Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (15): 2977-2994.doi: 10.3864/j.issn.0578-1752.2023.15.012

• HORTICULTURE • Previous Articles     Next Articles

Analysis of the Interaction Between VvGAI1 and VvJAZ9 Proteins in Grape and Its Expression Pattern Under Low Temperature

LIU DeShuai(), FENG Mei, SUN YuTong, WANG Ye, CHI JingNan, YAO WenKong()   

  1. College of Enology and Horticulture, Ningxia University/Ningxia Modern Facility Horticulture Engineering Technology Research Center/Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan 750021
  • Received:2023-01-12 Accepted:2023-03-31 Online:2023-08-01 Published:2023-08-05

Abstract:

【Objective】 DELLA protein belongs to plant-specific GRAS protein family, which is a significant regulatory factor in GA signal transduction pathway and plays important roles in plant growth, development and resistance to different stresses. In this study, the European grapevine VvGAI1 gene was cloned and the analysis of subcellular localization, protein interaction and expression were performed, so as to lay the foundation for the further study of the function of DELLA protein in response to cold stress in grapevine.【Method】 The VvGAI1 gene sequence was obtained by homologous cloning from the leaves of Vitis vinifera cv. Chardonnay. The VvGAI1 sequence was analyzed by bioinformatics method, and the multiple sequence alignment and phylogenetic trees were performed by DNAMAN and MEGA7.0, respectively. The location of VvGAI1 protein in cells was determined by subcellular localization, and the transcriptional activation activity of the VvGAI1 protein was confirmed by a yeast assay. The interaction between VvGAI1 protein and VvJAZ9 protein was verified by yeast two-hybrid and BiFC assays. The VvGAI1 protein polyclonal antibodies from rabbit was prepared by VvGAI1 protein purified from prokaryotic expression. The VvGAI1 protein expression at low temperature was detected by Western blot method. The effect of exogenous MeJA and GA3 on the cold resistance in grape was analyzed by relative electrical conductivity.【Result】 The VvGAI1 gene was cloned from Chardonnay leaves, with carrying an ORF of 1 773 bp, encoding 590 amino acids, locating on chromosome 1, and containing only one exon. The VvGAI1 protein had a molecular weight of 64.87 kDa and pI of 5.31, which was an acidic unstable hydrophilic protein. The VvGAI1 belonged to GRAS family and had the conserved DELLA and GRAS domains. Protein clustering analysis showed that VvGAI1 was closely related to Arabidopsis GAI and tobacco GAI1. The results of subcellular location and transcriptional activation showed that VvGAI1 was a transcription factor localized in the nucleus and had transcriptional self-activation activity. The interaction between VvGAI1 and VvJAZ9 was confirmed by yeast two-hybrid and BiFC assays. The VvGAI1 gene sequence was cloned into the prokaryotic expression vector to form a pET28b-VvGAI1 recombinant vector, and the Escherichia coli BL21 carrying pET28b-VvGAI1 recombinant vector was incubated in culture medium with 1.0 mmol∙L-1 isopropyl-β-d-thiogalactoside (IPTG) at 16 ℃ to obtain VvGAI1-His fusion protein. The anti-VvGAI1 polyclonal antibody (rabbit-derived) was prepared by antigen immunization and serum purification and used to specifically detect VvGAI1 protein in Chardonnay grapes. Western blot results showed that the VvGAI1 protein in grape protoplasts under low temperature treatment showed an increasing first and then decreasing trend, which indicated the expression of VvGAI1 protein was induced at a low temperature. For 50 μmol·L-1 MeJA and 50 μmol·L-1 GA3 treatments, compared with the control group exogenous MeJA treatment could improve the cold resistance of grape, whereas GA3 treatment made grapes more sensitive to cold.a【Conclusion】 Grape VvGAI1 protein was a transcription factor and interacts with VvJAZ9. The VvGAI1 responded to low temperature stress, and exogenous MeJA was able to positively regulate the cold stress, while GA3 negatively regulated the cold response.

