Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (3): 466-480.doi: 10.3864/j.issn.0578-1752.2023.03.006

• PLANT PROTECTION • Previous Articles     Next Articles

Distribution and Variation Analysis of AVR-Pita Family in Magnaporthe oryzae from Heilongjiang Province and Hainan Province

LIU RUI1(), ZHAO YuHan1, GU XinYi1, WANG YanXia1, JIN XueHui1, WU WeiHuai2, ZHANG YaLing1()   

  1. 1College of Agronomy, Heilongjiang Bayi Agricultural University/Heilongjiang Plant Resistance Research Center, Daqing 163319, Heilongjiang
    2Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101
  • Received:2022-09-28 Accepted:2022-11-01 Online:2023-02-01 Published:2023-02-14
  • Contact: ZHANG YaLing E-mail:2271031165@qq.com;byndzyl@163.com

Abstract:

【Objective】By detecting the distribution and variation characteristics of the AVR-Pita family in different Magnaporthe oryzae strains from Heilongjiang Province and Hainan Province, the pathogenic phenotypes of the variation types were understood, which provided a reference for the screening and breeding of disease-resistant germplasm in the region.【Method】Six pairs of specific primers were designed for the promoter region and CDS region by referring to the AVR-Pita family sequence published in NCBI. DNA was extracted from 397 single spore strains of M. oryzae collected from different regions of Heilongjiang Province and Hainan Province in 2020, and PCR amplification was performed. By electrophoresis test results, representative strains from different regions were selected to sequence the amplified fragments. The sequencing results were compared with the corresponding base and amino acid sequences in NCBI, and the avirulence function of different variation types of M. oryzae strains was verified by using rice resistant single gene lines.【Result】In the PCR electrophoresis results, the M. oryzae strains in Heilongjiang Province carried all the genes to be tested, which were widely distributed and had a high detection frequency. However, only AVR-Pita1 and AVR-Pita2 were carried by M. oryzae strains in Hainan Province, and concentrated in low frequency. The results of avirulence gene composition analysis showed that the strains of M. oryzae in Heilongjiang were complex and diverse, and the genotypes were more abundant than those in Hainan. The sequencing results of PCR products showed that the AVR-Pita family was divided into 19 types with point mutation, insertion and deletion as the main variation types, and the variation types of strains from different M. oryzae populations were specific. Ten variation types were detected in AVR-Pita1, among which AVR-Pita1- (1-5) was a unique variation type of M. oryzae strains in Heilongjiang Province, and AVR-Pita1- (6-10) was a unique variation type of M. oryzae strains in Hainan Province. After functional verification of these ten variation types, it was found that the avirulence functions were lost. Eight variation types were detected in AVR-Pita2, among which AVR-Pita2- (1-4) was a unique variation type of M. oryzae strains in Heilongjiang Province, and AVR-Pita2- (5-8) was a unique variation type of M. oryzae strains in Hainan Province. After functional verification, it was found that the avirulence functions were lost. Only one variation type (AVR-Pita3-1) was detected in AVR-Pita3 in Heilongjiang Province.【Conclusion】The AVR-Pita family in Heilongjiang and Hainan populations were mutated alleles. After pathogenicity identification, all mutation types could not be identified by the corresponding resistance genes Pi-ta and Pi-ta2. Therefore, the resistance genes Pi-ta and Pi-ta2 can be used to polymerize other resistance genes to ensure the disease resistance of varieties in the process of disease resistance breeding and utilization of rice blast in Heilongjiang Province and Hainan Province. At the same time, the distribution and variation types of AVR-Pita family in M. oryzae strains from different geographical sources are specific.

Key words: Magnaporthe oryzae, AVR-Pita family, mutation, avirulence gene, Heilongjiang Province, Hainan Province

Table 1

The strains of M. oryzae isolated from Heilongjiang Province and Hainan Province"

