Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (13): 2431-2442.doi: 10.3864/j.issn.0578-1752.2023.13.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

The Genetic Basis of Flavonoid Contents in Wheat and Its Application in Functional Wheat Variety Breeding

CHEN Jie(), CHEN Wei   

  1. College of Plant Science and Technology, Huazhong Agricultural University/National Key Laboratory of Crop Genetics and Improvement, Wuhan 430070
  • Received:2023-03-29 Accepted:2023-05-10 Online:2023-07-01 Published:2023-07-06

Abstract:

Accompanying the elevated expenses on consumption, people’s urge upon food has been gradually changed from “eat to be fed” to “eat to be satisfied” and further to “eat to gain nutrition” and “eat to be healthy”. Accordingly, breeders considered the wheat breeding goals should be set as breeding wheat with better quality along with higher yield, wherein the phrase “functional wheat variety” was recently raised. Flavonoids comprise one of the most widely reported categories of metabolites, the contents of which have been included within the “functional wheat variety” breeding program for its connection with plant phenotypes and its contribution to human health. The combination of metabolomics approach and genetics design has been proved to be efficient in identifying the candidates that responsible for metabolite contents, that said its application in wheat was lagged behind due to the lately released wheat reference genome. Further, the deficient knowledge upon the genetic basis of metabolites has in turn constrained the application of breeding “functional wheat variety”. In the current manuscript, the research progresses on genetic basis of flavonoids are briefly summarized, and its application for wheat breeding is highlighted. Meanwhile, the metabolomics-assisted breeding frame is concepted. Ultimately, the “functional wheat variety” breeding program will be achieved through the combination of the fundamental researches and breeding applications.

Key words: flavonoid, functional wheat, genetic basis, breeding

Fig. 1

Diversity on the flavonoid skeletons A: Main sub-categories of flavonoid; B: Respective flavonoids with various hydroxyl moieties on the B-ring"

Table 1

Wheat homologs against the rice flavonoid biosynthetic pathway genes"

基因
Gene
索引号
Accession
功能注释
Annotation
小麦同源基因
Wheat homologs
OsCGT AK071127[72] C-糖基转移酶CGT 7D03G0485300 7A03G0502700 7B03G0320000
CYP93G1 AK100972[73] 黄酮合酶 FNS 2B03G0120700 2D03G0079000 2A03G0084500
ROMT-9 DQ288259[74] 甲基转移酶 OMT 7D03G0805700 7A03G0821400 7B03G0680100
CYP75B4 AK070442[59] 羟化酶F3′ 5′H 7A03G0998300 7B03G0834400 7D03G0954300
DFR AB003496[75] 二氢黄酮醇还原酶DFR 3D03G0544800 3B03G0671600 3A03G0590800
CYP75B3 NP_001064338[76] 羟化酶F3′H 1B03G1273800 1D03G1038800 1A03G1079300
ROMT-15 XM_483167[77] 甲基转移酶OMT 7A03G0552300 7D03G0534100 7B03G0369400
ROMT-17 XM_507282[77] 甲基转移酶OMT 7B03G0369800 7D03G0535200 7A03G0552500
OsFNS I NM_001055334[78] 黄酮合酶FNS 4D03G0794300 4B03G0902300
OsFLS Os02g52840[60] 黄酮醇合酶FLS 6D03G0724900 6A03G0855700 6B03G1024000

Fig. 2

Flowchart of identifying candidates that affect metabolite contents and constructing the metabolite-phenotype network"

Fig. 3

Scheme of the metabolomics-assisted wheat breeding This scheme is exemplified by breeding wheat with high tricin contents, wherein metabolomics methods, hybridization protocols and the fast-breeding systems are combined. The elevated tricin content would be achieved without knowing key responsible genes as a premise. Meanwhile, the candidate for tricin content will be promisingly identified by discriminating the donor (which harbors high tricin content) chromosomal segments through molecular markers"

[1]
田纪春, 胥倩. 功能性小麦品种的概念、类别和发展前景. 粮油食品科技, 2021, 29(2): 1-8.
TIAN J C, XU Q. Concept, category and development prospect of functional wheat varieties. Science and Technology of Cereals, Oils and Foods, 2021, 29(2): 1-8. (in Chinese)
[2]
胥倩, 苗永辉, 刘振, 王群青, 毕建杰, 吴澎, 田纪春. 特殊颜色谷物研究进展和小麦相关新品种创制. 粮油食品科技, 2021, 29(2): 41-49.
XU Q, MIAO Y H, LIU Z, WANG Q Q, BI J J, WU P, TIAN J C. Research progress on special colored grains and creation of new pigment functional wheat varieties. Science and Technology of Cereals, Oils and Foods, 2021, 29(2): 41-49. (in Chinese)
[3]
CHEN X Y, FANG W Q, JI M Q, XU S, JIANG Y X, SONG S, CHEN G F, TIAN J C, DENG Z Y. Genome-wide association study of total starch and its components in common wheat. Euphytica, 2019, 215(12): 201.

