
[11] MA Yue,TIAN Yi,YUAN AiJing,WANG HaoLin,LI YongHua,HUANG TingMiao,HUANG Ning,LI Chao,DANG HaiYan,QIU WeiHong,HE Gang,WANG ZhaoHui,SHI Mei. Response of Wheat Yield and Protein Concentration to Soil Nitrate in Northern Wheat Production Region of China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3903-3918.
[12] FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427.
[13] HOU JiaMin,LUO Ning,WANG Su,MENG QingFeng,WANG Pu. Effects of Increasing Planting Density on Grain Yield, Leaf Area Index and Photosynthetic Rate of Maize in China [J]. Scientia Agricultura Sinica, 2021, 54(12): 2538-2546.
[14] TaoTao YANG,JiaXin XIE,Shan HUANG,XueMing TAN,XiaoHua PAN,YongJun ZENG,QingHua SHI,Jun ZHANG,YanHua ZENG. The Impacts of Post-Anthesis Warming on Grain Yield and Quality of Late Japonica Rice in a Double Rice Cropping System [J]. Scientia Agricultura Sinica, 2020, 53(7): 1338-1347.
[15] GAO ChunHua,FENG Bo,CAO Fang,LI ShengDong,WANG ZongShuai,ZHANG Bin,WANG Zheng,KONG LingAn,WANG FaHong. Effects of Nitrogen Application Rate on Assimilate Accumulation, Transportation and Grain Yield in Wheat Under High Temperature Stress After Anthesis [J]. Scientia Agricultura Sinica, 2020, 53(21): 4365-4375.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!