省份 Province 采集地点 Sampling location 菌株编号 Strain number 菌株数 Number of strains
黑龙江省(215a
Heilongjiang Province(215a
绥化北林区Beilin District, Suihua BL20001-BL20006 6
绥化庆安Qing’an, Suihua QA20007-QA20009 3
绥化青冈Qinggang, Suihua QG20010-QG20012 3
伊春铁力Tieli, Yichun TL20013-TL20018 6
哈尔滨方正Fangzheng, Harbin FZ20019-FZ20044 26
哈尔滨通河Tonghe, Harbin TH20045-TH20069 25
哈尔滨木兰Mulan, Harbin ML20070-ML20081 12
哈尔滨依兰Yilan, Harbin YL20082-YL20085 4
鹤岗绥滨Suibin, Hegang SB20086-SB20102 17
佳木斯富锦Fujin, Jiamusi FJ20103-FJ20106 4
佳木斯东风区Dongfeng District, Jiamusi DF20199-DF20215 17
鸡西虎林Hulin, Jixi HL20107-HL20110 4
鸡西密山Mishan, Jixi MS20111-MS20169 59
牡丹江东宁Dongning, Mudanjiang DN20170-DN20198 29
海南省(182b
Hainan Province(182b
东方感城Gancheng, Dongfang DF20001-DF20004 4
文昌铺前Puqian, Wenchang WC20005-WC20038 34
定安定城Dingcheng, Dingan DC20039-DC20065 27
定安雷鸣Leiming, Dingan LM20066-LM20084 19
陵水Lingshui LS20085-LS20094 10
澄迈金江Jinjiang, Chengmai CM20095-CM20182 88

Table 2

Primers used for Avr-gene amplification"

无毒基因
Avr-gene
引物序列
Primer sequence (5°-3°
片段大小
Length of targeted fragments (bp)
登录号GenBank
accession number
AVR-Pita1 F1:GCCGAGTCGTTCTGA 475 AF207841
R1:TGTTAATTGTGCAGAAGTTTTT
F2:TGCCAATAGACTAGCTTCCG 1957
R2:ATTCCCTCCATTCCAACACT
AVR-Pita2 F1:CTTAGAGTAGAATCTTCGTCG 481 AB607344
R1:GTATGAAAAGGTGCCAATG
F2:TTGGCACCTTTTCATACCCAGTTT 687
R2:CAACTTACTTGTGAATCCCATCCC
AVR-Pita3 F1:AAATATTACCTGCCAGCTGG 218 DQ855958
R1:TTAAAGCCCCGTGGATATCA
F2:AAATATTACCTGCCAGCTGG 692
R2:GCGCTAGTTCATGCATAATC

Fig. 1

Electrophoretic diagram of PCR amplification of AVR-Pita gene family"

Table 3

Detection results of avirulent genotypes of tested strains"

基因型
Genotype
黑龙江Heilongjiang 海南Hainan
菌株数 Number of strains 频率Frequency (%) 菌株数 Number of strains 频率Frequency (%)
AVR-Pita(f) 10 4.65 92 50.55
AVR-Pita2 3 1.40 0 0
AVR-Pita3 22 10.23 0 0
AVR-Pita1+AVR-Pita2 19 8.84 90 49.45
AVR-Pita1+AVR-Pita3 3 1.40 0 0
AVR-Pita2+AVR-Pita3 3 1.40 0 0
AVR-Pita1+AVR-Pita2+AVR-Pita3 155 72.09 0 0
AVR-Pita(f):不含待测基因的基因型,其中,f表示不存在 Genotypes that do not contain the gene to be tested, where, f stands for free

Table 4

AVR-Pita1 base sequence alignment results of some strains"

等位基因型
Allele genotype
碱基突变位点Base mutation site (bp)
-413 -376 -246 -116 -52 18—20 207 245 247 263 312 407 520 575 580 583
AVR-Pita1 TGA TTA CAA TAA AAC *** TGT AAT GAC AGA AAG GGA GTT TAC TGG GAT
AVR-Pita1-2 -A- --G T-- -C- --A GTT --C -G- A-- -A- --T --- A-- -G- --- ---
AVR-Pita1-3 -A- --G --- -C- --A GTT --C -G- A-- -A- --T --- A-- -G- --- ---
AVR-Pita1-4 -A- --G T-- -C- --A GTT --C -G- A-- -A- --T -A- A-- -G- --- ---
AVR-Pita1-5 -A- --G T-- -C- --A GTT --C -G- A-- -A- --T -A- A-- --- --- ---
AVR-Pita1-6 --- --- --- -C- --A GTT --C -G- A-- -A- --T -A- A-- --- C-- ---
AVR-Pita1-7 --- --G --- -C- --A GTT --C -G- A-- -A- --T -A- A-- --- C-- ---
AVR-Pita1-8 --- --- T-- -C- --A GTT --C -G- A-- -A- --T -A- A-- --- C-- ---
AVR-Pita1-9 --- --- T-- --- --- GTT --- --- --- --- --- --- --- -T- --- C--
AVR-Pita1-10 -A- --G T-- -C- --A GTT --- --- --- --- --- --- --- -T- --- C--