doi: 10.1007/s10681-019-2517-z
[4]
TIAN B, DENG Z Y, XIE Q G, TIAN J C. Genetic dissection of the developmental behaviour of total starch content and its components in wheat grain. Crop and Pasture Science, 2015, 66(5): 445.

doi: 10.1071/CP14059
[5]
付蕾, 田纪春. 抗性淀粉制备、生理功能和应用研究进展. 中国粮油学报, 2008, 23(2): 206-210.
FU L, TIAN J C. Research progress on preparation, physiological function and application of resistant starch. Journal of the Chinese Cereals and Oils Association, 2008, 23(2): 206-210. (in Chinese)
[6]
王维, 郭红, 于慧, 吴崇宁, 李小康, 陈广凤, 田纪春, 邓志英. 富含有益矿质元素小麦种质资源的筛选及育种利用. 粮油食品科技, 2021, 29(2): 15-24.
WANG W, GUO H, YU H, WU C N, LI X K, CHEN G F, TIAN J C, DENG Z Y. Screening and breeding utilization of wheat germplasm resources rich in beneficial mineral elements. Science and Technology of Cereals, Oils and Foods, 2021, 29(2): 15-24. (in Chinese)
[7]
何一哲, 宁军芬. 高铁锌小麦特异新种质“秦黑1号”的营养成分分析. 西北农林科技大学学报(自然科学版), 2003, 31(3): 87-90.
HE Y Z, NING J F. Analysis of nutrition composition in the special purple grain wheat “Qinhei No. 1” containing rich Fe and Zn.. Journal of Northwest A & F University (Natural Science Edition), 2003, 31(3): 87-90. (in Chinese)
[8]
HIGUCHI M, OSHIDA J, ORINO K, WATANABE K. Wheat bran protects Fischer-344 rats from diquat-induced oxidative stress by activating antioxidant system: selenium as an antioxidant. Bioscience, Biotechnology, and Biochemistry, 2011, 75(3): 496-499.

doi: 10.1271/bbb.100719
[9]
陈广凤, 李冬梅, 邓志英, 冯建英, 郑世英, 郑芳, 吴秀芬, 田纪春. 小麦籽粒植酸含量聚类及相关基因位点研究. 粮油食品科技, 2021, 29(2): 25-33.
CHEN G F, LI D M, DENG Z Y, FENG J Y, ZHENG S Y, ZHENG F, WU X F, TIAN J C. Cluster analysis and association mapping of phytic acid content among wheat cultivars. Science and Technology of Cereals, Oils and Foods, 2021, 29(2): 25-33. (in Chinese)
[10]
WU P, ZHAO T, TIAN J C. Phytic acid contents of wheat flours from different mill streams. Agricultural Sciences in China, 2010, 9(11): 1684-1688.

doi: 10.1016/S1671-2927(09)60266-2
[11]
WU P, TIAN J C, CHUCK WALKER C E, WANG F C. Determination of phytic acid in cereals-a brief review. International Journal of Food Science & Technology, 2009, 44(9): 1671-1676.
[12]
WANG D W, LI D, WANG J J, ZHAO Y, WANG Z J, YUE G D, LIU X, QIN H J, ZHANG K P, DONG L L, WANG D W. Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes. Scientific Reports, 2017, 7: 44609.

doi: 10.1038/srep44609
[13]
PENG M, SHAHZAD R, GUL A, SUBTHAIN H, SHEN S Q, LEI L, ZHENG Z G, ZHOU J J, LU D D, WANG S C, NISHAWY E, LIU X Q, TOHGE T, FERNIE A R, LUO J. Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nature Communications, 2017, 8(1): 1975.

doi: 10.1038/s41467-017-02168-x pmid: 29213047
[14]
VEITCH N C. Isoflavonoids of the Leguminosae. Natural Product Reports, 2013, 30(7): 988-1027.

doi: 10.1039/c3np70024k pmid: 23736284
[15]
DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology, 2021, 63(1): 180-209.

doi: 10.1111/jipb.v63.1
[16]
YU H N, WANG L, SUN B, GAO S, CHENG A X, LOU H X. Functional characterization of a chalcone synthase from the liverwort Plagiochasma appendiculatum. Plant Cell Reports, 2015, 34(2): 233-245.

doi: 10.1007/s00299-014-1702-8
[17]
CHENG H, LI L L, CHENG S Y, CAO F L, WANG Y, YUAN H H. Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Reports, 2011, 30(1): 49-62.