Key words: Vitis vinifera, DELLA protein, GAI1, protein interaction, low temperature, expression pattern

Table 1

List of primers"

引物名称 Primer name 引物序列Primer sequence (5′→3′) 用途 Purpose
VvGAI1-F ATGAAGAGGGAGTATCATCATCCTCATC 基因克隆 Gene cloning
VvGAI1-R TCAGTTGGAGGCAGGTGTGGAG 基因克隆 Gene cloning
pBI221-VvGAI1-F-Xba I GAGAGAACACGGGGGACTCTAGAATGAAGAGGGAGTATCATCATCCTCATC 亚细胞定位Subcellular localization
pBI221-VvGAI1-R-Xho I TTACCCATGGTACCCCGCTCGAGGTTGGAGGCAGGTGTGGAGG 亚细胞定位Subcellular localization
pGBKT7-VvGAI1-F-EcoRⅠ TATGGCCATGGAGGCCGAATTCATGAAGAGGGAGTATCATCATCCTCATC 自激活验证 Self-activation verification
pGBKT7-VvGAI1-R-BamHⅠ GCCGCTGCAGGTCGACGGATCCTCAGTTGGAGGCAGGTGTGGAG 自激活验证 Self-activation verification
pGBKT7-VvGAI1∆DELLA-F-EcoRⅠ TATGGCCATGGAGGCCGAATTCATGGGTAAGGCTCTTTATTCCCATATCGAAC 自激活验证 Self-activation verification
pGBKT7-VvGAI1∆DELLA-R-BamHⅠ GCCGCTGCAGGTCGACGGATCCTCAGTTGGAGGCAGGTGTGGAG 自激活验证 Self-activation verification
pGBKT7-VvGAI1∆GRAS-F-EcoRⅠ TATGGCCATGGAGGCCGAATTCATGAAGAGGGAGTATCATCATCCTCATC 自激活验证 Self-activation verification
pGBKT7-VvGAI1∆GRAS-R-BamHⅠ GCCGCTGCAGGTCGACGGATCCTCATGGAATTGCTTTGAGATCGTAATCCAAAGAC 自激活验证 Self-activation verification
pGADT7-VvGAI1-F-EcoRⅠ GCCATGGAGGCCAGTGAATTCATGAAGAGGGAGTATCATCATCCTCATC 酵母双杂 Yeast two-hybrid
pGADT7-VvGAI1-R-BamHⅠ CAGCTCGAGCTCGATGGATCCTCAGTTGGAGGCAGGTGTGGAG 酵母双杂 Yeast two-hybrid
pBI221-CE-VvJAZ9-F-Xba I GAGAACACGGGGGACTCTAGAATGTCGAGCTCCTCGGATATTGC BiFC验证 BiFC verification
pBI221-CE-VvJAZ9-R-Xho I GTACATGGTACCCCGCTCGAGCTTTGGAGATTTGGCAGCCAAGC BiFC验证 BiFC verification
pBI221-NE-VvGAI1-F-Xba I GAGAACACGGGGGACTCTAGAATGAAGAGAGACCTCCTAGACAGTTGT BiFC验证 BiFC verification
pBI221-NE-VvGAI1-R-Xho I GTACATGGTACCCCGCTCGAGTCAGTTGGAGGCAGGTGTGGAG BiFC验证 BiFC verification
pET28b-VvGAI1-F-Nde I TGGTGCCGCGCGGCAGCCATATGAAGAGGGAGTATCATCATCCTC 原核表达Prokaryotic expression
pET28b-VvGAI1-R-Xho I AGTGGTTGGTGGTGGGGTGCTCGAGTCAGTTGGAGGCAGGTGTGGAG 原核表达Prokaryotic expression

Fig. 1

The PCR amplification of VvGAI1 gene M: DL5000 bp DNA Marker; 1: VvGAI1 gene"

Fig. 2

VvGAI1 protein sequence and conserved domain prediction A: Nucleotide and amino acid sequence of VvGAI1; B: The conserved domain of VvGAI1 protein, the amino acids in the shaded part are DELLA and GRAS conserved domains, * represents the stop codon"

Fig. 3

Sequence alignment analysis of VvGAI1 protein The dots represent sequence alignment vacancies, the blue line region represents the DELLA conservative domain, and the orange line region represents the GRAS conservative domain in the figure"

Fig. 4

Phylogenetic analysis of DELLA protein sequences in Vitis vinifera"

Fig. 5

Subcellular localization of VvGAI1"

Fig. 6

Analysis of cold resistance of grape treated with exogenous MeJA and GA3 * indicate significant difference (P<0.05), ** indicate extremely significant difference (P<0.01)"

Fig. 7

Protein structure and self-activation activity detection of the VvGAI1 protein A: Structure diagram of VvGAI1 protein; B: Verification of the transcriptional activation activity of VvGAI1 protein. BD: pGBKT7 empty vector control; Po: pGADT7-T+pGBKT7-p53 as a positive control; Ne: pGADT7-T+pGBKT7-Lam as negative control"

