Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (6): 1189-1203.doi: 10.3864/j.issn.0578-1752.2023.06.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Formation and Function of Paraspeckle During Pre-implantation Embryos Development in Yak

PAN YangYang1,2(), WANG JingLei1,2, WANG Meng1,2, WANG LiBin1,2, ZHANG Qian1,2, CHEN Rui1, ZHANG TianTian1, CUI Yan1,2, XU GengQuan1,2, FAN JiangFeng1,2, YU SiJiu1,2()   

  1. 1 College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070
    2 Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070
  • Received:2021-11-23 Accepted:2022-04-28 Online:2023-03-23 Published:2023-03-23

Abstract:

【Objective】 The aim of present study was to identify of paraspeckle formation stages during the early embryonic development in yak (Bos grunniens). Furthermore, the long non-coding RNAs (LncRNAs) involved in paraspeckle formation were determined, and the effects and regulatory mechanism of their formation on the subsequent developmental ability of yak embryos were studied. 【Method】 The yak embryos were produced by in vitro fertilization (IVF), DAPI staining of embryonic nuclei combined with paraspeckle protein 1 (PSPC1) mRNA detection were done by quantitative real-time fluorescence PCR (qRT-PCR) at different stages in order to confirm paraspeckle formation. PSPC1 protein in embryos was verified by immunofluorescence technique. The levels of encoding nuclear paraspeckle assembly transcript 1 (NEAT1), coactivator associated arginine methyl transferase 1 (CARM1) and non-POU domain containing octamer-binding protein (p54nrb) mRNAs were also detected by qRT-PCR at different stages. The mRNA level of PSPC1 in zygote was inhibited by RNA interference technology, and the developmental rate of embryos in subsequent stages was compared. The blastocyst quality was evaluated by analyzing the number of total cells, trophoblast cells (TE) and inner cell mass (ICM). B-cell lymphoma/leukemia-2 (Bcl-2) and b-cell lymphoma/leukemia associated X protein (Bax) in blastocysts form in the control and PSPC1 mRNA interference groups was detected. 【Result】 (1) Paraspeckle could be observed in the nuclei of embryos at all different stages; however, nuclei could be more clearly seen at 2-cell stage and 4-cell stage. The PSPC1 mRNA was higher in yak embryos from 2-cell to morula stage, which was the highest in embryos at 4-cell embryos and morula. The fluorescence intensity of PSPC1 protein was the strongest in embryos from those stages. (2) The levels of NEAT1, CARM1 and p54nrb mRNA were higher from 2-cell to morula stage than that from other stages. NEAT1 and p54nrb were found to be highest in embryos at 4-cell stage, while CARM1 was not significantly different from 2-cell to morula stage (P>0.05). (3) The developmental rates of morula and blastocyst in PSPC1 mRNA interference group were reduced, which was more significantly reduced in morula rate. The total number of blastocyst cells in PSPC1 mRNA interference group was significantly lower than that in the control group, which was mainly caused by ICM reduction. There was no significant difference in number of TE between the two groups. (4) The levels of Bax mRNA and protein were enhanced in blastocyst form PSPC1 mRNA interference group, while the levels of Bcl-2 mRNA and protein were reduced in blastocyst, and the cell lysis was observed in ICM. 【Conclusion】 The paraspeckle was formed at 2-cell to morula stage transition in the yak embryo, which was more prominent in 4-cell stage. The expression of PSPC1, NEAT1, CRAM1 and p54nrb in the stages of paraspeckle formation were on high levels. Interference with PSPC1 mRNA in yak zygotes resulted in decreased developmental ability of subsequent embryo. The blastocyst quality was also reduced by inducing apoptosis of inner cell mass, which was also involved in the regulation of cell fate determination in early embryo development.