Fig. 2

Comparative analysis of amino acid sequences of AVR-Pita1"

Fig. 3

Pathogenic phenotypes of AVR-Pita1 mutant strains"

Fig. 4

AVR-Pita2 base sequence alignment results of some strains"

Fig. 5

Comparative analysis of amino acid sequences of AVR-Pita2"

Fig. 6

Pathogenic phenotypes of AVR-Pita2 mutant strains"

Table 5

AVR-Pita3 base sequence comparison results of some strains"

等位基因型
Allele genotype
碱基突变位点Base mutation site (bp)
55 103 122 135 148 183 267 307 315 319—321 333 479 484 508
AVR-Pita3 ATA TCA GCT CGG AAA GAA TTC GAA AAC AAG GAA CAA GAG ACC
AVR-Pita3-1 G-- C-- -T- --A C-- --C --A A-- --T CGT --C -G- A-- G--

Fig. 7

Comparative analysis of amino acid sequences of AVR-Pita3"

Fig. 8

Proportion analysis of variation types of AVR-Pita gene family"

[1] HAYASHI K, YASUDA N, FUJITA Y, KOIZUMI S, YOSHIDA H. Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theoretical and Applied Genetics, 2010, 121(7): 1357-1367.
doi: 10.1007/s00122-010-1393-7
[2] 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析. 中国农业科学, 2022, 55(4): 625-640.
ZHANG Y L, GAO Q, ZHAO Y H, LIU R, FU Z J, LI X, SUN Y J, JIN X H. Evaluation of rice blast resistance and genetic structure analysis of rice germplasm in Heilongjiang Province. Scientia Agricultura Sinica, 2022, 55(4): 625-640. (in Chinese)
[3] FLOR H H. Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971, 9: 275-296.
doi: 10.1146/annurev.py.09.090171.001423
[4] AZIZI P, RAFII M, ABDULLAH S, NEJAT N, MAZIAH M, HANAFI M, LATIF M, SAHEBI M. Toward understanding of rice innate immunity against Magnaporthe oryzae. Critical Reviews in Biotechnology, 2016, 36(1): 165-174.
doi: 10.3109/07388551.2014.946883
[5] 毛洧, 陈学伟, 王静. 水稻抗稻瘟病机制的研究进展. 中国科学: 生命科学, 2022, 52(10): 1495-1510.
MAO W, CHEN X W, WANG J. Recent progress on rice resistance to blast disease. Scientia Sinica Vitae, 2022, 52(10): 1495-1510. (in Chinese)
doi: 10.1360/SSV-2021-0012
[6] 吴伟怀, 王玲, 程贯忠, 朱有勇, 潘庆华. 稻瘟病菌群体的分子遗传学研究——广东省与云南省稻瘟病菌群体遗传及致病型结构的比较分析. 中国农业科学, 2004, 37(5): 675-680.
WU W H, WANG L, CHENG G Z, ZHU Y Y, PAN Q H. Studies on molecular genetics of rice blast fungus population——Comparison of genetic and pathotypic structures of two rice blast fungus populations derived from Guangdong and Yunnan provinces of China. Scientia Agricultura Sinica, 2004, 37(5): 675-680. (in Chinese)
[7] ORBACH M J, FARRALL L, SWEIGARD J A, CHUMLEY F G, VALENT B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. The Plant Cell, 2000, 12(11): 2019-2032.
doi: 10.1105/tpc.12.11.2019
[8] KANG S, SWEIGARD J A, VALENT B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 1995, 8(6): 939-948.
doi: 10.1094/MPMI-8-0939
[9] SWEIGAED J A, CARROLL A M, KANG S, FARRALL L, CHUNLEY F G, VALENT B. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. The Plant Cell, 1995, 7(8): 1221-1233.
[10] SCHNEIDER D R S, SARAIVA A M, AZZONI A R, MIRANDA H R, DE TOLEDO M A S, PELLOSO A C, SOUZA A P. Overexpression and purification of PWL2D, a mutant of the effector protein PWL2 from Magnaporthe grisea. Protein Expression and Purification, 2010, 74(1): 24-31.
doi: 10.1016/j.pep.2010.04.020