Fig. 8

Verification of the interaction between VvGAI1 and VvJAZ9 by yeast two-hybrid assays Po: pGADT7-T+pGBKT7-p53 as a positive control; Ne: pGADT7-T+pGBKT7-Lam as negative control"

Fig. 9

BiFC verification of VvGAI1 interaction with VvJAZ9 protein"

Fig. 10

PCR detection of prokaryotic expression vector pET28b constructed from VvGAI1 M: DL 5000 bp DNA Marker; Lanes 1-3: PCR detection of recombinant vector pET28b-VvGAI1-His bacterial solution"

Fig. 11

Polyclonal antibody preparation of VvGAI1 protein A: Prokaryotic expression of VvGAI1; B: VvGAI1 protein purification; C: Detection after preparation of anti-VvGAI1. CK represents non-induced bacteria culture (negative control). M represents molecular weight marker, lanes 1-4 represent the E. coli BL21 natural protein extract induced by IPTG at 16 ℃, natural protein extract induced by IPTG at 37 ℃, denatured protein extract induced by IPTG at 16 ℃ and denatured protein extract was obtained by IPTG at 37 ℃, respectively"

Fig. 12

Expression analysis of VvGAI1 protein under low temperature"

[1]
刘畅, 杨兴旺, 王小龙, 王志强, 刘凤之, 王海波. 植物防冻剂对葡萄抗寒能力的影响研究进展. 中国果树, 2022(3): 6-9.
LIU C, YANG X W, WANG X L, WANG Z Q, LIU F Z, WANG H B. Research progress on the effect of plant antifreeze on grape under low-temperature stress. China Fruits, 2022(3): 6-9. (in Chinese)
[2]
张利鹏, 刘怀锋, 辛海平. 葡萄抗寒机制研究进展. 果树学报, 2023, 40(2): 350-362.
ZHANG L P, LIU H F, XIN H P. Research progress in cold tolerance mechanism of grape. Journal of Fruit Science, 2023, 40(2): 350-362. (in Chinese)
[3]
段晓凤, 张晓煜, 张磊, 刘建文, 南学军, 李楠, 李红英. 酿酒葡萄越冬防冻技术研究发展概况. 农业工程, 2022, 12(6): 133-138.
DUAN X F, ZHANG X Y, ZHANG L, LIU J W, NAN X J, LI N, LI H Y. General situation of research and development on antifreeze technology for wine grape overwintering. Agricultural Engineering, 2022, 12(6): 133-138. (in Chinese)
[4]
WANG Z L, WU D, HUI M, WANG Y, HAN X, YAO F, CAO X, LI Y H, LI H, WANG H. Screening of cold hardiness-related indexes and establishment of a comprehensive evaluation method for grapevines (V. vinifera). Frontiers in Plant Science, 2022, 13: 1014330.

doi: 10.3389/fpls.2022.1014330
[5]
RICHARDS D E, KING K E, AIT-ALI T, HARBERD N P. How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 67-88.

pmid: 11337392
[6]
GAO X H, ZHANG Y Y, HE Z H, FU X D. Gibberellins. Hormone Metabolism and Signaling in Plants. Amsterdam: Elsevier, 2017: 107-160.
[7]
LI W J, ZHANG J X, SUN H Y, WANG S M, CHEN K Q, LIU Y X, LI H, MA Y, ZHANG Z H. FveRGA1, encoding a DELLA protein, negatively regulates runner production in Fragaria vesca. Planta, 2018, 247(4): 941-951.

doi: 10.1007/s00425-017-2839-9
[8]
XUE H D, GAO X, HE P, XIAO G H. Origin, evolution, and molecular function of DELLA proteins in plants. The Crop Journal, 2022, 10(2): 287-299.

doi: 10.1016/j.cj.2021.06.005
[9]
ZHAO B, LI H T, LI J J, WANG B, DAI C, WANG J, LIU K D. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. Theoretical and Applied Genetics, 2017, 130(4): 727-741.

doi: 10.1007/s00122-016-2846-4
[10]
SUN T P. Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development. Plant Physiology, 2010, 154(2): 567-570.

doi: 10.1104/pp.110.161554
[11]
DAI C, XUE H W. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. The EMBO Journal, 2010, 29(11): 1916-1927.