doi: 10.1007/s00299-010-0943-4
[18]
AKASHI T, FUKUCHI-MIZUTANI M, AOKI T, UEYAMA Y, YONEKURA-SAKAKIBARA K, TANAKA Y, KUSUMI T, AYABE S I. Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase Ⅱ, that catalyzes direct conversion of flavanones to flavones. Plant and Cell Physiology, 1999, 40(11): 1182-1186.

doi: 10.1093/oxfordjournals.pcp.a029505
[19]
JAN R, ASAF S, PAUDEL S, LUBNA, LEE S, KIM K M. Discovery and validation of a novel step catalyzed by OsF3H in the flavonoid biosynthesis pathway. Biology, 2021, 10(1): 32.

doi: 10.3390/biology10010032
[20]
XIONG S, TIAN N, LONG J H, CHEN Y H, QIN Y, FENG J Y, XIAO W J, LIU S Q. Molecular cloning and characterization of a flavanone 3-Hydroxylase gene from Artemisia annua L.. Plant Physiology and Biochemistry, 2016, 105: 29-36.

doi: 10.1016/j.plaphy.2016.04.005
[21]
ROSATI C, SIMONEAU P, TREUTTER D, POUPARD P, CADOT Y, CADIC A, DURON M. Engineering of flower color in forsythia by expression of two independently-transformed dihydroflavonol 4-reductase and anthocyanidin synthase genes of flavonoid pathway. Molecular Breeding, 2003, 12(3): 197-208.

doi: 10.1023/A:1026364618719
[22]
ZHU Y, PENG Q Z, LI K G, XIE D Y. Molecular cloning and functional characterization of the anthocyanidin reductase gene from Vitis bellula. Planta, 2014, 240(2): 381-398.

doi: 10.1007/s00425-014-2094-2
[23]
SUN Y J, HE J M, KONG J Q. Characterization of two flavonol synthases with iron-independent flavanone 3-hydroxylase activity from Ornithogalum caudatum Jacq. BMC Plant Biology, 2019, 19(1): 195.

doi: 10.1186/s12870-019-1787-x
[24]
TANNER G J, FRANCKI K T, ABRAHAMS S, WATSON J M, LARKIN P J, ASHTON A R. Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. The Journal of Biological Chemistry, 2003, 278(34): 31647-31656.

doi: 10.1074/jbc.M302783200
[25]
SEITZ C, EDER C, DEIML B, KELLNER S, MARTENS S, FORKMANN G. Cloning, functional identification and sequence analysis of flavonoid 3’-hydroxylase and flavonoid 3’,5’-hydroxylase cDNAs reveals independent evolution of flavonoid 3’,5’-hydroxylase in the Asteraceae family. Plant Molecular Biology, 2006, 61(3): 365-381.

doi: 10.1007/s11103-006-0012-0
[26]
FANG C Y, FERNIE A R, LUO J. Exploring the diversity of plant metabolism. Trends in Plant Science, 2019, 24(1): 83-98.

doi: S1360-1385(18)30211-5 pmid: 30297176
[27]
BALMER D, DE PAPAJEWSKI D V, PLANCHAMP C, GLAUSER G, MAUCH-MANI B. Induced resistance in maize is based on organ-specific defence responses. The Plant Journal, 2013, 74(2): 213-225.

doi: 10.1111/tpj.12114 pmid: 23302050
[28]
CHEN J, WANG J L, CHEN W, SUN W Q, PENG M, YUAN Z Y, SHEN S Q, XIE K, JIN C, SUN Y Y, LIU X Q, FERNIE A R, YU S B, LUO J. Metabolome analysis of multi-connected biparental chromosome segment substitution line populations. Plant Physiology, 2018, 178(2): 612-625.

doi: 10.1104/pp.18.00490 pmid: 30139795
[29]
UBE N, KATSUYAMA Y, KARIYA K, TEBAYASHI S I, SUE M, TOHNOOKA T, UENO K, TAKETA S, ISHIHARA A. Identification of methoxylchalcones produced in response to CuCl2 treatment and pathogen infection in barley. Phytochemistry, 2021, 184: 112650.

doi: 10.1016/j.phytochem.2020.112650
[30]
POLTURAK G, DIPPE M, STEPHENSON M J, CHANDRA MISRA R, OWEN C, RAMIREZ-GONZALEZ R H, HAIDOULIS J F, SCHOONBEEK H J, CHARTRAIN L, BORRILL P, NELSON D R, BROWN J K M, NICHOLSON P, UAUY C, OSBOURN A. Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(16): e2123299119.
[31]
FÖRSTER C, HANDRICK V, DING Y Z, NAKAMURA Y, PAETZ C, SCHNEIDER B, CASTRO-FALCÓN G, HUGHES C C, LUCK K, POOSAPATI S, KUNERT G, HUFFAKER A, GERSHENZON J, SCHMELZ E A, KÖLLNER T G. Biosynthesis and antifungal activity of fungus-induced O-methylated flavonoids in maize. Plant Physiology, 2022, 188(1): 167-190.

