Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (6): 1137-1152.doi: 10.3864/j.issn.0578-1752.2024.06.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Water and Carbon Footprint and Layout Optimization of Major Grain Crops in the Northwest China

WANG ChuFan1,3(), NIU Jun1,2,3()   

  1. 1 State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083
    2 National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, Gansu
    3 Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083
  • Received:2023-04-11 Accepted:2023-05-10 Online:2024-03-25 Published:2024-03-25
  • Contact: NIU Jun

Abstract:

【Objective】 This paper assessed the carbon footprint and water footprint of major food crops in the northwest region, and established a multi-objective planting structure optimization model based on the carbon footprint and water footprint to adjust the spatial distribution of food crops in each province, so as to provide a theoretical basis for reducing carbon emissions and enhancing water resource management. 【Method】 Based on the planting area, yield, and agricultural inputs of wheat, maize, and rice in the northwest region, the carbon footprint was evaluated using Life Cycle Analysis (LCA); Based on evapotranspiration and effective precipitation, the water footprint was evaluated by Penman-Monteith formula; Multi objective optimization of the layout of three major grain crops in the five northwest provinces was performed based on entropy weight method. 【Result】 The data showed that the carbon footprint and water footprint of wheat, maize and rice in northwest China from 1999 to 2020 showed significant differences in different provinces. In the northwest region, the carbon emissions from the production of three grain crops, wheat, maize and rice showed a distribution pattern of higher levels in the eastern and western regions and lower levels in the central region; the range of carbon footprint per unit production (PCF) was 0.36-0.63, 0.33-0.56, 0.57-0.97 t CO2-eq·t-1, respectively; the carbon footprint per unit area (FCF) was (2.46±0.77), (3.21±0.49) and (5.57±0.91) t CO2-eq·hm-2, respectively. From 2010 to 2018, the total green water content of wheat, maize and rice in the northwest region showed a steady upward trend, with regions with higher average green water content distributed in Shaanxi, Gansu, and Ningxia. The total amount of blue water showed an upward trend from 2010 to 2015, and a downward trend from 2015 to 2018. The regions with higher average total blue water were distributed in Gansu, Ningxia, and Xinjiang. Among the three major grain crops in northwest China, maize consumes the least blue water footprint, with an average blue water footprint of 0.45 m3·kg-1; the blue water footprint consumption of rice was the largest, and the average production blue water footprint was 0.77 m3·kg-1. The optimization of food crop cultivation structure was performed, based on carbon and water footprints, using the cultivated area of different crops in each province as decision variables, and setting optimization scenarios focusing on reducing carbon emissions (ecological benefits) and increasing green water use (water resource benefits) according to different weights. In Scenario 1, the total carbon emissions decreased by 1.9% and the total green water increased by 5.0%; In scenario 2, the total carbon emissions decreased by 11.8%, while in scenario 3, the total utilization of green water increased by 6.7%. 【Conclusion】 There were significant spatial and temporal differences in carbon emissions and total water volume of the three major food crops in the Northwest Region. In terms of carbon footprint, the average FCF of the three major grain crops in the region shows an increasing trend, and the PCF shows a decreasing trend. In terms of water footprint, the green water footprint of the three major food crops in the region was higher than the national average, with maize having the largest green water footprint and rice having the smallest green water footprint. Under the premise of ensuring food crop security, the planting area of wheat has increased by 6.7%, while the planting area of maize and rice has decreased by 5.8% and 8.0%, respectively. The economic, resource, and ecological benefits have all been improved to a certain extent. In summary, multi-objective optimization could improve the utilization of green water resources, reduce carbon emissions, and alleviate environmental pressure.