Key words: yak, paraspeckle, cell fate, apoptosis, LncRNAs

Fig. 1

The observation of yak embryo at different development stages A: Zygote; B: 2-4 cell embryo, the black arrows indicate 2 cell embryos; C: 4-8 cell embryo, the black arrows indicate 4 cell embryos and the blue arrows indicate morula; D: Blastocyst"

Table 1

The information of siRNAs for PSPC1 mRNA"

基因 Gene 正义链序列 Sense sequence 反义链序列 Antisense sequence
siRNA1 AAAUGCUUGCUCUAGUAGCUC GCUACUAGAGCAAGCAUUUUC
siRNA2 AGGUUUUGCUGCAAAUUCCAC GGAAUUUGCAGCAAAACCUCC
siRNA3 UUCUCUUUCCUUAUGAUACUG GUAUCAUAAGGAAAGAGAACA

Table 2

The information of primers used in Real-time PCR"

基因
Gene
引物序列
Primer sequence(5'→3')
Tm (℃) 产物大小
Amplicon size (bp)
GenBank登录号
GenBank accession No.
NEAT1 F:GAACTTGTCAATACCAGCAGC 56

291 XR_001351403.1
R: CAACAACTTTCCCGTCTTACC
PSPC1 F :GGACATCACCGAGGACGACT 60 145 NM_001075277.1
R: GCCATCCAGCTCTGCTTTTG
P54nrb F:CTTTATCCGCTTGGAAACAC 55 209 NM_001046554.1
R:CCACAATGACTACAGCCCTC
CARM1 F:GTCATTCATCATCACCCTG 50 274 XM_024994894.1
R:AATCTTGTCCTTGAAGTCTGT
Bax F:TTTGCTTCAGGGTTTCATC 59 174 NM173894.1
R:CAGCTGCGATCATCCTCT
Bcl-2 F: CTGCACCTGACGCCCTTCAC 62 236 NM001166486.1
R: GCGTCCCAGCCTCCGTTGT
β-actin F:CTTCAACACCCCTGCCAT 60 238 JF830811
R: CTCGGCTGTGGTGGTGAAG

Fig. 2

Staining of yak embryos in different stages with DAPI A: Zygote; B: 2-cell embryo; C: 4-cell embryo; D: Morula; E: Red area in D; F: Blastocyst; The red arrow indicates the paraspeckles"

Fig. 3

Relative expression (mean ± SEM) of PSPC1, NEAT1, CARM1 and P54nrb mRNA in yak embryos at different stages A: PSPC1; B: NEAT1; C: CARM1; D: P54nrb; Bars with different superscripts are significantly different (P<0.05); The same superscripts are no significantly different (P>0.05)"

Fig. 4

Immunofluorescence localization of PSPC1 on yak embryos at different stages"

Fig. 5

Levels of PSPC1 mRNA in yak morula after PSPC1 mRNA was interfered at 12 h of IVF with different siRNAs Bars with different superscripts are significantly different (P<0.05); the same superscripts are no significantly different (P>0.05)"

Table 3

Developmental competence of yak zygote after PSPC1 mRNA was interfered at 12 h of IVF"

组别
Group
4细胞胚胎数
No. of 4-cell embryos
桑葚胚(发育率)
Morula (Development rate, %)
囊胚率(发育率)
Blastocyst (Development rate, %)
Control 113 85(75.22 ± 3.32a) 35(41.17 ± 2.23%a)
siRNA1 115 67(58.26 ± 1.86b) 22(32.83 ± 1.54%b)

Fig. 6

Staining of yak blastocysts in different groups"

Table 4

Characterization of day-7 yak blastocysts from different treatments"

组别
Group
总细胞数量
Total no. of cells
TE细胞数量
No. of TE cells
ICM细胞数量
No. of ICM cells
Control 102.45 ± 3.08a 81.40 ± 5.02a 21.07 ± 0.58a
siRNA1 98.80 ± 2.65b 80.00 ± 1.56a 18.80 ± 1.45b

