Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 96-110.doi: 10.3864/j.issn.0578-1752.2022.01.009
• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles Next Articles
LI ShuaiShuai1(),GUO JunJie1,LIU WenBo1,HAN ChunLong2,JIA HaiFei2,LING Ning1,GUO ShiWei1(
)
[1] |
BALEMI T, NEGISHO K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: A review. Journal of Soil Science and Plant Nutrition, 2012(ahead).doi: 10.4067/s0718-95162012005000015.
doi: 10.4067/s0718-95162012005000015 |
[2] | 马进川. 我国农田磷素平衡的时空变化与高效利用途径[D]. 北京: 中国农业科学院, 2018. |
MA J C. Temporal and spatial variation of phosphorus balance and solutions to improve phosphorus use efficiency in Chinese arable land[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) | |
[3] |
LUEDERS T, KINDLER R, MILTNER A, FRIEDRICH M W, KAESTNER M. Identification of bacterial micropredators distinctively active in a soil microbial food web. Applied and Environmental Microbiology, 2006, 72(8): 5342-5348. doi: 10.1128/AEM.00400-06.
doi: 10.1128/AEM.00400-06 |
[4] |
BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology & Biotechnology, 2012, 28(4): 1327-1350. doi: 10.1007/s11274-011-0979-9.
doi: 10.1007/s11274-011-0979-9 |
[5] |
ZHANG H Z, SHI L L, WEN D Z, YU K L. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biology and Fertility of Soils, 2016, 52(1): 41-51. doi: 10.1007/s00374-015-1053-9.
doi: 10.1007/s00374-015-1053-9 |
[6] |
MENEZES-BLACKBURN D, GILES C, DARCH T, GEORGE T S, BLACKWELL M, STUTTER M, SHAND C, LUMSDON D, COOPER P, WENDLER R, BROWN L, ALMEIDA D S, WEARING C, ZHANG H, HAYGARTH P M. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant and Soil, 2018, 427(1): 5-16. doi: 10.1007/s11104-017-3362-2.
doi: 10.1007/s11104-017-3362-2 |
[7] | 范明生, 江荣风, 张福锁, 吕世华, 刘学军. 水旱轮作系统作物养分管理策略. 应用生态学报, 2008, 19(2): 424-432. |
FAN M S, JIANG R F, ZHANG F S, LÜ S H, LIU X J. Nutrient management strategy of paddy rice-upland crop rotation system. Chinese Journal of Applied Ecology, 2008, 19(2): 424-432. (in Chinese) | |
[8] |
POWERS S M, BRUULSEMA T W, BURT T P, CHAN N L, ELSER J J, HAYGARTH P M, HOWDEN N J K, JARVIE H P, YANG L, PETERSON H M, SHARPLEY A N, SHEN J B, WORRALL F, ZHANG F S. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 2016, 9(5): 353-357. doi: 10.1038/NGEO2693.
doi: 10.1038/NGEO2693 |
[9] |
FLESSA H, FISCHER W R. Plant-induced changes in the redox potentials of rice rhizospheres. Plant and Soil, 1992, 143(1): 55-60. doi: 10.1007/BF00009128.
doi: 10.1007/BF00009128 |
[10] |
LINDSAY W L, NORVELL W A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 1978, 42(3): 421-428. doi: 10.2136/sssaj1978.03615995004200030009x.
doi: 10.2136/sssaj1978.03615995004200030009x |
[11] | 刘学军, 吕世华, 张福锁, 毛达如. 水肥状况对土壤剖面中锰的移动和水稻吸锰的影响. 土壤学报, 1999, 36(3): 369-376. |
LIU X J, LÜ S H, ZHANG F S, MAO D R. Effect of water and fertilization on movement of manganese in soils and on its uptake by rice. Acta Pedologica Sinica, 1999, 36(3): 369-376. (in Chinese) | |
[12] | 鲁如坤, 蒋柏藩, 牟润生. 磷肥对水稻和旱作的肥效及其后效的研究. 土壤学报, 1965, 2(2): 152-160. |
LU R K, JIANG P F, MU Y S. Studies on the methods of application of phosphatic fertilizer in relation to the yield of crops. Acta Pedologica Sinica, 1965, 2(2): 152-160. (in Chinese) | |
[13] |
FAN Y X, ZHONG X J, LIN F, LIU C, YANG L M, WANG M H, CHEN G S, CHEN Y, YANG Y S. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 2019, 337: 246-255. doi: 10.1016/j.geoderma.2018.09.028.