Key words: carbon footprint, water footprint, optimization of planting structure, food crops, northwest region

Table 1

Emission factors for agricultural inputs"

项目 Item 排放系数 Emission factor 参考文献Reference
氮肥Nitrogenous fertilizer 7.759 t CO2-eq·t-1 [25]
磷肥Phosphate fertilizer 2.332 t CO2-eq·t-1 [25]
钾肥Potassic fertilizer 0.66 t CO2-eq·t-1 [25]
农药 Pesticides 18.08 t CO2-eq·t-1 [26]
柴油 Diesel fuel 4.63 t CO2-eq·L-1 [27]
塑料薄膜 Plastic film 5.18 t CO2-eq·t-1 [28]
灌溉电力 Irrigation electricity 266.48 kg CO2-eq·hm-2 [29]
小麦种子 Wheat seeds 1.22 t CO2-eq·t-1 [30]
玉米种子 Maize seeds 1.16 t CO2-eq·t-1 [31]
水稻种子 Rice seeds 1.84 t CO2-eq·t-1 [32]
氮肥引起农田N2O直接排放
Direct N2O emission from N fertilizer
小麦Wheat 0.0105 kg N2O-N·kg-1N [19]
玉米Maize 0.0105 kg N2O-N·kg-1N [19]
水稻Rice 0.0042 kg N2O-N·kg-1N [20-21]

Table2

Methane emission factors from rice in five provinces of the Northwest China (kg CH4·hm-2)"

作物 Crop 陕西 Shaanxi 甘肃 Gansu 青海 Qinghai 宁夏 Ningxia 新疆 Xinjiang
水稻 Rice 125.1 68.3 73.5 105.0

Table 3

The proportion of straw in the crop yield in five provinces of Northwest China (%)"

省(区) Province 小麦 Wheat 玉米 Maize 水稻 Rice
陕西 Shaanxi 1.27 1.1 0.94
甘肃 Gansu 1.26 1.11 0.84
青海 Qinghai 1.31 1.1 0
宁夏 Ningxia 1.08 1.21 0.99
新疆 Xinjiang 1.36 1.15 0.74

Table 4

Straw burning percentage and proportion of straw returning in five provinces of the Northwest China"

省(区)
Province
室内秸秆燃烧率
Domestic straw burning percentage (%)
田间秸秆燃烧率
In-field straw burning percentage (%)
秸秆还田比例
Proportion of straw returning (%)
陕西Shaanxi 10.24 8.4 33.4
甘肃 Gansu 23.1 9.9 6.5
青海 Qinghai 19.6 8.4 7.7
宁夏 Ningxia 11.2 4.8 19.6
新疆 Xinjiang 15 15 47.2

Table 5

Combustion efficiency and dry matter fraction of straw from different crops (%)"

作物 Crop CEi CEj D
小麦 Wheat 86 92 89
玉米 Maize 92 92 87
水稻 Rice 89 93 89

Table 6

Greenhouse gas emission factors from straw burning"

燃烧模式
Burning mode
作物
Crop
CO2排放系数
CO2 emission factors (g·kg-1)
N2O排放系数
N2O emission factors (g·kg-1)
CH4排放系数
CH4 emission factors (g·kg-1)
室内秸秆燃烧
Domestic straw burning
小麦 Wheat 1246.7 1.19 8.3
玉米 Maize 1491 1.86 3.91
水稻 Rice 1147.4 1.92 4.8
田间秸秆燃烧
In-field straw burning
小麦 Wheat 1390 3.3 3.4
玉米 Maize 1350 4.3 4.4
水稻 Rice 1393 1.42 3.9

Table 7

Crop coefficient (Kc) for each developmental stage and proportion of each growth period"

作物Crop Kcb(tab)_ini Kcb(tab)_mid Kcb(tab)_end L_ini L_dep L_mid L_end
小麦 Wheat 0.15 1.1 0.15 0.15 0.25 0.4 0.2
玉米 Maize 0.15 1.15 0.5 0.17 0.28 0.33 0.22
水稻 Rice 1.0 1.15 0.6 0.17 0.18 0.44 0.21

Table 8

Corrected crop coefficients for each developmental stage"

作物Crop Kcb_ini Kcb_mid Kcb_end Kc_ini Kc_dep Kc_mid Kc_end
小麦 Wheat 0.15 1.148 0.15 0.43 0.85 1.18 0.83
玉米 Maize 0.15 1.177 0.516 0.33 0.71 1.18 0.92
水稻 Rice 1.0 1.172 0.623 1.16 1.13 1.18 0.94

Fig. 1

The total carbon emissions of grain crops in various cities in Northwest China"

Fig. 2

Carbon footprint per yield and carbon footprint per area of crops in Northwest China"

Fig. 3

Changes in the total green water and blue water of grain crops in the Northwest China"