Fig. 7

Statistic analysis of cell number in yak blastocysts from different groups Bars with * are significantly different (P<0.05)"

Fig. 8

mRNA detection for Bax and Bcl-2 in yak blastocysts from different groups A: Bax; B: Bcl-2; Bars with different letters are significantly different (P<0.05)"

Fig. 9

Protein detection for Bax and Bcl-2 in yak blastocysts from different groups A: The detection of Bax and Bcl-2 proteins blastocysts from different groups; B: Relative levels of Bax protein; C: Relative levels of Bcl-2 protein; Bars with different letters are significantly different (P<0.05)"

Fig. 10

Staining of Bax and Bcl-2 protein in yak blastocysts from different groups"

Fig. 11

Schematic diagram of paraspeckle formation and its functions during pre-implantation embryos development in yak Results showed that paraspeckle was formed at 2-cell to morula stage transition in the yak embryo. The expression of PSPC1 in combination with NEAT1, CRAM1 and p54nrb in the stages of paraspeckle formation were on high levels. The interference with PSPC1 mRNA resulted in decreased morula rate. The blastocyst quality was also reduced by inducing apoptosis of inner cell mass"

[1]
MAO Y S, ZHANG B, SPECTOR D L. Biogenesis and function of nuclear bodies. Trends in Genetics, 2011, 27(8): 295-306. doi:10.1016/j.tig.2011.05.006.

doi: 10.1016/j.tig.2011.05.006
[2]
FOX A H, LAMOND A I. Paraspeckles. Cold Spring Harbor Perspectives in Biology, 2010, 2(7): a000687. doi:10.1101/cshperspect.a000687.

doi: 10.1101/cshperspect.a000687
[3]
FRANK S, AHUJA G, BARTSCH D, RUSS N, YAO W J, KUO J C C, DERKS J P, AKHADE V S, KARGAPOLOVA Y, GEORGOMANOLIS T, MESSLING J E, GRAMM M, BRANT L, REHIMI R, VARGAS N E, KUROCZIK A, YANG T P, SAHITO R G A, KURIAN L. yylncT defines a class of divergently transcribed lncRNAs and safeguards the T-mediated mesodermal commitment of human PSCs. Cell Stem Cell, 2019, 24(2): 318-327.e8. doi:10.1016/j.stem.2018.11.005.

doi: S1934-5909(18)30541-1 pmid: 30554961
[4]
WANG Y, CHEN L L. Organization and function of paraspeckles. Essays in Biochemistry, 2020, 64(6): 875-882. doi:10.1042/EBC20200010.

doi: 10.1042/EBC20200010 pmid: 32830222
[5]
FOX A H, LAM Y W, LEUNG A K L, LYON C E, ANDERSEN J, MANN M, LAMOND A I. Paraspeckles: a novel nuclear domain. Current Biology, 2002, 12(1):13-25. doi:10.1016/S0960-9822(01)00632-7.

doi: 10.1016/S0960-9822(01)00632-7 pmid: 11790299
[6]
MAO Y S, SUNWOO H, ZHANG B, SPECTOR D L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nature Cell Biology, 2011, 13(1): 95-101. doi:10.1038/ncb2140.

doi: 10.1038/ncb2140 pmid: 21170033
[7]
CLEMSON C M, HUTCHINSON J N, SARA S A, ENSMINGER A W, FOX A H, CHESS A, LAWRENCE J B. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Molecular Cell, 2009, 33(6): 717-726. doi:10.1016/j.molcel.2009.01.026.

doi: 10.1016/j.molcel.2009.01.026 pmid: 19217333
[8]
SUNWOO H, DINGER M E, WILUSZ J E, AMARAL P P, MATTICK J S, SPECTOR D L. MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Research, 2009, 19(3): 347-359. doi:10.1101/gr.087775.108.