doi: 10.1093/plphys/kiab496
[32]
HASEGAWA M, MITSUHARA I, SEO S, OKADA K, YAMANE H, IWAI T, OHASHI Y. Analysis on blast fungus-responsive characters of a flavonoid phytoalexin sakuranetin; accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules, 2014, 19(8): 11404-11418.

doi: 10.3390/molecules190811404 pmid: 25093982
[33]
XIA J X, GUO Z J, YANG Z Z, HAN H L, WANG S L, XU H F, YANG X, YANG F S, WU Q J, XIE W, ZHOU X G, DERMAUW W, TURLINGS T C J, ZHANG Y J. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell, 2021, 184(7): 1693-1705.

doi: 10.1016/j.cell.2021.02.014
[34]
TARLING C A, WOODS K, ZHANG R, BRASTIANOS H C, BRAYER G D, ANDERSEN R J, WITHERS S G. The search for novel human pancreatic alpha-amylase inhibitors: High-throughput screening of terrestrial and marine natural product extracts. ChemBioChem, 2008, 9(3): 433-438.

doi: 10.1002/cbic.200700470 pmid: 18214874
[35]
IRMISCH S, JO S, ROACH C R, JANCSIK S, MAN SAINT YUEN M, MADILAO L L, O’NEIL-JOHNSON M, WILLIAMS R, WITHERS S G, BOHLMANN J. Discovery of UDP-glycosyltransferases and BAHD-acyltransferases involved in the biosynthesis of the antidiabetic plant metabolite montbretin A. The Plant Cell, 2018, 30(8): 1864-1886.

doi: 10.1105/tpc.18.00406 pmid: 29967287
[36]
IRMISCH S, JANCSIK S, MAN SAINT YUEN M, MADILAO L L, BOHLMANN J. Complete biosynthesis of the anti-diabetic plant metabolite montbretin A. Plant Physiology, 2020, 184(1): 97-109.

doi: 10.1104/pp.20.00522 pmid: 32647038
[37]
ANDERSON J A, PERKIN A G. CCCLXV. —The yellow colouring matter of khapli wheat, Triticum dicoccum, Journal of the Chemical Society (Resumed), 1931(0): 2624-2625.
[38]
RAO S, SANTHAKUMAR A B, CHINKWO K A, VANNIASINKAM T, LUO J X, BLANCHARD C L. Chemopreventive potential of cereal polyphenols. Nutrition and Cancer, 2018, 70(6): 913-927.

doi: 10.1080/01635581.2018.1491609
[39]
LE D, GO G W, IMM J Y. Tricin, a methylated cereal flavone, suppresses fat accumulation by downregulating AKT and mTOR in 3T3-L1 preadipocytes. Journal of Functional Foods, 2016, 26(6502): 548-556.

doi: 10.1016/j.jff.2016.08.023
[40]
HAN J M, KWON H J, JUNG H J. Tricin, 4’,5,7-trihydroxy- 3’,5’-dimethoxyflavone, exhibits potent antiangiogenic activity in vitro. International Journal of Oncology, 2016, 49(4): 1497-1504.

doi: 10.3892/ijo.2016.3645
[41]
AKAI Y, SADANARI H, TAKEMOTO M, UCHIDE N, DAIKOKU T, MUKAIDA N, MURAYAMA T. Inhibition of human cytomegalovirus replication by tricin is associated with depressed CCL2 expression. Antiviral Research, 2017, 148: 15-19.

doi: S0166-3542(17)30541-7 pmid: 28965916
[42]
YUE G G L, GAO S, LEE J K M, CHAN Y Y, WONG E C W, ZHENG T, LI X X, SHAW P C, SIMMONDS M S J, LAU C B S. A natural flavone tricin from grains can alleviate tumor growth and lung metastasis in colorectal tumor mice. Molecules, 2020, 25(16): 3730.

doi: 10.3390/molecules25163730
[43]
LI J X, LI R Z, SUN A, ZHOU H, NEHER E, YANG J S, HUANG J M, ZHANG Y Z, JIANG Z B, LIANG T L, MA L R, WANG J, WANG X R, FAN X Q, HUANG J, XIE Y, LIU L, TANG L, LEUNG E L H, YAN P Y. Metabolomics and integrated network pharmacology analysis reveal Tricin as the active anti-cancer component of Weijing Decoction by suppression of PRKCA and sphingolipid signaling. Pharmacological Research, 2021, 171: 105574.