Fig. 4

Total green water and blue water of grain crops in Northwest China in 2010 and 2018"

Table 9

Changes in grain crop planting area in five provinces of the Northwest China under different optimization scenarios (hm2)"

作物 Crop 优化前 Before optimization 情景1 Scenario 1 情景2 Scenario 2 情景3 Scenario 3
陕西
Shaanxi
小麦 Wheat 964190 974192 996224 953174
玉米 Maize 1179440 1297384 943552 1415328
水稻 Rice 105090 94581 84072 105090
甘肃
Gansu
小麦 Wheat 708720 779592 738268 850464
玉米 Maize 1000810 850688.5 800648 903143
水稻 Rice 3390 3051 2712 3220.5
青海
Qinghai
小麦 Wheat 94790 102132 87448 102132
玉米 Maize 21370 23507 17096 25644
宁夏
Ningxia
小麦 Wheat 92920 92920 111504 74336
玉米 Maize 322730 355003 258184 385920
水稻 Rice 60820 63861 59135 63861
新疆
Xinjiang
小麦 Wheat 1069020 1175922 1071986 1282824
玉米 Maize 1051050 840840 840840 852206
水稻 Rice 47630 38104 38104 38104

Fig. 5

Changes in carbon emissions from food crops in five provinces of the Northwest China under different optimization scenarios"

Fig. 6

Changes in total green water from food crops in five provinces of the Northwest China under different optimization scenarios"

[1]
张帆, 宣鑫, 金贵, 吴锋. 农业源非二氧化碳温室气体排放及情景模拟. 地理学报, 2023, 78(1): 35-53.

doi: 10.11821/dlxb202301003
ZHANG F, XUAN X, JIN G, WU F. Agricultural non-CO2 greenhouse gases emissions and scenario simulation analysis. Acta Geographica Sinica, 2023, 78(1): 35-53. (in Chinese)

doi: 10.11821/dlxb202301003
[2]
范紫月, 齐晓波, 曾麟岚, 吴锋. 中国农业系统近40年温室气体排放核算. 生态学报, 2022, 42(23): 9470-9482.
FAN Z Y, QI X B, ZENG L L, WU F. Accounting of greenhouse gas emissions in the Chinese agricultural system from 1980 to 2020. Acta Ecologica Sinica, 2022, 42(23): 9470-9482. (in Chinese)
[3]
孙世坤, 刘文艳, 刘静, 王玉宝, 陈帝伊, 吴普特. 河套灌区春小麦生产水足迹影响因子敏感性及贡献率分析. 中国农业科学, 2016, 49(14): 2751-2762.doi: 10.3864/j.issn.0578-1752.2016.14.009.
SUN S K, LIU W Y, LIU J, WANG Y B, CHEN D Y, WU P T. Sensitivity and contribution rate analysis of the influencing factors of spring wheat water footprint in Hetao irrigation district. Scientia Agricultura Sinica, 2016, 49(14): 2751-2762. doi: 10.3864/j.issn.0578-1752.2016.14.009. (in Chinese)
[4]
TIAN P P, LI D, LU H W, FENG S S, NIE Q W. Trends, distribution, and impact factors of carbon footprints of main grains production in China. Journal of Cleaner Production, 2021, 278: 123347.

doi: 10.1016/j.jclepro.2020.123347
[5]
LIU Q Y, XU C T, HAN S W, LI X X, KAN Z R, ZHAO X, ZHANG H L. Strategic tillage achieves lower carbon footprints with higher carbon accumulation and grain yield in a wheat-maize cropping system. Science of the Total Environment, 2021, 798: 149220.

doi: 10.1016/j.scitotenv.2021.149220
[6]
WANG X L, WANG W, GUAN Y S, XIAN Y R, HUANG Z X, FENG H Y, CHEN Y. A joint use of emergy evaluation, carbon footprint and economic analysis for sustainability assessment of grain system in China during 2000-2015. Journal of Integrative Agriculture, 2018, 17(12): 2822-2835.

doi: 10.1016/S2095-3119(18)61928-8
[7]
YANG X L, SUN B B, GAO W S, CHEN Y Q, SUI P. Carbon footprints of grain-, forage-, and energy-based cropping systems in the North China plain. The International Journal of Life Cycle Assessment, 2019, 24(3): 371-385.