doi: 10.1101/gr.087775.108 pmid: 19106332
[9]
CHOUDHRY H, ALBUKHARI A, MOROTTI M, HAIDER S, MORALLI D, SMYTHIES J, SCHÖDEL J, GREEN C M, CAMPS C, BUFFA F, RATCLIFFE P, RAGOUSSIS J, HARRIS A L, MOLE D R. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene, 2015, 34(34): 4482-4490. doi:10.1038/onc.2014.378.

doi: 10.1038/onc.2014.378 pmid: 25417700
[10]
PISANI G, BARON B. Nuclear paraspeckles function in mediating gene regulatory and apoptotic pathways. Non-Coding RNA Research, 2019, 4(4): 128-134. doi:10.1016/j.ncrna.2019.11.002.

doi: 10.1016/j.ncrna.2019.11.002 pmid: 32072080
[11]
张译夫, 潘阳阳, 温泽星, 余四九. 表皮生长因子对牦牛卵丘细胞低氧诱导因子-1α表达的影响及与凋亡的关联性分析. 畜牧兽医学报, 2016, 47(6): 1154-1161. doi:10.11843/j.issn.0366-6964.2016.06.010.

doi: 10.11843/j.issn.0366-6964.2016.06.010
ZHANG Y F, PAN Y Y, WEN Z X, YU S J. The effect of epidermal growth factor on the expression of hypoxia inducible factor-1α in cumulus cells of yak (Bos grunniens) and its correlation analysis with apoptosis. Acta Veterinaria et Zootechnica Sinica, 2016, 47(6): 1154-1161. doi:10.11843/j.issn.0366-6964.2016.06.010. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2016.06.010
[12]
许涛, 潘阳阳, 何翃闳, 李谷月, 张慧珠, 赵凌, 崔燕, 余四九. TNF-α对牦牛卵母细胞HIF-1α和HSP70的表达及后续胚胎发育能力的影响. 畜牧兽医学报, 2019, 50(6): 1198-1207. doi:10.11843/j.issn.0366-6964.2019.06.010.

doi: 10.11843/j.issn.0366-6964.2019.06.010
XU T, PAN Y Y, HE H H, LI G Y, ZHANG H Z, ZHAO L, CUI Y, YU S J. The effects of tumor necrosis factor-α (TNF-α) on the expression of HIF-1α and HSP70 in yak oocytes and the subsequent embryo development. Acta Veterinaria et Zootechnica Sinica, 2019, 50(6): 1198-1207. doi:10.11843/j.issn.0366-6964.2019.06.010. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2019.06.010
[13]
PAN Y Y, CUI Y, HE H H, BALOCH A R, FAN J F, XU G Q, HE J F, YANG K, LI G Y, YU S J. Developmental competence of mature yak vitrified-warmed oocytes is enhanced by IGF-I via modulation of CIRP during in vitro maturation. Cryobiology, 2015, 71(3): 493-498. doi:10.1016/j.cryobiol.2015.10.150.

doi: 10.1016/j.cryobiol.2015.10.150
[14]
潘阳阳, 李秦, 崔燕, 樊江峰, 杨琨, 何俊峰, 余四九. EGF、EGFR在牦牛卵母细胞中的表达及对胚胎发育能力的作用. 中国农业科学, 2015, 48(12): 2439-2448. doi:10.3864/j.issn.0578-1752.2015.12.017.

doi: 10.3864/j.issn.0578-1752.2015.12.017
PAN Y Y, LI Q, CUI Y, FAN J F, YANG K, HE J F, YU S J. The expression of EGF and EGFR in yak oocyte and its function on development competence of embryo. Scientia Agricultura Sinica, 2015, 48(12): 2439-2448. doi:10.3864/j.issn.0578-1752.2015.12.017. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2015.12.017
[15]
PAN Y Y, CUI Y, BALOCH A R, HE H H, FAN J F, HE J F, LI Q, YANG K, ZHANG Q, YU S J. Epidermal growth factor enhances the developmental competence of yak (Bos grunniens) preimplantation embryos by modulating the expression of survivin and HSP70. Livestock Science, 2015, 182: 118-124. doi:10.1016/j.livsci.2015.11.002.

