Scientia Agricultura Sinica

Previous Articles    

The Creation and Characteristics of Cotton Germplasm Lines Transgenic 1174AALdico-2+CTP Gene with Excellent Glyphosate Tolerance

WANG WanRu1, CAO YueFen1, SHENG Kuang1, CHEN JinHong1,2, ZHAO TianLun1,2, ZHU ShuiJin1,2* #br#   

  1. 1 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029; 2 Hainan Institute, Zhejiang University, Sanya 572000, Hainan
  • Online:2023-05-20 Published:2023-05-20

Abstract: 【Objective】Weeds are one of the factors limiting cotton growth in cotton production, which not only compete with cotton for nutrition, water, and light, affecting the growth and development of cotton but also the yield and quality of cotton. The aim of this study is to develop the excellent cotton germplasms with high glyphosate tolerance by genetic engineering and provide technical support for commercialization of glyphosate tolerant cotton to realize chemical weed control and enhance the economic benefits of cotton production【Method】To construct the cotton transformation vector, the EPSPS gene 1174AALdico-2 from Deinococcus Radiodurans was connected to the chloroplast transit peptide (CTP), 35S was used as the promoter, and the two target genes were linked in series. The target gene was transformed into the CCRI 49 by Agrobacterium tumefaciens in vivo transformation, and the positive transformants were obtained. The positive transgenic plants obtained were evaluated for glyphosate tolerance, molecular characterization, , agronomic and economic traits, in order to obtained outstanding transgenic cotton germplasms with excellent glyphosate tolerance, using the recipient cultivar, CCRI 49, and the non-transgenic NON isolated from the transformants during selfing as the controls.【Result】138 positive transformants were obtained by Agrobacterium tumefaciens in vivo transformation. All the transformants were tested for target gene PCR, Western blot, and ELISA detection etc., and 17 positive transformants with clear molecular characteristics and high expression of foreign genes were identified. Southern blot and nucleotide sequencing results revealed that there was great variation in insertion site and copy numbers among the 17 transformants. Among them, ZD131, ZD185, and ZD207 were single-copy insertion sites, and the foreign gene were located on D7, D13, and A12, respectively. The results of glyphosate tolerance identification revealed that the glyphosate tolerance of the three transformants, ZD131, ZD185, and ZD207, was stably inherited across three generations, and the glyphosate tolerance of the transformants was strong, with the ability to tolerate four times the recommended dose of glyphosate in the field. The agronomic and economic features assessment findings revealed that the ZD131, ZD185, and ZD207 grew properly and had excellent agronomic traits such as large boll, high lint percentage, and high boll setting, as wellas their lint yield which were higher than that of the receptor cultivar control and their fiber quality which were reach to the high quality cotton level. 【Conclusion】The EPSPS gene 1174AALdico-2 from Deinococcus Radiodurans connected with the chloroplast transit peptide, and the two gene tandem together was transferred into CCRI 49 by Agrobacterium tumefaciens in vivo transformation technology. After a series of screens, three outstanding transgenic glyphosate-tolerant germplasms, ZD131, ZD185, and ZD207, were obtained. This method not only improves cotton's glyphosate tolerance, but it also improves the agronomic and economic aspects of transgenic materials.


Key words: cotton, EPSPS, chloroplast transit peptide, glyphosate, lint yield, fiber quality

[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[3] LIANG ChengZhen, ZANG YouYi, MENG ZhiGang, WANG Yuan, MUBASHIR Abbas, HE HaiYan, ZHOU Qi, WEI YunXiao, ZHANG Rui, GUO SanDui. Identification of Target Traits and Genetic Stability of Transgenic Cotton GGK2 [J]. Scientia Agricultura Sinica, 2023, 56(17): 3251-3260.
[4] WANG WanRu, CAO YueFen, SHENG Kuang, CHEN JinHong, ZHAO TianLun, ZHU ShuiJin. The Creation and Characteristics of Cotton Germplasm Lines Transgenic 1174AALdico-2+CTP Gene with Excellent Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3261-3276.
[5] MA YanBin, LI HuanLi, WEN Jin, ZHOU XianTing, QIN Xin, WANG Xia, WANG XinSheng, LI YanE. Identification of Molecular Characterizations for Transgenic Cotton R1-3 Line of Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284.
[6] DANG WenWen, LIU Bing, CHU Dong, LU YanHui. Dominated Species and the Predation Assessment of Natural Enemies on Thrips in Cotton Fields in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(17): 3347-3357.
[7] LOU ShanWei, TIAN LiWen, LUO HongHai, DU MingWei, LIN Tao, YANG Tao, ZHANG PengZhong. Analysis on Key Production Techniques of Cotton with Good Quality and High Yield in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(14): 2673-2685.
[8] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[9] SONG Ci, GU FengXu, XING ZhenZhen, ZHANG JunMing, HE WenXue, WANG TianBo, WANG YuLu, CHEN JunYing. Physiological Changes and Integrity of ATP Synthase Subunits mRNA in Naturally Aged Cotton Seeds [J]. Scientia Agricultura Sinica, 2023, 56(10): 1827-1837.
[10] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[11] WANG JunJuan, LU XuKe, WANG YanQin, WANG Shuai, YIN ZuJun, FU XiaoQiong, WANG DeLong, CHEN XiuGui, GUO LiXue, CHEN Chao, ZHAO LanJie, HAN YingChun, SUN LiangQing, HAN MingGe, ZHANG YueXin, FAN YaPeng, YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[12] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[13] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[14] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[15] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!