Scientia Agricultura Sinica

Previous Articles    

Effect of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress

WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin* #br#   

  1. College of Resources and Environmental Sciences, Jilin Agricultural University/Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education/Key Laboratory of Sustainable Utilization of Soil Resources in the Commodity Grain Bases in Jilin Province, Changchun 130118
  • Published:2023-05-23

Abstract: 【Objective】Frequent spring drought and excessive application of nitrogen (N) fertilizer would hinder maize seedling development, and may negatively affect plant growth during middle-late periods and final grain yield. This study was conducted to determine the effects of localized supply of N fertilizer on maize seedling growth, root morphology, plant water and N utilization under drought stress conditions, aiming to provide a technical basis for optimizing root development, improving water and N use efficiencies and achieving high and stable yields in maize production.【Method】The split-root pot experiments with different water and N levels were conducted in 2021 and 2022. Five N supply patterns were designed: no N supply (N0/N0), uniform low N supply (LN/LN), localized low N supply (LN/N0), uniform high N supply (HN/HN) and localized high N supply (HN/N0). The N rates were 0.12 and 0.24 g N kg-1 dry soil for LN and HN levels, respectively. Water management was initiated from 3-leaf stage and lasted for 3 weeks, including three soil moisture contents: severe water-stress (35% of field capacity, W0), moderate water-stress (55% of field capacity, W1), and well-watered conditions (75% of field capacity, W2). At the end of the water management period, we measured plant growth traits, shoot dry matter (DM), shoot N uptake, root DM, root length, and water and N use efficiency (WUE, NUE).【ResultThe water stress significantly limited plant growth, DM accumulation, and N uptake in maize seedlings, but which increased root: shoot ratio. Compared to W2, the total root length was reduced by 48.0% under W0, while the effects were relatively less in W1. The water stress resulted in a reduction of NUE, with average decreases of 10.1 and 4.6 percentage points in W0 and W1, respectively. In contrast, the WUE was decreased by 19.4% in W0 and increased by 11.9% in W1 when compared to W2. The N supply patterns also significantly affected plant growth, DM accumulation, N uptake and NUE in maize seedlings, with significant two-factor interactions observed with soil water levels. Based on the results obtained in 2022, the highest shoot DM was observed in LN/LN, and which were 8.3%, 12.6% and 23.6% higher than those in N0/N0 under W0, W1 and W2, respectively. Nevertheless, the highest root DM was observed in LN/N0, with the increases of 9.5%, 17.0%, and 31.2% under the three water levels. Moreover, the LN/N0 increased significantly root: shoot ratio in both W1 and W2. The HN/HN had the most severe negative impacts on maize seedling growth, with 30.1%, 14.6%, and 7.0% lower shoot DM as compared to N0/N0 under W0, W1 and W2, respectively. The larger decreases in root DM (41.0%, 44.2% and 34.9%, respectively) were observed in HN/HN, thus resulting in significant reductions in root: shoot ratio. The HN/N0 showed a relatively less effect on shoot DM, but significantly reduced root DM and root: shoot ratio. Compared to N0/N0, both HN/HN and HN/N0 resulted in significant decreasein root length, whereas LN/N0 significantly increased total root length by promoting root proliferation on the side without N supply. The application of N fertilizer significantly increased plant N uptake, with higher value in LN/LN but lower in LN/N0 across all water levels. With regard to NUE, which was higher in LN/LN while lower in HN/HN. The differences in N uptake and NUE among treatments increased with reducing water stress levels. Both plant water consumption and WUE were higher in LN/LN and LN/N0, followed by HN/N0, whereas the lowest values were observed in HN/HN. Compared to N0/N0, uniform or localized low N supply showed promoting effecton maize seedling growth, while uniform or localized high N supply had negative effects that intensified with increasing water stress levels. Overall, localized N supply had a greater effect on root growth relative to uniform N supply, inducing significant plastic responses in root morphology. The correlation analysis results indicated that shoot DM, WUE and NUE had positive and significant relationships with total root length of maize seedlings across different water levels and N supply patterns. For the localized N supply treatments, a greater correlation was observed for root length on the side without N supply relative to the side with N supply.ConclusionIn comparison to uniform N supply, localized N supply effectively promoted root proliferation on the side without N supply during maize seedling stage, resulting in increased root DM and total root length. Hence, localized supply with a lower N rate is recommended to enhance drought tolerance of maize seedlings and improve WUE.


Key words: localized nitrogen supply, drought stress, maize seedling, root growth, split root cultivation, water and nitrogen utilization

[1] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[2] WANG YongLiang, XU ZiHang, LI Shen, LIANG ZheMing, XUE XiaoRong, BAI Ju, YANG ZhiPing. Straw Returning and Post-Silking Irrigating Improve the Grain Yield and Utilization of Water and Nitrogen of Spring Maize [J]. Scientia Agricultura Sinica, 2023, 56(18): 3599-3614.
[3] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[4] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[5] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[6] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[7] LI Gang, BAI Yang, JIA ZiYing, MA ZhengYang, ZHANG XiangChi, LI ChunYan, LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[8] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[9] GAO RenCai, CHEN SongHe, MA HongLiang, MO Piao, LIU WeiWei, XIAO Yun, ZHANG Xue, FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[10] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[11] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[12] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[13] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[14] LIU WenJuan,CHANG LiJuan,YUE LiJie,SONG Jun,ZHANG FuLi,WANG Dong,WU JiaWei,GUO LingAn,LEI ShaoRong. Response of Non-Photochemical Quenching in Bundle Sheath Chloroplasts of Two Maize Hybrids to Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1532-1544.
[15] HaiYan ZHANG,BeiTao XIE,BaoQing WANG,ShunXu DONG,WenXue DUAN,LiMing ZHANG. Effects of Drought Treatments at Different Growth Stages on Growth and the Activity of Antioxidant Enzymes in Sweetpotato [J]. Scientia Agricultura Sinica, 2020, 53(6): 1126-1139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!