doi: 10.1016/j.livsci.2015.11.002
[16]
WEN Z X, PAN Y Y, CUI Y, PENG X M, CHEN P, FAN J F, LI G Y, ZHAO T, ZHANG J, QIN S J, YU S J. Colony-stimulating factor 2 enhances the developmental competence of yak (Poephagus grunniens) preimplantation embryos by modulating the expression of heat shock protein 70 kDa 1A. Theriogenology, 2017, 93: 16-23. doi:10.1016/j.theriogenology.2017.01.034.

doi: 10.1016/j.theriogenology.2017.01.034
[17]
PFAFFL M W, HORGAN G W, DEMPFLE L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 2002, 30(9): e36. doi:10.1093/nar/30.9.e36.

doi: 10.1093/nar/30.9.e36
[18]
HUPALOWSKA A, JEDRUSIK A, ZHU M, BEDFORD M T, GLOVER D M, ZERNICKA-GOETZ M. CARM1 and paraspeckles regulate pre-implantation mouse embryo development. Cell, 2018, 175(7): 1902-1916.e13. doi:10.1016/j.cell.2018.11.027.

doi: S0092-8674(18)31519-8 pmid: 30550788
[19]
ZHANG Y, DUAN E K. LncRNAs and paraspeckles predict cell fate in early mouse embryo. Biology of Reproduction, 2019, 100(5): 1129-1131. doi:10.1093/biolre/ioz021.

doi: 10.1093/biolre/ioz021
[20]
SASAKI Y F, IDEUE T, SANO M, MITUYAMA T, HIROSE T. MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(8):2525-30. doi: 10.1073/pnas.0807899106.

doi: 10.1073/pnas.0807899106
[21]
LIU H, IPPOLITO G C, WALL J K, NIU T, PROBST L, LEE B S, PULFORD K, BANHAM A H, STOCKWIN L, SHAFFER A L, STAUDT L M, DAS C, DYER M J S, TUCKER P W. Functional studies of BCL11A: characterization of the conserved BCL11A-XL splice variant and its interaction with BCL6 in nuclear paraspeckles of germinal center B cells. Molecular Cancer, 2006, 5: 18. doi:10.1186/1476-4598-5-18.

doi: 10.1186/1476-4598-5-18 pmid: 16704730
[22]
MA C, KARWACKI-NEISIUS V, TANG H R, LI W J, SHI Z N, HU H L, XU W Q, WANG Z T, KONG L C, LV R T, FAN Z, ZHOU W H, YANG P Y, WU F Z, DIAO J B, TAN L, SHI Y G, LAN F, SHI Y. Nono, a bivalent domain factor, regulates erk signaling and mouse embryonic stem cell pluripotency. Cell Reports, 2016, 17(4): 997-1007. doi:10.1016/j.celrep.2016.09.078.

doi: S2211-1247(16)31334-1 pmid: 27760330
[23]
JEN J, TANG Y N, LU Y H, LIN C C, LAI W W, WANG Y C. Oct4 transcriptionally regulates the expression of long non-coding RNAs NEAT1 and MALAT1 to promote lung cancer progression. Molecular Cancer, 2017, 16(1): 104. doi:10.1186/s12943-017-0674-z.

doi: 10.1186/s12943-017-0674-z pmid: 28615056
[24]
TOYOOKA Y. Trophoblast lineage specification in the mammalian preimplantation embryo. Reproductive Medicine and Biology, 2020, 19(3): 209-221. doi:10.1002/rmb2.12333.