[11] COLLEMARE J, PIANFETTI M, HOULLE A E, MORIN D, CAMBORDE L, GAGEY M J, BARBISAN C, FUDAL I, LEBRUN M H, BOHNERT H U. Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytologist, 2008, 179(1): 196-208.
doi: 10.1111/j.1469-8137.2008.02459.x
[12] FARMAN M L, LEONG S A. Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: Discrepancy between the physical and genetic maps. Genetics, 1998, 150(3): 1049-1058.
doi: 10.1093/genetics/150.3.1049
[13] LI W, WANG B H, WU J, LU G D, HU Y J, ZHANG X, ZHANG Z G, ZHAO Q, FENG Q, ZHANG H Y, WANG Z Y, WANG G L, HAN B, WANG Z H, ZHOU B. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Molecular Plant-Microbe Interactions, 2009, 22(4): 411-420.
doi: 10.1094/MPMI-22-4-0411
[14] YOSHIDA K, SAITOH H, FUJISAWA S, KANZAKI H, MATSUMURA H, YOSHIDA K, TOSA Y, CHUMA I, TAKANO Y, WIN J, KAMOUN S, TERAUCHI R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. The Plant Cell, 2009, 21(5): 1573-1591.
doi: 10.1105/tpc.109.066324
[15] WU J, KOU Y J, BAO J D, LI Y, TANG M Z, ZHU X L, PONAYA A, XIAO G, LI J B, LI C Y, et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9that triggers Pi9-mediated blast resistance in rice. New Phytologist, 2015, 206(4): 1463-1475.
doi: 10.1111/nph.13310
[16] ZHANG S L, WANG L, WU W H, HE L Y, YANG X F, PAN Q H. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Scientific Reports, 2015, 5: 11642.
doi: 10.1038/srep11642
[17] JIA Y, MCADAMS S A, BRYAN G T, HERSHEY H P, VALENT B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 2000, 19(15): 4004-4014.
doi: 10.1093/emboj/19.15.4004
[18] KHANG C H, PARK S Y, LEE Y H, VALENT B, KANG S. Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. Molecular Plant-Microbe Interactions, 2008, 21(5): 658-670.
doi: 10.1094/MPMI-21-5-0658
[19] 刘松青. 水稻稻瘟病抗性基因Pi-ta2的候选基因筛选与初步分析[D]. 武汉: 中南民族大学, 2019.
LIU S Q. Screening and preliminary analysis of the candidate genes for rice blast resistance gene Pi-ta2[D]. Wuhan: South-Central University for Nationalities, 2019. (in Chinese)
[20] BRYAN G T, WU K S, FARRALL L, JIA Y, HERSHEY H P, MCADAMS S A, FAULK K N, DONALDSON G K, TARCHINI R, VALENT B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. The Plant Cell, 2000, 12(11): 2033-2045.
[21] 甘玉姿, 肖贵, 邓启云, 吴俊, 柏斌, 卢向阳, 周波. 菲律宾稻瘟病菌生理小种中AVR-Pita及其同源基因的序列与功能分析. 中国生物防治学报, 2018, 34(3): 488-498.
GAN Y Z, XIAO G, DENG Q Y, WU J, BAI B, LU X Y, ZHOU B. The sequence and function analysis of AVR-Pita gene family of rice blast fungus, Magnaporthe oryzae in Philippines. Chinese Journal of Biological Control, 2018, 34(3): 488-498. (in Chinese)
[22] 余欢, 姜华, 王艳丽, 孙国昌. 无毒基因在不同寄主梨孢菌中的变异研究. 浙江农业学报, 2015, 27(8): 1414-1421.
YU H, JIANG H, WANG Y L, SUN G C. Variability of avirulence genes in Pyricularia isolates from different hosts. Acta Agriculturae Zhejiangensis, 2015, 27(8): 1414-1421. (in Chinese)
[23] 刘瑞, 赵羽涵, 付忠举, 顾欣怡, 王艳霞, 靳学慧, 杨莹, 吴伟怀, 张亚玲. 黑龙江省和海南省PWL基因家族在稻瘟病菌中的分布及变异. 中国农业科学, 2023, 56(2): 264-274.
LIU R, ZHAO Y H, FU Z J, GU X Y, WANG Y X, JIN X H, YANG Y, WU W H, ZHANG Y L. Distribution and variation of PWL gene family in rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province. Scientia Agricultura Sinica, 2023, 56(2): 264-274. (in Chinese)
