土,磷有效性,有效磷梯度," /> 土,磷有效性,有效磷梯度,"/> Relationship Between Soil Available Phosphorus and Inorganic Phosphorus Forms Under Equivalent Organic Matter Condition in a Tier Soil

Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (21): 3852-3865.doi: 10.3864/j.issn.0578-1752.2019.21.014

• SPECIAL FOCUS: CHANGE OF SOIL PHOSPHRUS AND ITS EFFICIENT UTILIZATION • Previous Articles     Next Articles

Relationship Between Soil Available Phosphorus and Inorganic Phosphorus Forms Under Equivalent Organic Matter Condition in a Tier Soil

LI RuoNan,WANG ZhengPei,BATBAYAR Javkhlan,ZHANG DongJie,ZHANG ShuLan,YANG XueYun()   

  1. College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
  • Received:2019-06-06 Accepted:2019-09-23 Online:2019-11-01 Published:2019-11-12
  • Contact: XueYun YANG E-mail:xueyunyang@hotmail.com

Abstract:

【Objective】 Investigating the contribution of inorganic phosphorus (P) fractions to soil available phosphorus under equivalent soil organic matter content might be helpful in development of phosphate fertilizer management strategy whereby to improve phosphorus use efficiency in a given soil.【Method】 We collected and screened the soils with a gradient of Olsen P level but the quite similar soil organic matter content (SOC ranges from 10.03 to 10.68 g·kg -1) in a Tier soil under winter wheat-summer maize cropping in Guanzhong Plain of Shaanxi Province. The Olsen P contents of the selected soil samples were 10.73 mg·kg -1, 18.06 mg·kg -1, 20.61 mg·kg -1, 24.01 mg·kg -1, 30.73 mg·kg -1, 43.69 mg·kg -1, and 58.58 mg·kg -1, respectively. We then analyzed the soil inorganic phosphorus forms with the phosphorus fractionation method developed by Chang & Jackson and modified by Jiang & Gu.【Result】 The results showed that the calcium bounded phosphorus fraction was the dominant form in the cultivated soil in the northwestern winter wheat-summer maize planting area, accounting for 66.67% of the total amount of inorganic phosphorus, of which dicalcium phosphate (Ca2-P), octa-calcium phosphate (Ca8-P) and apatite (Ca10-P) account for 2.80%, 16.80% and 47.09%, respectively, on average; and aluminum bounded phosphate (Al-P), iron bounded phosphate (Fe-P) and occluded phosphate (O-P) composed of 16.28%, 5.23% and 11.81%, respectively. Soil Olsen P was increased significantly and linearly with the increasing content of Ca2-P, Ca8-P, Ca10-P, Al-P, Fe-P and O-P; while the phosphorus activation coefficients, defined as the ratio of soil Olsen P to total P, were correlated significantly positively and linearly to the content of Ca2-P, Ca8-P, Al-P, Fe-P and O-P. The results of path analysis showed that the contribution of inorganic phosphorus to soil available phosphorus (Olsen P) in Guanzhong Plain area of Shaanxi Province was in the order of Ca2-P (0.974)>Al-P (0.186)>Ca8-P (0.182)>Fe-P (0.150)>Ca10-P (0.007)>O-P (-0.074), the contribution of inorganic phosphorus to phosphorus activation coefficient (PAC) was Ca2-P (0.768)>Al-P (0.082)>Ca8-P (0.071)>Fe-P (-0.018)>Ca10-P (-0.055)>O-P (-0.388), which was consistent with the contribution of soil phosphorus component to available phosphorus. The results of stepwise regression analysis showed that Ca2-P and Ca8-P were the major two contributors to Olsen P, but the Ca2-P contributed the most to PAC.【Conclusion】 Under the same or similar soil organic matter condition, Ca2-P was the most effective phosphorus source in Tier soil of wheat-maize growing area in Guanzhong Plain of Shaanxi Province. The increase of soil phosphorus availability was mainly achieved by increasing the proportion of phosphorus forms of readily available and relatively high availability such as Ca2-P, Ca8-P and Al-P, and reducing the proportion of very low availability forms, i.e. Ca10-P. Generally, under current cropping system, the application of phosphate fertilizers mainly kept the soil phosphorus in pools of available forms in the Guanzhong Plain.