doi: 10.1002/rmb2.12333 pmid: 32684820
[25]
HIROSE T, VIRNICCHI G, TANIGAWA A, NAGANUMA T, LI R H, KIMURA H, YOKOI T, NAKAGAWA S, BÉNARD M, FOX A H, PIERRON G. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Molecular Biology of the Cell, 2014, 25(1): 169-183. doi:10.1091/mbc.E13-09-0558.

doi: 10.1091/mbc.E13-09-0558 pmid: 24173718
[26]
IMAMURA K, IMAMACHI N, AKIZUKI G, KUMAKURA M, KAWAGUCHI A, NAGATA K, KATO A, KAWAGUCHI Y, SATO H, YONEDA M, KAI C, YADA T, SUZUKI Y, YAMADA T, OZAWA T, KANEKI K, INOUE T, KOBAYASHI M, AKIMITSU N. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Molecular Cell, 2014, 53(3): 393-406. doi:10.1016/j.molcel.2014.01.009.

doi: 10.1016/j.molcel.2014.01.009 pmid: 24507715
[27]
ZENG C W, LIU S C, LU S, YU X B, LAI J, WU Y F, CHEN S H, WANG L, YU Z, LUO G X, LI Y Q. The c-myc-regulated lncRNA NEAT1 and paraspeckles modulate imatinib-induced apoptosis in CML cells. Molecular Cancer, 2018, 17(1): 130. doi:10.1186/s12943-018-0884-z.

doi: 10.1186/s12943-018-0884-z pmid: 30153828
[28]
ADRIAENS C, STANDAERT L, BARRA J, LATIL M, VERFAILLIE A, KALEV P, BOECKX B, WIJNHOVEN P W G, RADAELLI E, VERMI W, LEUCCI E, LAPOUGE G, BECK B, VAN DEN OORD J, NAKAGAWA S, HIROSE T, SABLINA A A, LAMBRECHTS D, AERTS S, BLANPAIN C, MARINE J C. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nature Medicine, 2016, 22(8): 861-868. doi:10.1038/nm.4135.

doi: 10.1038/nm.4135 pmid: 27376578
[29]
SHELKOVNIKOVA T A, KUKHARSKY M S, AN H Y, DIMASI P, ALEXEEVA S, SHABIR O, HEATH P R, BUCHMAN V L. Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2018, 13(1): 30. doi:10.1186/s13024-018-0263-7.

doi: 10.1186/s13024-018-0263-7 pmid: 29859124
[30]
SEO G J, KINCAID R P, PHANAKSRI T, BURKE J M, PARE J M, COX J E, HSIANG T Y, KRUG R M, SULLIVAN C S. Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host & Microbe, 2013, 14(4): 435-445. doi:10.1016/j.chom.2013.09.002.

doi: 10.1016/j.chom.2013.09.002
[31]
LIU P G, YU S J, CUI Y, HE J F, ZHANG Q, SUN J, HUANG Y F, YANG X Q, CAO M X, LIAO B, MA J X. Regulation by Hsp27/P53 in testis development and sperm apoptosis of male cattle (cattle-yak and yak). Journal of Cellular Physiology, 2018, 234(1): 650-660. doi:10.1002/jcp.26822.

doi: 10.1002/jcp.26822 pmid: 30132847
[32]
郑红飞, 潘阳阳, 李秦, 张译夫, 吕鹏, 崔燕, 余四九. 肿瘤抑制蛋白基因Tp53在牦牛体外受精早期胚胎中的表达. 农业生物技术学报, 2015, 23(9): 1240-1245. doi:10.3969/j.issn.1674-7968.2015.09.014.

doi: 10.3969/j.issn.1674-7968.2015.09.014
ZHENG H F, PAN Y Y, LI Q, ZHANG Y F, P, CUI Y, YU S J. The expression of tumor protein p53 gene (Tp53) in yak (Bos grunneins) in vitro fertilization (IVF) early embryos during developmental process. Journal of Agricultural Biotechnology, 2015, 23(9): 1240-1245. doi:10.3969/j.issn.1674-7968.2015.09.014. (in Chinese)

doi: 10.3969/j.issn.1674-7968.2015.09.014
[33]
PRATIM DAS P, SULTANA BEGUM S, CHOUDHURY M, MEDHI D, PAUL V, JYOTI DAS P. Characterizing miRNA and mse-tsRNA in fertile and subfertile yak bull spermatozoa from Arunachal Pradesh. Journal of Genetics, 2020, 99: 88.

