Scientia Agricultura Sinica

Previous Articles    

Analysis on Key Production Techniques of Cotton with Good Quality and High Yield in Xinjiang

LOU ShanWei1, 3, TIAN LiWen1*, LUO HongHai2, DU MingWei3, LIN Tao3, YANG Tao4, ZHANG PengZhong1   

  1. 1Xinjiang Academy of Agricultural Sciences, Urumqi 830091; 2agricultural college of Shihezi university, Shihezi 832003, Xinjiang; 3College of Agronomy and biotechnology, China Agricultural University, Beijing 100193; 4Agricultural Technology Promotion Center in Aksu, Aksu 843000, Xinjiang
  • Online:2023-05-17 Published:2023-05-17

Abstract: Although the cotton of Xinjiang has achieved high quality and high yield, its technological leadership and influence are still insufficient. To figure out the key technologies of high-quality cotton production in Xinjiang which can reflect the technical characteristics of cotton production comprehensively and objectively so that other areas where cotton is grown can understand cotton production technology in Xinjiang and show level of cotton production to the world. In addition, this article is to summarize experience, strengthen the popularization and further maturing of advanced technology, improve the application efficiency, and promote the promotion of cotton production technology in Xinjiang to other cotton regions. This paper based on years of experimental data and research results, awards and patented achievements such as "Innovation and application of light and efficient key technologies in cotton industrialization in Xinjiang", "Seeding Protection Method in Cotton Precision Seeding Field in Xinjiang", combined with literature review, academic exchanges, visits and research. This analysis is carried out according to the order and tightness with technology corresponding to the cotton growth process. A series of key technologies are summarized, including: the seminal seeding and the supporting seedling technology, cotton field short-term, dense, early group control technology, water and fertilizer integration technology, the whole process of tube harvest mechanization and its supporting technology, pest and disease control technology. The relatively perfect cotton production technology system in Xinjiang has been constructed through improvement, optimization, maturation, innovation and application of key technologies, so that the technical level of cotton production in Xinjiang has been greatly improved to cover less than 9% of the world's planted cotton area, harvest more than 20% of the world's cotton, and lead the world in terms of single production level, quality in the world, and the total production, single production, and commodity transfers have been maintained for 28 consecutive years for the first time in the country. The in-depth analysis of innovation, optimization and practicability of cotton production technology in Xinjiang can help cotton regions better understand the inevitability and advanced of high yield and quality of cotton in Xinjiang. Practice also proves that, with the support of a series of key technologies, cotton in Xinjiang has achieved high-quality production and has become the region with the highest per unit yield and mechanization of cotton in China, which means that its technology can guide production practice and promote application.


Key words: cotton, high-quality, key technologies, characteristic analysis

[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[3] LIANG ChengZhen, ZANG YouYi, MENG ZhiGang, WANG Yuan, MUBASHIR Abbas, HE HaiYan, ZHOU Qi, WEI YunXiao, ZHANG Rui, GUO SanDui. Identification of Target Traits and Genetic Stability of Transgenic Cotton GGK2 [J]. Scientia Agricultura Sinica, 2023, 56(17): 3251-3260.
[4] WANG WanRu, CAO YueFen, SHENG Kuang, CHEN JinHong, ZHAO TianLun, ZHU ShuiJin. The Creation and Characteristics of Cotton Germplasm Lines Transgenic 1174AALdico-2+CTP Gene with Excellent Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3261-3276.
[5] MA YanBin, LI HuanLi, WEN Jin, ZHOU XianTing, QIN Xin, WANG Xia, WANG XinSheng, LI YanE. Identification of Molecular Characterizations for Transgenic Cotton R1-3 Line of Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284.
[6] DANG WenWen, LIU Bing, CHU Dong, LU YanHui. Dominated Species and the Predation Assessment of Natural Enemies on Thrips in Cotton Fields in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(17): 3347-3357.
[7] LOU ShanWei, TIAN LiWen, LUO HongHai, DU MingWei, LIN Tao, YANG Tao, ZHANG PengZhong. Analysis on Key Production Techniques of Cotton with Good Quality and High Yield in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(14): 2673-2685.
[8] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[9] SONG Ci, GU FengXu, XING ZhenZhen, ZHANG JunMing, HE WenXue, WANG TianBo, WANG YuLu, CHEN JunYing. Physiological Changes and Integrity of ATP Synthase Subunits mRNA in Naturally Aged Cotton Seeds [J]. Scientia Agricultura Sinica, 2023, 56(10): 1827-1837.
[10] WANG JunJuan, LU XuKe, WANG YanQin, WANG Shuai, YIN ZuJun, FU XiaoQiong, WANG DeLong, CHEN XiuGui, GUO LiXue, CHEN Chao, ZHAO LanJie, HAN YingChun, SUN LiangQing, HAN MingGe, ZHANG YueXin, FAN YaPeng, YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[11] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[12] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[13] ZHANG HongCheng,XING ZhiPeng,WENG WenAn,TIAN JinYu,TAO Yu,CHENG Shuang,HU Qun,HU YaJie,GUO BaoWei,WEI HaiYan. Growth Characteristics and Key Techniques for Stable Yield of Growth Constrained Direct Seeding Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1322-1337.
[14] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[15] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!