doi: 10.1016/j.phrs.2021.105574
[44]
LAN W, YUE F X, RENCORET J, DEL RÍO J C, BOERJAN W, LU F C, RALPH J. Elucidating tricin-lignin structures: Assigning correlations in HSQC spectra of monocot lignins. Polymers, 2018, 10(8): 916.

doi: 10.3390/polym10080916
[45]
LI M, PU Y Q, MENG X Z, CHEN F, DIXON R A, RAGAUSKAS A J. Strikingly high amount of tricin-lignin observed from vanilla (Vanilla planifolia) aerial roots. Green Chemistry, 2022, 24(1): 259-270.

doi: 10.1039/D1GC03625D
[46]
LAN W, RENCORET J, LU F C, KARLEN S D, SMITH B G, HARRIS P J, DEL RÍO J C, RALPH J. Tricin-lignins: Occurrence and quantitation of tricin in relation to phylogeny. The Plant Journal, 2016, 88(6): 1046-1057.

doi: 10.1111/tpj.13315 pmid: 27553717
[47]
YAN X H, QI M, LI P F, ZHAN Y H, SHAO H J. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell & Bioscience, 2017, 7: 50.
[48]
LAM P Y, LUI A C W, YAMAMURA M, WANG L X, TAKEDA Y, SUZUKI S, LIU H J, ZHU F Y, CHEN, M X, ZHANG J H, UMEZAWA T, TOBIMATSU Y, LO C. Recruitment of specific flavonoid B-ring hydroxylases for two independent biosynthesis pathways of flavone-derived metabolites in grasses. The New Phytologist, 2019, 223(1): 204-219.

doi: 10.1111/nph.2019.223.issue-1
[49]
RENCORET J, ROSADO M J, KIM H, TIMOKHIN V I, GUTIÉRREZ A, BAUSCH F, ROSENAU T, POTTHAST A, RALPH J, DEL RÍO J C. Flavonoids naringenin chalcone, naringenin, dihydrotricin, and tricin are lignin monomers in papyrus. Plant Physiology, 2022, 188(1): 208-219.

doi: 10.1093/plphys/kiab469
[50]
SHARMA M, SANDHIR R, SINGH A, KUMAR P, MISHRA A, JACHAK S, SINGH S P, SINGH J, ROY J. Comparative analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chapatti (unleavened flat bread) quality. Frontiers in Plant Science, 2016, 7: 1870.
[51]
赵善仓, 刘宾, 赵领军, 郭栋梁, 毛江胜, 郭长英, 任凤山, 王宪泽, 田纪春. 蓝、紫粒小麦籽粒花色苷组成分析. 中国农业科学, 2010, 43(19): 4072-4080.
ZHAO S C, LIU B, ZHAO L J, GUO D L, MAO J S, GUO C Y, REN F S, WANG X Z, TIAN J C. Research of anthocyanin composition in blue and purple wheat grains. Scientia Agricultura Sinica, 2010, 43(19): 4072-4080. (in Chinese)
[52]
GARG M, CHAWLA M, CHUNDURI V, KUMAR R, SHARMA S, SHARMA N K, KAUR N, KUMAR A, MUNDEY J K, SAINI M K, SINGH S P. Transfer of grain colors to elite wheat cultivars and their characterization. Journal of Cereal Science, 2016, 71: 138-144.

doi: 10.1016/j.jcs.2016.08.004
[53]
JIANG X L, WANG Z X, ZHAO J S, GUAN Q Y, KE Z H, LI X J, ZHANG Z Y, TIAN J C, LI H M, CHEN J S. QTL analysis for 27 quality traits measured through the color of end-use products in common wheat (Triticum aestivum L.). Euphytica, 2022, 218(9): 121.

doi: 10.1007/s10681-022-03055-3
[54]
HIMI E, NODA K. Red grain colour gene ® of wheat is a Myb-type transcription factor. Euphytica, 2005, 143(3): 239-242.

doi: 10.1007/s10681-005-7854-4
[55]
LANG J, FU Y X, ZHOU Y, CHENG M P, DENG M, LI M L, ZHU T T, YANG J, GUO X J, GUI L X, LI L C, CHEN Z X, YI Y J, ZHANG L Q, HAO M, HUANG L, TAN C, CHEN G Y, JIANG Q T, QI P F, PU Z E, MA J, LIU Z H, LIU Y J, LUO M C, WEI Y M, ZHENG Y L, WU Y R, LIU D C, WANG J R. Myb10-D confers PHS-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat. The New Phytologist, 2021, 230(5): 1940-1952.

doi: 10.1111/nph.v230.5
[56]
GROOS C, GAY G, PERRETANT M R, GERVAIS L, BERNARD M, DEDRYVER F, CHARMET G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross. Theoretical and Applied Genetics, 2002, 104(1): 39-47.