doi: 10.1016/j.geoderma.2018.09.028 |
[14] |
PII Y, MIMMO T, TOMASI N, TERZANO R, CESCO S, CRECCHIO C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 2015, 51(4): 403-415. doi: 10.1007/s00374-015-0996-1.
doi: 10.1007/s00374-015-0996-1 |
[15] |
BÜNEMANN E K, KELLER B, HOOP D, JUD K, BOIVIN P, FROSSARD E. Increased availability of phosphorus after drying and rewetting of a grassland soil: Processes and plant use. Plant and Soil, 2013, 370(1): 511-526. doi: 10.1007/s11104-013-1651-y.
doi: 10.1007/s11104-013-1651-y |
[16] |
ROMANYÀ J, ROVIRA P. Organic and inorganic P reserves in rain-fed and irrigated calcareous soils under long-term organic and conventional agriculture. Geoderma, 2009, 151(3/4): 378-386. doi: 10.1016/j.geoderma.2009.05.009.
doi: 10.1016/j.geoderma.2009.05.009 |
[17] |
RICHARDSON A E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 2001, 28(9): 897. doi: 10.1071/pp01093.
doi: 10.1071/pp01093 |
[18] |
DELUCA T H, GLANVILLE H C, HARRIS M, EMMETT B A, PINGREE M R A, DE SOSA L L, CERDÁ-MORENO C, JONES D L. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biology and Biochemistry, 2015, 88: 110-119. doi: 10.1016/j.soilbio.2015.05.016.
doi: 10.1016/j.soilbio.2015.05.016 |
[19] |
ROSLING A, MIDGLEY M G, CHEEKE T, URBINA H, FRANSSON P, PHILLIPS R P. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist, 2016, 209(3): 1184-1195. doi: 10.1111/nph.13720.
doi: 10.1111/nph.13720 |
[20] |
PISTOCCHI C, MÉSZÁROS É, TAMBURINI F, FROSSARD E, BÜNEMANN E K. Biological processes dominate phosphorus dynamics under low phosphorus availability in organic horizons of temperate forest soils. Soil Biology and Biochemistry, 2018, 126: 64-75. doi: 10.1016/j.soilbio.2018.08.013.
doi: 10.1016/j.soilbio.2018.08.013 |
[21] |
TANG X, SHI X, MA Y, HAO X. Phosphorus efficiency in a long-term wheat-rice cropping system in China. The Journal of Agricultural Science, 2011, 149(3): 297-304. doi: 10.1017/s002185961000081x.
doi: 10.1017/s002185961000081x |
[22] |
YADVINDER-SINGH, DOBERMANN A, BIJAY-SINGH, BRONSON K F, KHIND C S. Optimal phosphorus management strategies for wheat-rice cropping on a loamy sand. Soil Science Society of America Journal, 2000, 64(4): 1413-1422. doi: 10.2136/sssaj2000.6441413x.
doi: 10.2136/sssaj2000.6441413x |
[23] |
HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi: 10.2136/sssaj1982.03615995004600050017x.
doi: 10.2136/sssaj1982.03615995004600050017x |
[24] | MOIR J, TIESSEN H. Characterization of available P by sequential extraction//Soil Sampling and Methods of Analysis. 2nd ed. CRC Press, 2007. |
[25] |
MALTAIS-LANDRY G, SCOW K, BRENNAN E, TORBERT E, VITOUSEK P. Higher flexibility in input N: P ratios results in more balanced phosphorus budgets in two long-term experimental agroecosystems. Agriculture, Ecosystems & Environment, 2016, 223: 197-210. doi: 10.1016/j.agee.2016.03.007.
doi: 10.1016/j.agee.2016.03.007 |
[26] | 孙博, 李帅帅, 周毅, 张莹, 陈健, 刘田, 郭俊杰, 凌宁, 郭世伟. 不同轮作模式下优化施肥对水稻产量及磷素积累与分配的影响. 南京农业大学学报, 2020, 43(4): 658-666. |
SUN B, LI S S, ZHOU Y, ZHANG Y, CHEN J, LIU T, GUO J J, LING N, GUO S W. Effects of optimized fertilization on rice yield and accumulation and distribution of phosphorus under different rotation systems. Journal of Nanjing Agricultural University, 2020, 43(4): 658-666. (in Chinese) | |
[27] | 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese) | |
[28] |
CROSS A F, SCHLESINGER W H. A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 1995, 64(3/4): 197-214. doi: 10.1016/0016-7061(94)00023-4.
doi: 10.1016/0016-7061(94)00023-4 |
[29] |
BROOKES P C, POWLSON D S, JENKINSON D S. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 1982, 14(4): 319-329. doi: 10.1016/0038-0717(82)90001-3.