doi: 10.1038/emboj.2010.75
[12]
VAN DE VELDE K, RUELENS P, GEUTEN K, ROHDE A, VAN DER STRAETEN D. Exploiting DELLA signaling in cereals. Trends in Plant Science, 2017, 22(10): 880-893.

doi: S1360-1385(17)30161-9 pmid: 28843766
[13]
HUSSAIN A, PENG J R. DELLA proteins and GA signalling in Arabidopsis. Journal of Plant Growth Regulation, 2003, 22(2): 134-140.

doi: 10.1007/s00344-003-0028-5
[14]
TYLER L, THOMAS S G, HU J H, DILL A, ALONSO J M, ECKER J R, SUN T P. Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiology, 2004, 135(2): 1008-1019.

doi: 10.1104/pp.104.039578
[15]
HOU X L, HU W W, SHEN L S, LEE L Y C, TAO Z, HAN J H, YU H. Global identification of DELLA target genes during Arabidopsis flower development. Plant Physiology, 2008, 147(3): 1126-1142.

doi: 10.1104/pp.108.121301
[16]
赵春丽, 王晓, 陈家兰, 陈何, 王乐, 赖钟雄, 刘生财. 植物DELLA蛋白家族研究进展. 应用与环境生物学报, 2020, 26(5): 1299-1308.
ZHAO C L, WANG X, CHEN J L, CHEN H, WANG L, LAI Z X, LIU S C. Progress in research on plant DELLA family proteins. Chinese Journal of Applied and Environmental Biology, 2020, 26(5): 1299-1308. (in Chinese)
[17]
BOSS P K, THOMAS M R. Association of dwarfism and floral induction with a grape ‘green revolution' mutation. Nature, 2002, 416(6883): 847-850.

doi: 10.1038/416847a
[18]
ACHEAMPONG A K, HU J H, ROTMAN A, ZHENG C L, HALALY T, TAKEBAYASHI Y, JIKUMARU Y, KAMIYA Y, LICHTER A, SUN T P, OR E. Functional characterization and developmental expression profiling of gibberellin signalling components in Vitis vinifera. Journal of Experimental Botany, 2015, 66(5): 1463-1476.

doi: 10.1093/jxb/eru504
[19]
张文颖, 王晨, 朱旭东, 马超, 王文然, 冷翔鹏, 郑婷, 房经贵. 葡萄全基因组DELLA蛋白基因家族鉴定及其应答外源赤霉素调控葡萄果实发育的特征. 中国农业科学, 2018, 51(16): 3130-3146. doi: 10.3864/j.issn.0578-1752.2018.16.009.

doi: 10.3864/j.issn.0578-1752.2018.16.009
ZHANG W Y, WANG C, ZHU X D, MA C, WANG W R, LENG X P, ZHENG T, FANG J G. Genome-wide identification and expression of DELLA protein gene family during the development of grape berry induced by exogenous GA. Scientia Agricultura Sinica, 2018, 51(16): 3130-3146. doi: 10.3864/j.issn.0578-1752.2018.16.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.16.009
[20]
WANG Z J, LIU L, CHENG C H, REN Z Y, XU S M, LI X. GAI functions in the plant response to dehydration stress in Arabidopsis thaliana. International Journal of Molecular Sciences, 2020, 21(3): 819.

doi: 10.3390/ijms21030819
[21]
王润青, 樊晓聪, 宋梅芳, 肖阳, 郭林, 孟凡华, 杨青华, 吴大付, 杨建平. 小麦DELLA获得性突变体矮变1号增强了幼苗的抗盐能力. 作物学报, 2016, 42(11): 1721-1726.
WANG R Q, FAN X C, SONG M F, XIAO Y, GUO L, MENG F H, YANG Q H, WU D F, YANG J P. A wheat DELLA gain-of-function mutant aibian 1 promotes seedling salt tolerance. Acta Agronomica Sinica, 2016, 42(11): 1721-1726. (in Chinese)

doi: 10.3724/SP.J.1006.2016.01721
[22]
ACHARD P, GONG F, CHEMINANT S, ALIOUA M, HEDDEN P, GENSCHIK P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. The Plant Cell, 2008, 20(8): 2117-2129.

doi: 10.1105/tpc.108.058941
[23]
LI Y, WANG H P, LI X L, LIANG G, YU D Q. Two DELLA- interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana. Journal of Experimental Botany, 2017, 68(11): 2757-2767.