Key words: forms of inorganic phosphorus, winter wheat summer maize cropping, tier, phosphorus availability, Olsen P gradient

Fig. 1

The distribution of soil sampling sites in Guanzhong Plain of Shaanxi Province under winter wheat-summer maize cropping"

Table 1

Soil chemical properties of investigated tier soil collected in Guanzhong Plain of Shaanxi Province"

土壤样品
Soil sample
有效磷含量
Olsen P
(mg·kg-1)
有机碳含量
SOC
(g·kg-1)
酸度(1﹕2.5)
pH
全磷含量
Total P
(g·kg-1)
S1 10.73 10.68 7.41 0.95
S2 18.06 10.34 7.29 0.96
S3 20.61 10.21 7.10 0.86
S4 24.01 10.54 7.86 1.08
S5 30.73 10.06 8.04 1.01
S6 43.69 10.49 7.54 1.24
S7 58.58 10.03 7.87 1.47

Table 2

The proportion of different forms of inorganic phosphorus to total inorganic phosphorus in soils with a gradient of Olsen P level of a tier soil"

土壤样品
Soil sample
各形态无机磷占总无机磷的百分比 Proportion of inorganic phosphorus fraction to total (%)
Ca2-P Ca8-P Ca10-P Ca-P Al-P Fe-P O-P
S 1 1.63c 14.84bc 53.65a 70.12a 12.50c 5.63ab 11.76a
S 2 2.02bc 13.92c 54.24a 70.19a 12.32c 5.84a 11.65a
S 3 2.23b 16.26b 50.17ab 68.66a 13.46c 4.93ab 12.95a
S 4 2.31b 19.05a 45.83bc 67.18a 16.84b 4.44b 11.54a
S 5 3.64a 16.61b 47.30b 67.54a 14.83bc 5.36ab 12.27a
S 6 3.69a 16.48b 42.39c 62.57b 21.02a 4.84ab 11.56a
S 7 4.08a 20.43a 35.95d 60.46b 22.97a 5.60ab 10.97a
Mean 2.80 16.80 47.08 66.67 16.28 5.23 11.81

Fig. 2

Content of different forms of inorganic phosphorus in a tier soil with a gradient of Olsen P level Different lower-case letters on top of the bars represent significant difference of the phosphorus fraction between the soil samples in question (P<5%)"

Fig. 3

The relationship between the content of different forms of inorganic phosphorus and the content of Olsen P in a tier soil with a gradient of Olsen P level"

Fig. 4

The relationship between the relative content of inorganic phosphorus fractions and the content of Olsen P in a tier soil with a gradient of Olsen P level"

Fig. 5

Phosphorus activation coefficient (PAC) as a function of the concentration of different forms of inorganic phosphorus in a tier soil with a gradient of Olsen P level"

Table 3

Path analysis for soil available phosphorus content (Olsen P) as a function of soil inorganic phosphorus fractions"

作用因子
Factor
直接作用
Direct effect
间接作用 Indirect effect 与y的相关系数
Correlation coefficient with y
x1→y x2→y x3→y x4→y x5→y x6→y
Ca2-P (x1) 0.974 0.160 0.003 0.175 0.119 -0.065 0.974
Ca8-P (x2) 0.182 0.855 0.004 0.174 0.103 -0.063 0.897
Ca10-P (x3) 0.007 0.439 0.093 0.094 0.039 -0.048 0.444
Al-P (x4) 0.186 0.917 0.170 0.004 0.121 -0.063 0.938
Fe-P (x5) 0.150 0.773 0.125 0.002 0.151 -0.047 0.828
O-P (x6) -0.074 0.852 0.154 0.005 0.158 0.095 0.834

Table 4

Stepwise regression analysis between soil inorganic phosphorus fractions and available phosphorus content"

因子
Factor
直接作用
Direct effect
间接作用 Indirect effect y的相关系数
Correlation coefficient with y
显著水平
Significant level
x1→y x2→y x5→y
Ca2-P(x1) 0.684 0.166 0.123 0.974 0.000
Ca8-P(x2) 0.189 0.601 0.106 0.897 0.064
Fe-P(x5) 0.155 0.543 0.130 0.828 0.054