doi: 10.1016/0038-0717(82)90001-3 |
[30] |
WU J, JOERGENSEN R G, POMMERENING B, CHAUSSOD R, BROOKES P C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169. doi: 10.1016/0038-0717(90)90046-3.
doi: 10.1016/0038-0717(90)90046-3 |
[31] |
BROOKES P C, LANDMAN A, PRUDEN G, JENKINSON D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17(6): 837-842. doi: 10.1016/0038-0717(85)90144-0.
doi: 10.1016/0038-0717(85)90144-0 |
[32] |
NANNIPIERI P, GIAGNONI L, LANDI L, RENELLA G. Role of phosphatase enzymes in soil//Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 215-243. doi: 10.1007/978-3-642-15271-9_9.
doi: 10.1007/978-3-642-15271-9_9 |
[33] |
BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1): 27-37. doi: 10.1007/s11104-013-1696-y.
doi: 10.1007/s11104-013-1696-y |
[34] |
黄晶, 张杨珠, 徐明岗, 高菊生. 长期施肥下红壤性水稻土有效磷的演变特征及对磷平衡的响应. 中国农业科学, 2016, 49(6): 1132-1141. doi: 10.3864/j.issn.0578-1752.2016.06.009.
doi: 10.3864/j.issn.0578-1752.2016.06.009 |
HUANG J, ZHANG Y Z, XU M G, GAO J S. Evolution characteristics of soil available phosphorus and its response to soil phosphorus balance in paddy soil derived from red earth under long-term fertilization. Scientia Agricultura Sinica, 2016, 49(6): 1132-1141. doi: 10.3864/j.issn.0578-1752.2016.06.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.06.009 |
|
[35] |
LU S, LEPO J E, SONG H X, GUAN C Y, ZHANG Z H. Increased rice yield in long-term crop rotation regimes through improved soil structure, rhizosphere microbial communities, and nutrient bioavailability in paddy soil. Biology and Fertility of Soils, 2018, 54(8): 909-923. doi: 10.1007/s00374-018-1315-4.
doi: 10.1007/s00374-018-1315-4 |
[36] |
WEAND M P, ARTHUR M A, LOVETT G M, SIKORA F, WEATHERS K C. The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry, 2010, 97(2): 159-181. doi: 10.1007/s10533-009-9364-2.
doi: 10.1007/s10533-009-9364-2 |
[37] |
ZHANG H Z, SHI L L, LU H B, SHAO Y H, LIU S R, FU S L. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Science of the Total Environment, 2020, 732: 139295. doi: 10.1016/j.scitotenv.2020.139295.
doi: 10.1016/j.scitotenv.2020.139295 |
[38] |
WANG Y L, ALMVIK M, CLARKE N, EICH-GREATOREX S, ØGAARD A F, KROGSTAD T, LAMBERS H, CLARKE J L. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. AoB PLANTS, 2015, 7(10.1093): aobpla. doi: 10.1093/aobpla/plv097.
doi: 10.1093/aobpla/plv097 |
[39] |
VERMA S, SUBEHIA S K, SHARMA S P. Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biology and Fertility of Soils, 2005, 41(4): 295-300. doi: 10.1007/s00374-004-0810-y.
doi: 10.1007/s00374-004-0810-y |
[40] |
ZHU W B, ZHAO X, WANG S Q, WANG Y. Inter-annual variation in P speciation and availability in the drought-rewetting cycle in paddy soils. Agriculture, Ecosystems & Environment, 2019, 286: 106652. doi: 10.1016/j.agee.2019.106652.
doi: 10.1016/j.agee.2019.106652 |
[41] |
FAN Y X, LIN F, YANG L M, ZHONG X J, WANG M H, ZHOU J C, CHEN Y, YANG Y S. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biology and Fertility of Soils, 2018, 54(1): 149-161. doi: 10.1007/s00374-017-1251-8.
doi: 10.1007/s00374-017-1251-8 |
[42] |
YANG K, ZHU J J, GU J C, YU L Z, WANG Z Q. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation. Annals of Forest Science, 2015, 72(4): 435-442. doi: 10.1007/s13595-014-0444-7.
doi: 10.1007/s13595-014-0444-7 |
[43] |
HEUCK C, WEIG A, SPOHN M. Soil microbial biomass C: N: P stoichiometry and microbial use of organic phosphorus. Soil Biology and Biochemistry, 2015, 85: 119-129. doi: 10.1016/j.soilbio.2015.02.029.