doi: 10.1093/jxb/erx143
[24]
刘德帅, 冯美, 樊姗姗, 孙雨桐, 迟敬楠, 姚文孔. 欧洲葡萄VvJAZ9基因互作蛋白的筛选与验证. 果树学报, 2023, 40(7): 1294-1311.
LIU D S, FENG M, FAN S S, SUN Y T, CHI J N, YAO W K. Screening and verification of VvJAZ9 gene interacting proteins in Vitis vinifera. Journal of Fruit Science, 2023, 40(7): 1294-1311. (in Chinese)
[25]
WANG L X, NICK P. Cold sensing in grapevine-Which signals are upstream of the microtubular “thermometer”. Plant, Cell & Environment, 2017, 40(11): 2844-2857.
[26]
WANG X H, GUO R R, TU M X, WANG D J, GUO C L, WAN R, LI Z, WANG X P. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea. Frontiers in Plant Science, 2017, 8: 97.
[27]
WANG X C, ZHAO M Z, WU W M, KORIR N K, QIAN Y M, WANG Z W. Comparative transcriptome analysis of berry-sizing effects of gibberellin (GA3) on seedless Vitis vinifera L. Genes & Genomics, 2017, 39(5): 493-507.
[28]
俞沁含, 焦淑珍, 吴楠, 张宁波, 徐伟荣. 葡萄E3泛素酶HOS1基因克隆、表达及抗血清制备. 园艺学报, 2021, 48(6): 1173-1182.

doi: 10.16420/j.issn.0513-353x.2020-0557
YU Q H, JIAO S Z, WU N, ZHANG N B, XU W R. Molecular cloning, expression and polyclonal antibody preparation of E3 ubiquitin ligase gene HOS1 from Vitis vinifera. Acta Horticulturae Sinica, 2021, 48(6): 1173-1182. (in Chinese)
[29]
SASAMOTO H, AZUMI Y, SHIMIZU M, HACHINOHE Y K, SUZUKI S. In vitro bioassay of allelopathy of Arabidopsis thaliana by sandwich method and protoplast co-culture method with digital image analysis. Plant Biotechnology, 2017, 34(4): 199-202.

doi: 10.5511/plantbiotechnology.17.1204a
[30]
吴楠, 张宁波, 郑巧玲, 陈卫平, 徐伟荣. 山葡萄VaCIPK18原核表达与多克隆抗体制备. 核农学报, 2020, 34(7): 1387-1396.

doi: 10.11869/j.issn.100-8551.2020.07.1387
WU N, ZHANG N B, ZHENG Q L, CHEN W P, XU W R. Prokaryotic expression and polyclonal antibody preparation of calcineurin B-like proteins (CBLs) interacting protein kinases protein kinase VaCIPK18 from Vitis amurensis. Journal of Nuclear Agricultural Sciences, 2020, 34(7): 1387-1396. (in Chinese)
[31]
BERTINI E, TORNIELLI G B, PEZZOTTI M, ZENONI S. Regeneration of plants from embryogenic callus-derived protoplasts of garganega and sangiovese grapevine (Vitis vinifera L.) cultivars. Plant Cell, Tissue and Organ Culture, 2019, 138(2): 239-246.

doi: 10.1007/s11240-019-01619-1
[32]
YAO W K, WANG L, WANG J, MA F L, YANG Y Z, WANG C, TONG W H, ZHANG J X, XU Y, WANG X P, ZHANG C H, WANG Y J. VpPUB24, a novel gene from Chinese grapevine, Vitis pseudoreticulata, targets VpICE1 to enhance cold tolerance. Journal of Experimental Botany, 2017, 68(11): 2933-2949.

doi: 10.1093/jxb/erx136
[33]
GHORBEL M, BRINI F, SHARMA A, LANDI M. Role of jasmonic acid in plants: The molecular point of view. Plant Cell Reports, 2021, 40(8): 1471-1494.

doi: 10.1007/s00299-021-02687-4 pmid: 33821356
[34]
BAO S J, HUA C M, SHEN L S, YU H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(1): 118-131.

doi: 10.1111/jipb.v62.1
[35]
DING F, WANG C, XU N, WANG M L, ZHANG S X. Jasmonic acid-regulated putrescine biosynthesis attenuates cold-induced oxidative stress in tomato plants. Scientia Horticulturae, 2021, 288: 110373.