doi: 10.1007/s12041-020-01248-0
[34]
HE H H, ZHANG H Z, LI Q, FAN J F, PAN Y Y, ZHANG T X, ROBERT N, ZHAO L, HU X Q, HAN X H, YANG S S, CUI Y, YU S J. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology, 2020, 156: 46-58. doi:10.1016/j.theriogenology.2020.06.022.

doi: S0093-691X(20)30373-3 pmid: 32673901
[35]
ZHANG H Z, HE H H, CUI Y, YU S J, LI S J, AFEDO S Y, WANG Y L, BAI X F, HE J F. Regulatory effects of HIF-1α and HO-1 in hypoxia-induced proliferation of pulmonary arterial smooth muscle cells in yak. Cellular Signalling, 2021, 87: 110140. doi:10.1016/j.cellsig.2021.110140.

doi: 10.1016/j.cellsig.2021.110140
[36]
BEN-ZVI M, AMARIGLIO N, PARET G, NEVO-CASPI Y. F11R expression upon hypoxia is regulated by RNA editing. PLoS ONE, 2013, 8(10): e77702. doi:10.1371/journal.pone.0077702.

doi: 10.1371/journal.pone.0077702
[37]
DUNWOODIE S L. The role of hypoxia in development of the mammalian embryo. Developmental Cell, 2009, 17(6): 755-773. doi:10.1016/j.devcel.2009.11.008.

doi: 10.1016/j.devcel.2009.11.008 pmid: 20059947
[1] TAO WenJing, ZHANG ZiTing, LIU Yuan, SONG Dan, LI XiangChen. Inhibitory Effect of N-acetylcysteine on Bisphenol A-Induced Apoptosis and Inflammatory Response in Porcine Kidney Cells [J]. Scientia Agricultura Sinica, 2023, 56(3): 549-558.
[2] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[3] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[4] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[5] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[6] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[7] RAN HongBiao,ZHAO LiLing,WANG Hui,CHAI ZhiXin,WANG JiKun,WANG JiaBo,WU ZhiJuan,ZHONG JinCheng. Effects of lncFAM200B on the Lipid Deposition in Intramuscular Preadipocytes of Yak [J]. Scientia Agricultura Sinica, 2022, 55(13): 2654-2666.
[8] FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143.
[9] MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007.
[10] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
[11] HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202.
[12] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[13] LI XueRu,SHI XiXiong,WANG JianZhong,ZHANG PanGao,TIAN Zhu,HAN Ling. Effect of Nitric Oxide Synthetase Inhibitor on Yak Meat Quality During Post-Mortem Aging [J]. Scientia Agricultura Sinica, 2020, 53(8): 1617-1626.
[14] YaoQun WU,ShaoKang CHEN,XiHui SHENG,XiaoLong QI,XiangGuo WANG,HeMin NI,Yong GUO,ChuDuan WANG,Kai XING. Differential Expression of mRNA and lncRNA in Longissimus Dorsi Muscle of Songliao Black Pig and Landrace Pig Based on High-Throughput Sequencing Technique [J]. Scientia Agricultura Sinica, 2020, 53(4): 836-847.
[15] MIAO JianJun,PENG ZhongLi,GAO YanHua,BAI Xue,XIE XinTing. Effects of Dietary Small Peptides on Production Performance and Expression of PepT1 mRNA in Digestive Tract of Fattening Yaks [J]. Scientia Agricultura Sinica, 2020, 53(23): 4950-4960.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!