[24] 李焕宇, 付婷婷, 张云, 吕天佑, 李远, 徐秉良. 5种方法提取真菌基因组DNA作为PCR模板效果的比较. 中国农学通报, 2017, 33(16): 28-35.
LI H Y, FU T T, ZHANG Y, LÜ T Y, LI Y, XU B L. Effect comparison of five methods to extract fungal genomic DNA as PCR templates. Chinese Agricultural Science Bulletin, 2017, 33(16): 28-35. (in Chinese)
[25] 孟峰, 张亚玲, 靳学慧. 黑龙江省稻瘟病菌无毒基因AVR-Pita及其同源基因的检测与分析. 中国水稻科学, 2020, 34(2): 143-149.
doi: 10.16819/j.1001-7216.2020.9085
MENG F, ZHANG Y L, JIN X H. Detection and analysis of Magnaporthe oryzae avirulent gene AVR-Pita and its homologous genes in Heilongjiang Province. Chinese Journal of Rice Science, 2020, 34(2): 143-149. (in Chinese)
[26] SHI N N, RUAN H C, LIU X Z, YANG X J, DAI Y L, GAN L, CHEN F R, DU Y X. Virulence structure of Magnaporthe oryzae populations from Fujian Province, China. Canadian Journal of Plant Pathology, 2018, 40(4): 542-550.
doi: 10.1080/07060661.2018.1504821
[27] 靳学慧. 农业植物病理学. 赤峰: 内蒙古科学技术出版社, 1999.
JIN X H. Agricultural Plant Pathology. Chifeng: Inner Mongolia Science and Technology Press, 1999. (in Chinese)
[28] 李思博, 魏松红, 王海宁, 罗文芳, 张优, 刘志恒. 2015-2016年辽宁省稻瘟病菌种群动态分析. 沈阳农业大学学报, 2017, 48(3): 284-289.
LI S B, WEI S H, WANG H N, LUO W F, ZHANG Y, LIU Z H. Dynamics of rice blast fungus population in Liaoning Province in 2015-2016. Journal of Shenyang Agricultural University, 2017, 48(3): 284-289. (in Chinese)
[29] VALENT B, KHANG C H. Recent advances in rice blast effector research. Current Opinion in Plant Biology, 2010, 13(4): 434-441.
doi: 10.1016/j.pbi.2010.04.012 pmid: 20627803
[30] 廖静静, 谢华, 王殿东, 何霞红. 云南省元阳县籼/粳型稻瘟病菌无毒基因Avr-PiaAvr-Pita1Avr-Pii多样性分析. 植物保护学报, 2019, 46(5): 1057-1064.
LIAO J J, XIE H, WANG D D, HE X H. Polymorphism analysis of Avr-Pia, Avr-Pita1 and Avr-Pii in indica/japonica-borne Magnaporthe oryzae isolates in Yuanyang County, Yunnan. Journal of Plant Protection, 2019, 46(5): 1057-1064. (in Chinese)
[31] 房文文. 稻瘟菌群体无毒基因型的时空动态研究[D]. 北京: 中国农业大学, 2018.
FANG W W. Temporal and spatial dynamics of avirulence genotypes in the populations of Pyricularia oryzae[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[32] 王世维, 郑文静, 赵家铭, 魏松红, 王妍, 赵宝海, 刘志恒. 辽宁省稻瘟病菌无毒基因型鉴定及分析. 中国农业科学, 2014, 47(3): 462-472.
WANG S W, ZHENG W J, ZHAO J M, WEI S H, WANG Y, ZHAO B H, LIU Z H. Identification and analysis of Magnaporthe oryzae avirulence genes in Liaoning Province. Scientia Agricultura Sinica, 2014, 47(3): 462-472. (in Chinese)
[33] 周江鸿, 王久林, 蒋琬如, 雷财林, 凌忠专. 我国稻瘟病菌毒力基因的组成及其地理分布. 作物学报, 2003, 29(5): 646-651.
ZHOU J H, WANG J L, JIANG W R, LEI C L, LING Z Z. Virulence genes diversity and geographic distribution of Pyricularia grisea in China. Acta Agronomica Sinica, 2003, 29(5): 646-651. (in Chinese)
[34] 高清, 张亚玲, 周弋力, 于连鹏, 聂强, 靳学慧. 黑龙江省粳稻品种稻瘟病主效抗性基因鉴定与抗性评价. 作物杂志, 2021(4): 59-66.
GAO Q, ZHANG Y L, ZHOU Y L, YU L P, NIE Q, JIN X H. Identification of major resistance genes and resistance evaluation to rice blast in japonica rice varieties in Heilongjiang Province. Crops, 2021(4): 59-66. (in Chinese)
[35] 相亚超, 王丽丽, 徐凡, 马殿荣. 抗稻瘟病基因在黑龙江水稻资源中的分布. 分子植物育种, 2018, 16(23): 7705-7717.