doi: 10.1016/j.scienta.2021.110373
[36]
ZHAO M L, WANG J N, SHAN W, FAN J G, KUANG J F, WU K Q, LI X P, CHEN W X, HE F Y, CHEN J Y, LU W J. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant, Cell & Environment, 2013, 36(1): 30-51.
[37]
JIN P, DUAN Y F, WANG L, WANG J, ZHENG Y H. Reducing chilling injury of loquat fruit by combined treatment with hot air and methyl jasmonate. Food and Bioprocess Technology, 2014, 7(8): 2259-2266.

doi: 10.1007/s11947-013-1232-3
[38]
解振宇, 杨江山. 茉莉酸甲酯对高寒地区设施延后栽培葡萄生理的影响. 中国农学通报, 2016, 32(16): 66-71.

doi: 10.11924/j.issn.1000-6850.casb15010239
XIE Z Y, YANG J S. Effect of methyl jasmonate on physiology of delayed culture grape in alpine greenhouse. Chinese Agricultural Science Bulletin, 2016, 32(16): 66-71. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb15010239
[39]
常博文, 钟鹏, 刘杰, 唐中华, 高亚冰, 于洪久, 郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响. 作物学报, 2019, 45(1): 118-130.

doi: 10.3724/SP.J.1006.2019.84043
CHANG B W, ZHONG P, LIU J, TANG Z H, GAO Y B, YU H J, GUO W. Effect of low-temperature stress and gibberellin on seed germination and seedling physiological responses in peanut. Acta Agronomica Sinica, 2019, 45(1): 118-130. (in Chinese)

doi: 10.3724/SP.J.1006.2019.84043
[40]
WANG Y J, KARIM A, XIAO K. Effects of exogenous GA3 on cold resistance of Korla fragrant pear. Hans Journal of Agricultural Sciences, 2014, 4(6): 123-131.

doi: 10.12677/HJAS.2014.46019
[41]
杨光, 曹雪, 房经贵, 宋长年, 王晨, 王西成. ‘藤稔'葡萄VvGAI基因的克隆、亚细胞定位及时空表达分析. 园艺学报, 2011, 38(10): 1883-1892.
YANG G, CAO X, FANG J G, SONG C N, WANG C, WANG X C. Cloning, subcellular localization and spatiotemporal expression of a VvGAI gene from grapevine ‘Fujiminori'. Acta Horticulturae Sinica, 2011, 38(10): 1883-1892. (in Chinese)
[42]
QI T C, HUANG H, WU D W, YAN J B, QI Y J, SONG S S, XIE D X. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/ bHLH/ MYB complex to modulate gibberellin and jasmonate signaling synergy. The Plant Cell, 2014, 26(3): 1118-1133.

doi: 10.1105/tpc.113.121731
[43]
XIE Y, TAN H J, MA Z X, HUANG J R. DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana. Molecular Plant, 2016, 9(5): 711-721.

doi: 10.1016/j.molp.2016.01.014
[44]
HUANG H, GONG Y L, LIU B, WU D W, ZHANG M, XIE D X, SONG S S. The DELLA proteins interact with MYB21 and MYB24 to regulate filament elongation in Arabidopsis. BMC Plant Biology, 2020, 20(1): 64.

doi: 10.1186/s12870-020-2274-0
[45]
UM T Y, LEE H Y, LEE S, CHANG S H, CHUNG P J, OH K B, KIM J K, JANG G, DO CHOI Y. Jasmonate zim-domain protein 9 interacts with slender rice 1 to mediate the antagonistic interaction between jasmonic and gibberellic acid signals in rice. Frontiers in Plant Science, 2018, 9: 1866.