doi: 10.1007/s11367-018-1481-5
[8]
HUANG X M, CHEN C Q, QIAN H Y, CHEN M Z, DENG A X, ZHANG J, ZHANG W J. Quantification for carbon footprint of agricultural inputs of grains cultivation in China since 1978. Journal of Cleaner Production, 2017, 142: 1629-1637.

doi: 10.1016/j.jclepro.2016.11.131
[9]
郭萍, 赵敏, 张妍, 张效星, 张帆. 基于水足迹的河套灌区多目标种植结构优化调整与评价. 农业机械学报, 2021, 52(12): 346-357.
GUO P, ZHAO M, ZHANG Y, ZHANG X X, ZHANG F. Optimization and evaluation of multi-objective planting structure in Hetao irrigation district based on water footprint. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 346-357. (in Chinese)
[10]
聂媛, 李晓云, 江文曲, 刘念洁. 基于水足迹视角的中国北方10省三大粮食作物种植结构优化. 资源科学, 2022, 44(11): 2315-2329.

doi: 10.18402/resci.2022.11.12
NIE Y, LI X Y, JIANG W Q, LIU N J. Planting structure optimization of three main grain crops in 10 Northern China Provinces based on water footprint method. Resources Science, 2022, 44(11): 2315-2329. (in Chinese)

doi: 10.18402/resci.2022.11.12
[11]
陈绪昊, 高强, 陈新平, 张务帅. 东北三省玉米生产资源投入和环境效应的时空特征. 中国农业科学, 2022, 55(16): 3170-3184. doi: 10.3864/j.issn.0578-1752.2022.16.009.
CHEN X H, GAO Q, CHEN X P, ZHANG W S. Temporal and spatial characteristics of resources input and environmental effects for maize production in the three provinces of northeast China. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184. doi: 10.3864/j.issn.0578-1752.2022.16.009. (in Chinese)
[12]
张惠云. 基于LCA的吉林省水稻生产水足迹和碳足迹的时空分异与影响因素研究[D]. 哈尔滨: 东北师范大学, 2021.
ZHANG H Y. Study on the spatiotemporal differences and influencing factors of water and carbon footprints of rice production in Jilin Province based on LCA[D]. Haebing: Northeast Normal University, 2021. (in Chinese)
[13]
王占彪, 王猛, 陈阜. 华北平原作物生产碳足迹分析. 中国农业科学, 2015, 48(1): 83-92.doi: 10.3864/j.issn.0578-1752.2015.01.09.
WANG Z B, WANG M, CHEN F. Carbon footprint analysis of crop production in North China plain. Scientia Agricultura Sinica, 2015, 48(1): 83-92. doi: 10.3864/j.issn.0578-1752.2015.01.09. (in Chinese)
[14]
KLOTZ I M, BARRON S, FRUTON J. Symposia of the society for experimental biology. The Yale Journal of Biology and Medicine, 1952, 25: 230-231.
[15]
ALLEN R G, PEREIRA L S, RAES D, SMITH M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. Rome: FAO Irrigation and Drainage, 1998.
[16]
LIU Y Q, LIN Y F, HUO Z L, ZHANG C L, WANG C Z, XUE J Y, HUANG G H. Spatio-temporal variation of irrigation water requirements for wheat and maize in the Yellow River Basin, China, 1974-2017. Agricultural Water Management, 2022, 262: 107451.

doi: 10.1016/j.agwat.2021.107451
[17]
ZHENG J, FAN J L, ZHANG F C, ZHUANG Q L. Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China. Agricultural Water Management, 2021, 243: 106473.

doi: 10.1016/j.agwat.2020.106473
[18]
罗万琦, 吕辛未, 吴从林, 杨洋, 崔远来, 罗玉峰. 中国主要稻区水稻灌溉需求变化及其规律分析. 节水灌溉, 2021(12): 1-7.
LUO W Q, X W, WU C L, YANG Y, CUI Y L, LUO Y F. Analysis of rice irrigation demands and its change law in major rice areas of China. Water Saving Irrigation, 2021(12): 1-7. (in Chinese)
[19]
GAO B, JU X T, ZHANG Q, CHRISTIE P, ZHANG F S. New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors. Biogeosciences, 2011, 8(10): 3011-3024.

