Scientia Agricultura Sinica

Previous Articles    

Identification and Expression Analysis of Fuzz Fiber Development Related Long Noncoding RNAs in Gossypium arboreum

WANG XiaoYang1, PENG Zhen1,2, XING AiShuang1, ZHAO YingRui1, MA XinLi1, LIU Fang1,2*, DU XiongMing1,2*, HE ShouPu1,2*   

  1. 1Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan; 2School of Agricultural Sciences, Zhengzhou University/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou 450001
  • Online:2023-05-20 Published:2023-05-20

Abstract: 【ObjectiveLong non-coding RNAs(lncRNAs) are a group of RNA molecules longer than 200 bp with no protein coding capacity, which are involved in various biological regulatory processes. In this study, we aim to analyze the RNA-sequencing data of two Gossypium arboreum isogenic lines, a fuzzless mutant and its wildtype, to identifying the lncRNA involved in early fuzz fiber development, providing a foundation for investigation the mechanism of fiber development. MethodWe collected 0 DPA, 3 DPA and 5 DPA ovule and 8 DPA ovule and fiber from the G. arboreum fuzzless mutant GA0149 and its isogenic line GA0146 with normal fuzz and lint fibers, were used for RNA-seq to identify lncRNA and predict their target genes. Differentially expressed mRNADE-mRNA and lncRNA(DE-lncRNAs) between the samples were identified. The KOBAS software was used to prediction the KEGG enrichment pathways which DE-lncRNAs targets were involved in. To ensure the quality of high-through sequencing, 25 DE- lncRNAs were selected for RT-qPCR detection. ResultWe identified 15339 lncRNA-encoding transcripts that 11595 lncRNAs were located to intergenic regions, 2428 lncRNAs were classified as antisense lncRNAs, 350 were categorized as intronic lncRNAs and 966 were belonged to sense lncRNAs. Compared to mRNAs, lncRNAs in Asian cotton showed shorter exons and lower GC content. Most of lncRNAs had cis-regulatory effects on their neighboring mRNAs. We identified 1932 differentially expressed (DE) lncRNAs, with 8134 predicted DE-lncRNA target genes. Further analysis showed that 788 genes (mRNA) were differentially expressed (DE-genes) during four fiber development stages. KEGG enrichment pathways analysis showed that DE-target-mRNAs were mainly enriched in Plant hormone signal transduction and Protein processing in endoplasmic reticulum. Co-expression network analysis revealed that lncRNA (MSTRG.454250.3) and its associated target genes showed identical expression trends during four fuzz fiber development stages, while lncRNAs (MSTRG.454261.4) and its associated target genes showed contrary expression tendency, exhibiting dramatic higher expression in fuzzless GA0149 compared to wildtype GA0146. The results of RT-qPCR analysis confirmed the authenticity of our RNA-seq data.【ConclusionA total of 26 specifically expressed lncRNAs were identified which related to cotton fuzz fiber development process. We further confirmed that these lncRNAs affected the fuzz fiber development by regulating the expression of indole-3-acetic acid-amido synthetase (Ga03G2421) and Auxin-responsive protein (Ga05G1344) in the plant hormone signal transduction pathway.


Key words: Gossypium arboreum, fuzzless mutant, long non-coding RNAs, regulation network, RT-qPCR

[1] PAN YangYang, WANG JingLei, WANG Meng, WANG LiBin, ZHANG Qian, CHEN Rui, ZHANG TianTian, CUI Yan, XU GengQuan, FAN JiangFeng, YU SiJiu. Formation and Function of Paraspeckle During Pre-implantation Embryos Development in Yak [J]. Scientia Agricultura Sinica, 2023, 56(6): 1189-1203.
[2] CAO Peng, XU JianJian, LI ChuXin, WANG XinLiang, WANG ChunQing, SONG ChenHu, SONG Zhen. Real-Time Quantitative PCR Detection of Citrus Yellow Mosaic Virus and Its Spatial and Temporal Distribution in Host Plants [J]. Scientia Agricultura Sinica, 2023, 56(18): 3574-3584.
[3] LI YunJing, XIAO Fang, WU YuHua, LI Jun, GAO HongFei, ZHAI ShanShan, LIANG JinGang, WU Gang. Establishment and Standardization of Event-Specific Real-Time Quantitative PCR Detection Method of Stress-Resistant Soybean IND-ØØ41Ø-5 [J]. Scientia Agricultura Sinica, 2023, 56(13): 2443-2460.
[4] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[5] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[6] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[7] FENG RuiRong,FU ZhongMin,DU Yu,ZHANG WenDe,FAN XiaoXue,WANG HaiPeng,WAN JieQi,ZHOU ZiYu,KANG YuXin,CHEN DaFu,GUO Rui,SHI PeiYing. Identification and Analysis of MicroRNAs in the Larval Gut of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(1): 208-218.
[8] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[9] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[10] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[11] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[12] ZHAO LiQun,QIU YanHong,ZHANG XiaoFei,LIU Hui,YANG JingJing,ZHANG Jian,ZHANG HaiJun,XU XiuLan,WEN ChangLong. The Detection of Citrullus lanatus Cryptic Virus Using TaqMan-qPCR Method [J]. Scientia Agricultura Sinica, 2021, 54(20): 4337-4347.
[13] CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477.
[14] CHEN HuaZhi,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Comparison and Potential Functional Analysis of Long Non-Coding RNAs Between Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2021, 54(2): 435-448.
[15] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!