doi: 10.1007/s001220200004
[57]
GARG M, KAUR S, SHARMA A, KUMARI A, TIWARI V, SHARMA S, KAPOOR P, SHEORAN B, GOYAL A, KRISHANIA M. Rising demand for healthy foods-anthocyanin biofortified colored wheat is a new research trend. Frontiers in Nutrition, 2022, 9: 878221.

doi: 10.3389/fnut.2022.878221
[58]
MENDES G G M, MOTA T R, BOSSONI G E B, MARCHIOSI R, DE OLIVEIRA D M, CONSTANTIN R P, DOS SANTOS W D, FERRARESE-FILHO O. Inhibiting tricin biosynthesis improves maize lignocellulose saccharification. Plant Physiology and Biochemistry, 2022, 178: 12-19.

doi: 10.1016/j.plaphy.2022.02.018 pmid: 35247693
[59]
LAM P Y, LIU H J, LO C. Completion of tricin biosynthesis pathway in rice: Cytochrome P450 75B4 is a unique chrysoeriol 5’- hydroxylase. Plant Physiology, 2015, 168(4): 1527-1536.

doi: 10.1104/pp.15.00566
[60]
PARK S, KIM D H, PARK B R, LEE J Y, LIM S H. Molecular and functional characterization of Oryza sativa flavonol synthase (OsFLS), a bifunctional dioxygenase. Journal of Agricultural and Food Chemistry, 2019, 67(26): 7399-7409.

doi: 10.1021/acs.jafc.9b02142
[61]
MA D Y, SUN D X, WANG C Y, LI Y G, GUO T C. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry, 2014, 80: 60-66.

doi: 10.1016/j.plaphy.2014.03.024 pmid: 24727789
[62]
LI X L, X, WANG X H, PENG Q, ZHANG M S, REN M J. Biotic and abiotic stress-responsive genes are stimulated to resist drought stress in purple wheat. Journal of Integrative Agriculture, 2020, 19(1): 33-50.

doi: 10.1016/S2095-3119(19)62659-6
[63]
SHOEVA O Y, KHLESTKINA E K. F3h gene expression in various organs of wheat. Molecular Biology, 2013, 47(6): 901-903.

doi: 10.1134/S0026893313060137
[64]
WANG X, ZHANG X C, HOU H X, MA X, SUN S L, WANG H W, KONG L R. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Research International, 2020, 138: 109711.

doi: 10.1016/j.foodres.2020.109711
[65]
CAIN A B, YU S, TIAN L. Mutational analysis of a wheat O- methyltransferase involved in flavonoid metabolism. Plants, 2022, 11(2): 164.

doi: 10.3390/plants11020164
[66]
WANG F, JI G S, XU Z B, FENG B, ZHOU Q, FAN X L, WANG T. Metabolomics and transcriptomics provide insights into anthocyanin biosynthesis in the developing grains of purple wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 2021, 69(38): 11171-11184.

doi: 10.1021/acs.jafc.1c01719
[67]
HILL C B, TAYLOR J D, EDWARDS J, MATHER D, BACIC A, LANGRIDGE P, ROESSNER U. Whole-genome mapping of agronomic and metabolic traits to identify novel quantitative trait Loci in bread wheat grown in a water-limited environment. Plant Physiology, 2013, 162(3): 1266-1281.

doi: 10.1104/pp.113.217851 pmid: 23660834
[68]
HILL C B, TAYLOR J D, EDWARDS J, MATHER D, LANGRIDGE P, BACIC A, ROESSNER U. Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Science, 2015, 233: 143-154.

doi: S0168-9452(15)00027-8 pmid: 25711822
[69]
INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191.

doi: 10.1126/science.aar7191
[70]
CHEN J, HU X, SHI T T, YIN H R, SUN D F, HAO Y F, XIA X C, LUO J, FERNIE A R, HE Z H, CHEN W. Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels. Plant Biotechnology Journal, 2020, 18(8): 1722-1735.

doi: 10.1111/pbi.13335 pmid: 31930656
[71]
SHI T T, ZHU A T, JIA J Q, HU X, CHEN J, LIU W, REN X F, SUN D F, FERNIE A R, CUI F, CHEN W. Metabolomics analysis and metabolite-agronomic trait associations using kernels of wheat (Triticum aestivum) recombinant inbred lines. The Plant Journal, 2020, 103(1): 279-292.

doi: 10.1111/tpj.14727 pmid: 32073701
[72]
DU Y G, CHU H, CHU I K, LO C. CYP93G 2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice. Plant Physiology, 2010, 154(1): 324-333.

doi: 10.1104/pp.110.161042
[73]
LAM P Y, ZHU F Y, CHAN W L, LIU H J, LO C. Cytochrome P 450 93G1 is a flavone synthase Ⅱ that channels flavanones to the biosynthesis of tricin O-linked conjugates in rice. Plant Physiology, 2014, 165(3): 1315-1327.