XIANG Y C, WANG L L, XU F, MA D R. Study on the distribution of rice blast resistant genes in rice resources of Heilongjiang Province. Molecular Plant Breeding, 2018, 16(23): 7705-7717. (in Chinese)
[36] 唐雪婷. 黑龙江省四个稻瘟病流行生态区稻瘟病菌无毒基因动态分析[D]. 大庆: 黑龙江八一农垦大学, 2021.
TANG X T. Dynamic analysis of avirulence genes of Maghaporthe oryzae in four epidemic ecological regions of Heilongjiang Province[D]. Daqing: Heilongjang Bayi Agricultural University, 2021. (in Chinese)
[37] 董丽英, 王群, 刘树芳, 郑凤萍, 李迅东, 杨勤忠. 云南省稻瘟病菌群体对稻瘟病抗性单基因系的致病性分析. 西南农业学报, 2012, 25(2): 467-473.
DONG L Y, WANG Q, LIU S F, ZHENG F P, LI X D, YANG Q Z. Pathogenicity analysis of Magnaporthe oryzae populations of Yunnan on monogenic lines for resistance to rice blast. Southwest China Journal of Agricultural Sciences, 2012, 25(2): 467-473. (in Chinese)
[38] 曹雪琦. 福建省稻瘟病菌田间种群无毒基因的变异检测[D]. 福建: 福建农林大学, 2020.
CAO X Q. Detection of avirulence gene mutations in the field population of rice blast flungus in Fujian Province[D]. Fujian: Fujian Agriculture and Forestry University, 2020. (in Chinese)
[39] 周瑚, 任佐华, 王恒沪, 张译允, 邹秋霞, 刘二明. 湖南桃江病圃稻瘟病菌的无毒基因及水稻抗瘟单基因联合抗性分析. 微生物学通报, 2017, 44(10): 2353-2360.
ZHOU H, REN Z H, WANG H H, ZHANG Y Y, ZOU Q X, LIU E M. Analysis of avirulence genes of Magnaporthe oryzae and resistance association of monogene against blast from rice blast nursery in Hunan Taojiang. Microbiology China, 2017, 44(10): 2353-2360. (in Chinese)
[40] 姜华, 余欢, 王艳丽, 孙国昌. 稻瘟病菌无毒基因序列变异研究进展. 浙江农业学报, 2015, 27(3): 512-520.
JIANG H, YU H, WANG Y L, SUN G C. Progress on sequence variation of avirulence genes in the rice blast fungus Magnaporthe grisea. Acta Agriculturae Zhejiangensis, 2015, 27(3): 512-520. (in Chinese)
[41] SIRISATHAWORN T, SRIRAT T, LONGYA A, JANTASURIYARAT C. Evaluation of mating type distribution and genetic diversity of three Magnaporthe oryzae avirulence genes, PWL-2, AVR-Pii and Avr-Piz-t, in Thailand rice blast isolates. Agriculture and Natural Resources, 2017, 51(1): 7-14.
doi: 10.1016/j.anres.2016.08.005
[42] KASETSOMBOON T, KATE-NGAM S, SRIWONGCHAI T, ZHOU B, JANTASURIYARAT C. Sequence variation of avirulence gene AVR-Pita1 in rice blast fungus, Magnaporthe oryzae. Mycological Progress, 2013, 12(4): 617-628.
doi: 10.1007/s11557-012-0867-1
[43] ZHOU E, JIA Y, SINGH P, CORRELL J C, LEE F N. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genetics and Biology, 2007, 44(10): 1024-1034.
doi: 10.1016/j.fgb.2007.02.003
[44] DAI Y, JIA Y, CORRELL J, WANG X, WANG Y. Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Fungal Genetics and Biology, 2010, 47(12): 973-980.
doi: 10.1016/j.fgb.2010.08.003
[45] CHUMA I, ISOBE C, HOTTA Y, IBARAGI K, FUTAMATA N, KUSABA M, YOSHIDA K, TERAUCHI R, FUJITA Y, NAKAYASHIKI H, VALENT B, TOSA Y. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathogens, 2011, 7(7): e1002147.
doi: 10.1371/journal.ppat.1002147
[46] 肖丹凤. 三个不同稻作区稻瘟病菌致病性与品种互作研究[D]. 北京: 中国农业科学院, 2013.
XIAO D F. Studies on the pathogenicity of Maghaporthe oryzae in three different rice growing regions and their interactions to rice varieties[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[47] HUANG J, SI W, DENG Q, LI P, YANG S. Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genetics, 2014, 15: 45.