doi: 10.5194/bg-8-3011-2011
[20]
ZOU J W, HUANG Y, ZHENG X H, WANG Y S. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: dependence on water regime. Atmospheric Environment, 2007, 41(37): 8030-8042.

doi: 10.1016/j.atmosenv.2007.06.049
[21]
ZOU J W, LU Y Y, HUANG Y. Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980-2000. Environmental Pollution, 2010, 158(2): 631-635.

doi: 10.1016/j.envpol.2009.08.026 pmid: 19762135
[22]
YUE Q, WU H, SUN J F, CHENG K, SMITH P, HILLIER J, XU X R, PAN G X. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environmental Science & Technology, 2019, 53(17): 10246-10257.

doi: 10.1021/acs.est.9b01285
[23]
XUE J F, PU C, LIU S L, ZHAO X, ZHANG R, CHEN F, XIAO X P, ZHANG H L. Carbon and nitrogen footprint of double rice production in Southern China. Ecological Indicators, 2016, 64: 249-257.

doi: 10.1016/j.ecolind.2016.01.001
[24]
PAN H Y, ZHENG X Y, TIAN X, GENG Y, ZHANG X H, XIAO S J, GAO Z Y, YANG Y X, LIU X C, LI L, HUANG C Y, DENG S H, LIU Q. Toward sustainable crop production in China: A co-benefits evaluation. Journal of Cleaner Production, 2022, 361: 132285.

doi: 10.1016/j.jclepro.2022.132285
[25]
ZHANG G, WANG X K, ZHANG L, XIONG K N, ZHENG C Y, LU F, ZHAO H, ZHENG H, OUYANG Z Y. Carbon and water footprints of major cereal crops production in China. Journal of Cleaner Production, 2018, 194: 613-623.

doi: 10.1016/j.jclepro.2018.05.024
[26]
周志花. 利用LCA法核算农作物生产碳足迹[D]. 北京: 中国农业科学院, 2018.
ZHOU Z H. Using LCA method to calculate the carbon footprint of crop production[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[27]
冯靖仪. 稻田作物生产的碳足迹及化肥减施的温室气体减排潜力研究[D]. 杭州: 浙江大学, 2020.
FENG J Y. Study on carbon footprint of crop production in paddy field and potential of reducing greenhouse gas emission by reducing fertilizer application[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[28]
冉锦成. 西北五省农业碳排放及影响因素研究[D]. 乌鲁木齐: 新疆农业大学, 2017.
RAN J C. Study on agricultural carbon emission and its influencing factors in five provinces of northwest China[D]. Urumqi: Xinjiang Agricultural University, 2017. (in Chinese)
[29]
李明琦, 刘世梁, 武雪, 孙永秀, 侯笑云, 赵爽. 云南省农田生态系统碳足迹时空变化及其影响因素. 生态学报, 2018, 38(24): 8822-8834.
LI M Q, LIU S L, WU X, SUN Y X, HOU X Y, ZHAO S. Temporal and spatial dynamics in the carbon footprint and its influencing factors of farmland ecosystems in Yunnan Province. Acta Ecologica Sinica, 2018, 38(24): 8822-8834. (in Chinese)
[30]
林志敏, 李洲, 翁佩莹, 吴冬青, 邹京南, 庞孜钦, 林文雄. 再生稻田温室气体排放特征及碳足迹. 应用生态学报, 2022, 33(5): 1340-1351.