doi: 10.1104/pp.114.239723
[74]
KIM B G, LEE Y, HUR H G, LIM Y, AHN J H. Flavonoid 3’-O-methyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry, 2006, 67(4): 387-394.

doi: 10.1016/j.phytochem.2005.11.022
[75]
LI H H, QIU J, CHEN F D, LV X F, FU C X, ZHAO D X, HUA X J, ZHAO Q. Molecular characterization and expression analysis of dihydroflavonol 4-reductase (DFR) gene in Saussurea medusa. Molecular Biology Reports, 2012, 39(3): 2991-2999.

doi: 10.1007/s11033-011-1061-2
[76]
SHIH C H, CHU H, TANG L K, SAKAMOTO W, MAEKAWA M, CHU I K, WANG M F, LO C. Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta, 2008, 228(6): 1043-1054.

doi: 10.1007/s00425-008-0806-1 pmid: 18726614
[77]
LEE Y J, KIM B G, CHONG Y, LIM Y, AHN J H. Cation dependent O-methyltransferases from rice. Planta, 2008, 227(3): 641-647.

doi: 10.1007/s00425-007-0646-4
[78]
KIM J H, CHEON Y M, KIM B G, AHN J H. Analysis of flavonoids and characterization of the OsFNS gene involved in flavone biosynthesis in rice. Journal of Plant Biology, 2008, 51(2): 97-101.

doi: 10.1007/BF03030717
[79]
HAO C Y, JIAO C Z, HOU J, LI T, LIU H X, WANG Y Q, ZHENG J, LIU H, BI Z H, XU F F, ZHAO J, MA L, WANG Y M, MAJEED U, LIU X, APPELS R, MACCAFERRI M, TUBEROSA R, LU H F, ZHANG X Y. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Molecular Plant, 2020, 13(12): 1733-1751.

doi: 10.1016/j.molp.2020.09.001 pmid: 32896642
[80]
HOLLAND J B. Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 2007, 10(2): 156-161.

doi: 10.1016/j.pbi.2007.01.003 pmid: 17291822
[81]
FIEHN O. Metabolomics: The link between genotypes and phenotypes. Plant Molecular Biology, 2002, 48(1/2): 155-171.

doi: 10.1023/A:1013713905833
[82]
YU Z P, DUAN X B, LUO L, DAI S J, DING Z J, XIA G M. How plant hormones mediate salt stress responses. Trends in Plant Science, 2020, 25(11): 1117-1130.

doi: 10.1016/j.tplants.2020.06.008 pmid: 32675014
[83]
KORASICK D A, ENDERS T A, STRADER L C. Auxin biosynthesis and storage forms. Journal of Experimental Botany, 2013, 64(9): 2541-2555.

doi: 10.1093/jxb/ert080 pmid: 23580748
[84]
YIN R H, HAN K, HELLER W, ALBERT A, DOBREV P I, ZAŽÍMALOVÁ E, SCHÄFFNER A R. Kaempferol 3-O-rhamnoside- 7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. The New Phytologist, 2014, 201(2): 466-475.

doi: 10.1111/nph.2013.201.issue-2
[85]
ADATO A, MANDEL T, MINTZ-ORON S, VENGER I, LEVY D, YATIV M, DOMÍNGUEZ E, WANG Z H, DE VOS R C H DE, JETTER R, SCHREIBER L, HEREDIA A, ROGACHEV I, AHARONI A. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genetics, 2009, 5(12): e1000777.

doi: 10.1371/journal.pgen.1000777
[86]
ZHU G T, WANG S C, HUANG Z J, ZHANG S B, LIAO Q G, ZHANG C Z, LIN T, QIN M, PENG M, YANG C K, CAO X, HAN X, WANG X X, VAN DER KNAAP E, ZHANG Z H, CUI X, KLEE H, FERNIE A R, LUO J, HUANG S W. Rewiring of the fruit metabolome in tomato breeding. Cell, 2018, 172(1/2): 249-261.

doi: 10.1016/j.cell.2017.12.019
[87]
VERGARA-DIAZ O, VATTER T, VICENTE R, OBATA T, NIETO- TALADRIZ M T, APARICIO N, CARLISLE KEFAUVER S, FERNIE A R, ARAUS J L. Metabolome profiling supports the key role of the spike in wheat yield performance. Cells, 2020, 9(4): 1025.

doi: 10.3390/cells9041025
[88]
CHEN J, XUE M Y, LIU H B, FERNIE A R, CHEN W. Exploring the genic resources underlying metabolites through mGWAS and mQTL in wheat: From large-scale gene identification and pathway elucidation to crop improvement. Plant Communications, 2021, 2(4): 100216.