doi: 10.3389/fpls.2018.01866 pmid: 30619427
[46]
张晶星, 马彦广, 王辉丽, 刘红梅, 李伟. 油松JAZ基因家族特征及其与DELLA蛋白互作的功能域鉴定. 北京林业大学学报, 2022, 44(12): 12-22.
ZHANG J X, MA Y G, WANG H L, LIU H M, LI W. Characteristics of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein. Journal of Beijing Forestry University, 2022, 44(12): 12-22. (in Chinese)
[47]
程彦伟, 李亮, 沈嵘, 齐耀程, 刘晓宇, 王宁, 张炜. 水稻LRR型类受体蛋白激酶胞外区的原核表达及多克隆抗体制备. 生物化学与生物物理进展, 2008, 35(9): 1077-1083.
CHENG Y W, LI L, SHEN R, QI Y C, LIU X Y, WANG N, ZHANG W. Prokaryotic expression and polyclonal antibody preparation of the extracellular domain about rice LRR receptor-like protein kinase. Progress in Biochemistry and Biophysics, 2008, 35(9): 1077-1083. (in Chinese)
[48]
王增, 代茹, 张江巍, 陈尚武, 张文, 马会勤. 拟南芥WUSCHEL蛋白的原核表达、亲和纯化和多克隆抗体制备. 生物工程学报, 2009, 25(9): 1409-1416.
WANG Z, DAI R, ZHANG J W, CHEN S W, ZHANG W, MA H Q. Induced expression of Arabidopsis thaliana WUSCHEL in Escherichia coli, affinity protein purification and polyclonal antibody preparation. Chinese Journal of Biotechnology, 2009, 25(9): 1409-1416. (in Chinese)
[49]
张剑侠, 翟焕, 牛茹萱, 李瑞民. 中国野生山葡萄VaERD15基因的原核表达及多克隆抗体制备. 西北林学院学报, 2014, 29(6): 100-105.
ZHANG J X, ZHAI H, NIU R X, LI R M. Prokaryotic expression and polyclonal antibody preparation of the VaERD15 gene from Chinese wild V. amurensis. Journal of Northwest Forestry University, 2014, 29(6): 100-105. (in Chinese)
[50]
马慧敏, 孙培琳, 马春泉. 转录因子BvM14-GAI耐盐功能研究. 中国农学通报, 2021, 37(34): 34-42.

doi: 10.11924/j.issn.1000-6850.casb2021-0696
MA H M, SUN P L, MA C Q. Salt tolerance function of transcription factor BvM14-GAI. Chinese Agricultural Science Bulletin, 2021, 37(34): 34-42. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2021-0696
[51]
张涵, 王学敏, 刘希强, 马琳, 温红雨, 王赞. 紫花苜蓿MsGAI的克隆、表达及遗传转化. 中国农业科学, 2019, 52(2): 201-214. doi: 10.3864/j.issn.0578-1752.2019.02.002.

doi: 10.3864/j.issn.0578-1752.2019.02.002
ZHANG H, WANG X M, LIU X Q, MA L, WEN H Y, WANG Z. Cloning expression analysis and transformation of MsGAI gene from Medicago sativa L.. Scientia Agricultura Sinica, 2019, 52(2): 201-214. doi: 10.3864/j.issn.0578-1752.2019.02.002. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.02.002
[52]
吴月燕, 陈天池, 邱甜, 沈乐意, 谢晓鸿. '夏黑'葡萄组织培养、原生质体分离和瞬时表达体系的建立. 植物生理学报, 2021, 57(11): 2128-2144.
WU Y Y, CHEN T C, QIU T, SHEN L Y, XIE X H. Establishment of tissue culture, protoplast isolation and transient expression system in ‘Summer Black' grape. Plant Physiology Journal, 2021, 57(11): 2128-2144. (in Chinese)
[1] SHENG HongJie, LU SuWen, ZHENG XuanAng, JIA HaiFeng, FANG JingGui. Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics [J]. Scientia Agricultura Sinica, 2023, 56(7): 1359-1376.
[2] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[3] WANG XiaoHong, XING MingJie, GU XianHong, HAO Yue. Screening of Anti-Apoptotic Protein GRP94 Interaction Proteins in Porcine Hepatic Stellate Cells by Immunoprecipitation Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2023, 56(15): 3020-3031.
[4] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[5] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[6] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[7] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[8] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[9] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[10] XIAO LiuJun,LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing. Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(3): 504-521.
[11] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[12] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[13] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[14] ZHANG ZhiXing,MIN XiuMei,SONG Guo,CHEN Hua,XU HaiLong,LIN WenXiong. Identification of 14-3-3 Client Proteins in Rice Grains and Their Response to Exogenous Hormones During the Grain Filling Stage [J]. Scientia Agricultura Sinica, 2021, 54(12): 2523-2537.
[15] HUANG YuQing,SUN YanYan,LUO RongZheng,Awangcuomu ,LU SuWen,FAN XiuCai,WANG Chen,LIU ChongHuai,FANG JingGui. A New Classification Standard for Different Grape Cluster Shapes and Investigation on Cluster Shape Dynamic Development Process [J]. Scientia Agricultura Sinica, 2021, 54(11): 2389-2405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!