doi: 10.13287/j.1001-9332.202205.013
LIN Z M, LI Z, WENG P Y, WU D Q, ZOU J N, PANG Z Q, LIN W X. Field greenhouse gas emission characteristics and carbon footprint of ratoon rice. Chinese Journal of Applied Ecology, 2022, 33(5): 1340-1351. (in Chinese)
[31]
陈晓炜, 王小龙. 种养循环农作制度碳足迹评估: 以鲜食玉米-奶牛-粪便还田循环模式为例. 中国农业科学, 2023, 56(2): 314-332. doi: 10.3864/j.issn.0578-1752.2023.02.009.
CHEN X W, WANG X L. Accounting framework of carbon footprint on integrated cropping-breeding farming system: A case on maize-cow-recycling manure model. Scientia Agricultura Sinica, 2023, 56(2): 314-332. doi: 10.3864/j.issn.0578-1752.2023.02.009. (in Chinese)
[32]
刘巽浩, 徐文修, 李增嘉, 褚庆全, 杨晓琳, 陈阜. 农田生态系统碳足迹法: 误区、改进与应用: 兼析中国集约农作碳效率. 中国农业资源与区划, 2013, 34(6): 1-11.
LIU X H, XU W X, LI Z J, CHU Q Q, YANG X L, CHEN F. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China’s intensive farming. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(6): 1-11. (in Chinese)
[33]
HUANG X Q, XU X C, WANG Q Q, ZHANG L, GAO X, CHEN L H. Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997-2016. International Journal of Environmental Research and Public Health, 2019, 16(17): 3105.

doi: 10.3390/ijerph16173105
[34]
赵丽雯, 吉喜斌. 基于FAO-56双作物系数法估算农田作物蒸腾和土壤蒸发研究—以西北干旱区黑河流域中游绿洲农田为例. 中国农业科学, 2010, 43(19): 4016-4026.doi: 10.3864/j.issn.0578-1752.2010.19.014.
ZHAO L W, JI X B. Quantification of transpiration and evaporation over agricultural field using the FAO-56 dual crop coefficient approach—A case study of the maize field in an oasis in the middlestream of the Heihe River Basin in northwest China. Scientia Agricultura Sinica, 2010, 43(19): 4016-4026. doi: 10.3864/j.issn.0578-1752.2010.19.014. (in Chinese)
[35]
文冶强, 杨健, 尚松浩. 基于双作物系数法的干旱区覆膜农田耗水及水量平衡分析. 农业工程学报, 2017, 33(1): 138-147.
WEN Y Q, YANG J, SHANG S H. Analysis on evapotranspiration and water balance of cropland with plastic mulch in arid region using dual crop coefficient approach. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 138-147. (in Chinese)
[36]
赵锦江, 马娟娟, 郑利剑, 孙西欢, 武朝宝. 基于双作物系数法估算晋南地区冬小麦-夏玉米轮作系统蒸散量. 节水灌溉, 2023(2): 28-37.

doi: 10.12396/jsgg.2022223
ZHAO J J, MA J J, ZHENG L J, SUN X H, WU C B. Estimation of evapotranspiration of winter wheat-summer maize rotation system in southern Shanxi based on dual-crop coefficient approach. Water Saving Irrigation, 2023(2): 28-37. (in Chinese)
[37]
殷杰玲. 基于水足迹与虚拟水的灌区种植结构优化[D]. 杨凌: 西北农林科技大学, 2022.
YIN J L. Optimization of planting structure in irrigation district based on water footprint and virtual water[D]. Yangling: Northwest A & F University, 2022. (in Chinese)
[38]
陈世超, 刘文丰, 杜太生. 基于水氮管理与种植结构优化的作物丰产高效管理策略. 农业工程学报, 2022, 38(16): 144-152.
CHEN S C, LIU W F, DU T S. Achieving high-yield and high-efficient management strategy based on optimized irrigation and nitrogen fertilization management and planting structure. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 144-152. (in Chinese)
[39]
张传红, 韩露, 谢佳男, 靳浩, 刘翠英, 樊建凌. 江苏省主要农作物碳足迹动态及其构成研究. 南京信息工程大学学报(自然科学版), 2022, 14(1): 110-119.
ZHANG C H, HAN L, XIE J N, JIN H, LIU C Y, FAN J L. Carbon footprint dynamics and composition assessment of major crops production in Jiangsu Province. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2022, 14(1): 110-119. (in Chinese)
[40]
CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486-489.

doi: 10.1038/nature13609
[41]
王钰乔, 濮超, 赵鑫, 王兴, 刘胜利, 张海林. 中国小麦、 玉米碳足迹历史动态及未来趋势. 资源科学, 2018, 40(9): 1800-1811.