doi: 10.1186/1471-2156-15-45
[48] ZHANG Y L, ZHU Q L, YAO Y X, ZHAO Z H, CORRELL J C, WANG L, PAN Q H. The race structure of the rice blast pathogen across southern and northeastern China. Rice, 2017, 10(1): 46.
doi: 10.1186/s12284-017-0185-y pmid: 28983868
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[3] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[4] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[5] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[6] MENG Feng,ZHANG YaLing,JIN XueHui,ZHANG XiaoYu,JIANG Jun. Detection and Analysis of Magnaporthe oryzae Avirulence Genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4262-4273.
[7] HAO BaoCheng, SONG XiangDong, GAO Yan, WANG XueHong, LIU Yu, LI YuanXi, LIANG Yan, CHEN KeYuan, HU YuYao, XING XiaoYong, HU YongHao, LIANG JianPing. Mutagenesis and Screening of Endophytic Fungus Alternaria Section Undifilum oxytropis Producing Swainsonine from Locoweed [J]. Scientia Agricultura Sinica, 2019, 52(15): 2716-2728.
[8] PENG XianLong,WANG Wei,ZHOU Na,LIU HaiYang,LI PengFei,LIU ZhiLei,YU CaiLian. Analysis of Fertilizer Application and Its Reduction Potential in Paddy Fields of Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(12): 2092-2100.
[9] LI XinLei,YIN HengFu,FAN ZhengQi,LI JiYuan. The Relationship Between Anthocyanins and Flower Colors of Bud Mutation in Camellia japonica [J]. Scientia Agricultura Sinica, 2019, 52(11): 1961-1969.
[10] REN ShiLong, BAI Hui, WANG yongFang, QUAN JianZhang, DONG ZhiPing, LI ZhiYong, XING JiHong. Identification and Analysis of Magnaporthe oryzae of Foxtail Millet Avirulence Genes [J]. Scientia Agricultura Sinica, 2018, 51(6): 1079-1088.
[11] WANG WenJuan,SU Jing,YANG JianYuan,WEI XiaoYan,CHEN KaiLing,CHEN Zhen,CHEN Shen,ZHU XiaoYuan. Analysis of Magnaporthe oryzae Avirulent Genes in the Infected Hybrid Rice Combinations Derived from a Sterile Line of Guang 8 A [J]. Scientia Agricultura Sinica, 2018, 51(24): 4633-4646.
[12] DU JiGe, XUE Qi, ZHU Zhen, LI QiHong, YIN ChunSheng, YAO WenSheng, KANG Kai, CHEN XiaoYun. Expression and Evaluation of Protective Efficacy of No-toxic Clostridium perfringens ε Toxin Derivative [J]. Scientia Agricultura Sinica, 2018, 51(11): 2206-2215.
[13] WANG Xiao-yu, YANG Xiao-guang, Lü Shuo, CHEN Fu. The Possible Effects of Global Warming on Cropping Systems in China Ⅻ. The Possible Effects of Climate Warming on Geographical Shift in Safe Planting Area of Rice in Cold Areas and the Risk Analysis of Chilling Damage [J]. Scientia Agricultura Sinica, 2016, 49(10): 1859-1871.
[14] DONG Ming-chao, YANG Xia, ZHANG Zi-chang, LI Yong-feng, GUAN Rong-zhan. Identification and Expression Analysis of 1-Aminocyclopropane- 1-Carboxylate Oxidase Gene from Quinclorac-Resistant Barnyardgrass (Echinochloa crus-galli) [J]. Scientia Agricultura Sinica, 2015, 48(20): 4077-4085.
[15] WANG Jian-Qi, CAO Wen-Guang. Myostatin and Its Double-Muscling Phenotype in Animals [J]. Scientia Agricultura Sinica, 2014, 47(8): 1577-1587.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!