doi: 10.1016/j.soilbio.2015.02.029 |
[44] |
YUAN H Z, LIU S L, RAZAVI B S, ZHRAN M, WANG J R, ZHU Z K, WU J S, GE T D. Differentiated response of plant and microbial C: N: P stoichiometries to phosphorus application in phosphorus-limited paddy soil. European Journal of Soil Biology, 2019, 95: 103122. doi: 10.1016/j.ejsobi.2019.103122.
doi: 10.1016/j.ejsobi.2019.103122 |
[45] |
TISCHER A, POTTHAST K, HAMER U. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 2014, 175(1): 375-393. doi: 10.1007/s00442-014-2894-x.
doi: 10.1007/s00442-014-2894-x |
[46] |
HE Z L, WU J, O’DONNELL A G, SYERS J K. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biology and Fertility of Soils, 1997, 24(4): 421-428. doi: 10.1007/s003740050267.
doi: 10.1007/s003740050267 |
[47] |
WANG J P, WU Y H, ZHOU J, BING H J, SUN H Y. Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development. Biology and Fertility of Soils, 2016, 52(6): 825-839. doi: 10.1007/s00374-016-1123-7.
doi: 10.1007/s00374-016-1123-7 |
[48] |
ACUÑA J J, DURÁN P, LAGOS L M, OGRAM A, DE LA LUZ MORA M, JORQUERA M A. Bacterial alkaline phosphomonoesterase in the rhizospheres of plants grown in Chilean extreme environments. Biology and Fertility of Soils, 2016, 52(6): 763-773. doi: 10.1007/s00374-016-1113-9
doi: 10.1007/s00374-016-1113-9 |
[49] | 袁佳慧. 太湖稻麦轮作农田土壤磷素生物有效性研究[D]. 哈尔滨: 东北农业大学, 2018. |
YUAN J H. Availability of soil P in A rice-wheat cropping rotation in Taihu lake region[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese) |
[1] | YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613. |
[2] | QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432. |
[3] | ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251. |
[4] | LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122. |
[5] | YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198. |
[6] | ZHANG MengTing, LIU Ping, HUANG DanDan, JIA ShuXia, ZHANG XiaoKe, ZHANG ShiXiu, LIANG WenJu, CHEN XueWen, ZHANG Yan, LIANG AiZhen. Response of Nematode Community to Soil Disturbance After Long-Term No-Tillage Practice in the Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4840-4850. |
[7] | JI BingJie,LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun. Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594. |
[8] | Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418. |
[9] | ShiChao WANG,ZhiHao YAN,JinYu WANG,ShengChang HUAI,HongLiang WU,TingTing XING,HongLing YE,ChangAi LU. Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields [J]. Scientia Agricultura Sinica, 2020, 53(4): 782-794. |
[10] | ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236. |
[11] | LI RuoNan,WANG ZhengPei,BATBAYAR Javkhlan,ZHANG DongJie,ZHANG ShuLan,YANG XueYun. Relationship Between Soil Available Phosphorus and Inorganic Phosphorus Forms Under Equivalent Organic Matter Condition in a Tier Soil [J]. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865. |
[12] | SHI Ke, DONG ShiGang, SHEN FengMin, LONG Qian, JIANG GuiYing, LIU Fang, LIU ShiLiang. Effects of Wheat Seeding Rate with Nitrogen Fertilizer Application Reduction on Soil Microbial Biomass Carbon, Nitrogen and Enzyme Activities in Fluvo-Aquic Soil in Huang-Huai Plain [J]. Scientia Agricultura Sinica, 2019, 52(15): 2646-2663. |
[13] | CHEN XiaoFen, LIU Ming, JIANG ChunYu, WU Meng, LI ZhongPei. Organic Carbon Mineralization in Aggregate Fractions of Red Paddy Soil Under Different Fertilization Treatments [J]. Scientia Agricultura Sinica, 2018, 51(17): 3325-3334. |
[14] | WEN YanChen, ZHANG YueDong, YUAN Liang, LI Wei1, LI YanQing, LIN ZhiAn, ZHAO BingQiang. Crop Yield and Soil Fertility Response to Commercial Organic Fertilizer Substituting Chemical Fertilizer [J]. Scientia Agricultura Sinica, 2018, 51(11): 2136-2142. |
[15] | REN FengLing, ZHANG XuBo, SUN Nan, XU MingGang, LIU KaiLou. A Meta-Analysis of Manure Application Impact on Soil Microbial Biomass Across China’s Croplands [J]. Scientia Agricultura Sinica, 2018, 51(1): 119-128. |
|