doi: 10.1016/j.xplc.2021.100216
[89]
WING R A, PURUGGANAN M D, ZHANG Q F. The rice genome revolution: From an ancient grain to Green Super Rice. Nature Reviews Genetics, 2018, 19(8): 505-517.

doi: 10.1038/s41576-018-0024-z pmid: 29872215
[90]
GHOSH S, WATSON A, GONZALEZ-NAVARRO O E, RAMIREZ-GONZALEZ R H, YANES L, MENDOZA-SUÁREZ M, SIMMONDS J, WELLS R, RAYNER T, GREEN P, HAFEEZ A, HAYTA S, MELTON R E, STEED A, SARKAR A, CARTER J, PERKINS L, LORD J, TESTER M, OSBOURN A, MOSCOU M J, NICHOLSON P, HARWOOD W, MARTIN C, DOMONEY C, UAUY C, HAZARD B, WULFF B B H, HICKEY L T. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 2018, 13(12): 2944-2963.

doi: 10.1038/s41596-018-0072-z pmid: 30446746
[91]
TERESHCHENKO O Y, PSHENICHNIKOVA T A, SALINA E A, KHLESTKINA E K. Development and molecular characterization of a novel wheat genotype having purple grain colour. Cereal Research Communications, 2012, 40(2): 210-214.

doi: 10.1556/CRC.40.2012.2.5
[92]
LACHMAN J, MARTINEK P, KOTÍKOVÁ Z, ORSÁK M, ŠULC M. Genetics and chemistry of pigments in wheat grain - A review. Journal of Cereal Science, 2017, 74: 145-154.

doi: 10.1016/j.jcs.2017.02.007
[93]
DHUA S, KUMAR K, KUMAR Y, SINGH L, SHARANAGAT V S. Composition, characteristics and health promising prospects of black wheat: A review. Trends in Food Science and Technology, 2021, 112: 780-794.

doi: 10.1016/j.tifs.2021.04.037
[94]
EFREMOVA T T, MOROZOV S V, CHERNYAK E I, CHUMANOVA E V. Combining the genes of blue aleurone and purple pericarp in the genotype of spring bread wheat Saratovskaya 29 to increase anthocyanins in grain. Journal of Cereal Science, 2023, 109: 103616.

doi: 10.1016/j.jcs.2022.103616
[1] LIU Shuo, XU Ming, LIU JiaCheng, ZHANG QiuPing, MA XiaoXue, LIU Ning, ZHANG YuPing, ZHANG YuJun, ZHAO HaiJuan, LIU WeiSheng. An Overview of the Worldwide Plum Breeding [J]. Scientia Agricultura Sinica, 2023, 56(9): 1744-1759.
[2] WU SiHui, ZHU HuanHuan, ZHANG JunWei, BAO ManZhu, ZHANG Jie. Determination and Analysis of Flavonoids Metabolites in Different Colors Cultivars and Blooming Stages of Prunus mume [J]. Scientia Agricultura Sinica, 2023, 56(9): 1760-1774.
[3] XU HAI, LI XIUKUN, LU JIAHAO, JIANG KAI, MA YUE, XU ZHENGJIN, XU QUAN. The Effect of indica/Xian Pedigree Introgression in japonica/Geng Rice Breeding in China [J]. Scientia Agricultura Sinica, 2023, 56(22): 4359-4370.
[4] ZHANG ZeYuan, LI Yue, ZHAO WenSha, GU JingJing, ZHANG AoYan, ZHANG HaiLong, SONG PengBo, WU JianHui, ZHANG ChuanLiang, SONG QuanHao, JIAN JunTao, SUN DaoJie, WANG XingRong. QTL Mapping and Molecular Marker Development of Traits Related to Grain Weight in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(21): 4137-4149.
[5] LI MianYan, WANG LiXian, ZHAO FuPing. Research Progress on Machine Learning for Genomic Selection in Animals [J]. Scientia Agricultura Sinica, 2023, 56(18): 3682-3692.
[6] WU YuanLong, HUI FengJiao, PAN ZhenYuan, YOU ChunYuan, LIN HaiRong, LI ZhiBo, JIN ShuangXia, NIE XinHui. Opportunities and Challenges for Developing Herbicide-Resistance Crops in the Post-Genomic Era [J]. Scientia Agricultura Sinica, 2023, 56(17): 3285-3301.
[7] YIN Chang, ZHU Mo, CHEN YanRu, TONG ShiFeng, ZHAO GuiPing, LIU Yang. Assessment of Genomic Selection Accuracy for Slaughter Traits in Broilers Based on Microarray and Imputed Sequencing Data [J]. Scientia Agricultura Sinica, 2023, 56(15): 3032-3039.
[8] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[9] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[10] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[11] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[12] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[13] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[14] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[15] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!