doi: 10.18402/resci.2018.09.10
WANG Y Q, PU C, ZHAO X, WANG X, LIU S L, ZHANG H L. Historical dynamics and future trends of carbon footprint of wheat and maize in China. Resources Science, 2018, 40(9): 1800-1811. (in Chinese)

doi: 10.18402/resci.2018.09.10
[42]
黄晓敏, 陈长青, 陈铭洲, 宋振伟, 邓艾兴, 张俊, 郑成岩, 张卫建. 2004—2013年东北三省主要粮食作物生产碳足迹. 应用生态学报, 2016, 27(10): 3307-3315.

doi: 10.13287/j.1001-9332.201610.036
HUANG X M, CHEN C Q, CHEN M Z, SONG Z W, DENG A X, ZHANG J, ZHENG C Y, ZHANG W J. Carbon footprints of major staple grain crops production in three provinces of Northeast China during 2004-2013. Chinese Journal of Applied Ecology, 2016, 27(10): 3307-3315. (in Chinese)
[43]
XU X M, LAN Y. Spatial and temporal patterns of carbon footprints of grain crops in China. Journal of Cleaner Production, 2017, 146: 218-227.

doi: 10.1016/j.jclepro.2016.11.181
[44]
王玉宝, 吴楠, 张富尧, 李鑫, 刘荣, 殷杰玲. 基于三维水足迹模型的农业用水可持续性评估. 农业机械学报, 2023, 54(1): 287-295.
WANG Y B, WU N, ZHANG F Y, LI X, LIU R, YIN J L. Assessment of agricultural water sustainability based on 3D water footprint model. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 287-295. (in Chinese)
[45]
王圣云, 林玉娟. 中国区域农业生态效率空间演化及其驱动因素: 水足迹与灰水足迹视角. 地理科学, 2021, 41(2): 290-301.

doi: 10.13249/j.cnki.sgs.2021.02.012
WANG S Y, LIN Y J. Spatial evolution of regional agricultural ecological efficiency in China and its driving factors—from the perspective of water footprint and grey water footprint. Scientia Geographica Sinica, 2021, 41(2): 290-301. (in Chinese)
[46]
LIU X, SHI L J, ENGEL B A, SUN S K, ZHAO X N, WU P T, WANG Y B. New challenges of food security in Northwest China: water footprint and virtual water perspective. Journal of Cleaner Production, 2020, 245: 118939.

doi: 10.1016/j.jclepro.2019.118939
[1] ZHOU YuanQing, DONG HongMin, ZHU ZhiPing, WANG Yue, LI NanXi. Review on Carbon Footprint Assessment of Pig Farming System [J]. Scientia Agricultura Sinica, 2024, 57(2): 379-389.
[2] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[3] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[4] DENG YuanJian,CHAO Bo. Provincial Agricultural Ecological Efficiency and Its Influencing Factors in China from the Perspective of Grey Water Footprint [J]. Scientia Agricultura Sinica, 2022, 55(24): 4879-4894.
[5] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[6] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
[7] LIU Song, WANG XiaoQin, HU JiPing, LI Qiang, CUI LiLi, DUAN XueQin, GUO Liang. Effects of Fertilization and Irrigation on the Carbon Footprint of Alfalfa in Gansu Province [J]. Scientia Agricultura Sinica, 2018, 51(3): 556-565.
[8] SUN Shi-kun, LIU Wen-yan, LIU jing, WANG Yu-bao, CHEN Di-yi, WU Pu-te. Sensitivity and Contribution Rate Analysis of the Influencing Factors of Spring Wheat Water Footprint in Hetao Irrigation District [J]. Scientia Agricultura Sinica, 2016, 49(14): 2751-2762.
[9] HUANG Wen-qiang, DONG Hong-min, ZHU Zhi-ping, LIU Chong, TAO Xiu-ping, WANG Yue. Research Progress and Analysis of Carbon Footprint of Livestock Products [J]. Scientia Agricultura Sinica, 2015, 48(1): 93-111.
[10] WANG Zhan-biao, WANG Meng, CHEN Fu. Carbon Footprint Analysis of Crop Production in North China Plain [J]. Scientia Agricultura Sinica, 2015, 48(1): 83-92.
[11] LIU Xian-Feng, REN Zhi-Yuan. Vegetation Coverage Change and Its Relationship with Climate Factors in Northwest China [J]. Scientia Agricultura Sinica, 2012, 45(10): 1954-1963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!