Table 5

Path analysis for phosphorus activation coefficient(PAC)as a function of soil inorganic phosphorus fractions"

作用因子
Factor
直接作用
Direct effect
间接作用地Indirect effect 与y的相关系数
Correlation coefficient with y
x1→y x2→y x3→y x4→y x5→y x6→y
Ca2-P (x1) 0.768 0.062 -0.025 0.077 -0.014 -0.339 0.767
Ca8-P (x2) 0.071 0.674 -0.028 0.077 -0.012 -0.328 0.690
Ca10-P (x3) -0.055 0.346 0.036 0.042 -0.005 -0.250 0.302
Al-P (x4) 0.082 0.723 0.066 -0.028 -0.015 -0.330 0.732
Fe-P (x5) -0.018 0.609 0.049 -0.014 0.066 -0.245 0.602
O-P (x6) -0.388 0.672 0.060 -0.035 0.070 -0.011 0.579
[1] DEBICKA M, KOCOWICZ A, WEBER J ,ELŻBIETA J. Organic matter effects on phosphorus sorption in sandy soils. Archives of Agronomy and Soil Science, 2016,62(6):1-16.
[2] 向万胜, 黄敏, 李学垣 . 土壤磷素的化学组分及其植物有效性. 植物营养与肥料学报, 2004,10(6):663-670.
XIANG W S, HUANG M, LI X Y . Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil. Journal of Plant Nutrition and Fertilizer, 2004,10(6):663-670. (in Chinese)
[3] 程明芳, 何萍, 金继运 . 我国主要作物磷肥利用率的研究进展.作物杂志, 2010(1):12-14.
CHENG M F, HE P, JIN J Y . Advance of phosphate recovery rate in Chinese main crops.Crops, 2010(1):12-14. (in Chinese)
[4] 常艳丽, 刘俊梅, 李玉会, 孙本华, 张树兰, 杨学云 . 陕西关中平原小麦/玉米轮作体系施肥现状调查与评价. 西北农林科技大学学报(自然科学版), 2014,42(8):51-61.
CHANG Y L, LIU J M, LI Y H, SUN B H, ZHANG S L, YANG X Y . Investigation and evaluation of fertilization under winter wheat and summer maize rotation system in Guanzhong Plain, Shaanxi Province. Journal of Northwest A&F University (Natural Science Edition), 2014,42(8):51-61. (in Chinese)
[5] 鲁如坤 . 土壤磷素水平和水体环境保护. 磷肥与复肥, 2003,18(1):4-6.
LU R K , The phosphorus level of soil and environmental protection of water body. Phosphate and Compound Fertilizer, 2003,18(1):4-6. (in Chinese)
[6] BROCK E H, KETTERINGS Q M ,KLEINMAN P J A. Phosphorus leaching through intact soil cores as influenced by type and duration of manure application. Nutrient Cycling in Agroecosystems, 2007,77(3):269-281.
doi: 10.1007/s10705-006-9065-3
[7] 来璐, 郝明德, 彭令发 . 黄土旱塬长期施肥条件下土壤磷素变化及管理. 水土保持研究, 2003(1):68-70.
LAI L, HAO M D, PENG L F . The variation of soil phosphorus of long-term continuous cropping and management on Loess Plateau.Research of Soil and Water Conservation, 2003(1):68-70. (in Chinese)
[8] 鲍士旦 . 土壤农化分析. 3版. 北京: 中国农业出版社, 2005.
BAO S D. Soil and Agricultural Chemistry Analysis.3rd ed. Beijing: China Agriculture Press, 2005. ( in Chinese)
[9] BAI J, YE X, JIA J, ZHANG G, ZHAO Q, CUI B . Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere, 2017: S0045653517313413.
[10] 蒋柏藩, 顾益初 . 石灰性土壤无机磷分级体系的研究. 中国农业科学, 1989,22(3):58-66.
JIANG B F, GU Y C . A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Scientia Agricultura Sinica, 1989,20(3):58-66. (in Chinese)
[11] 韩晓飞, 高明, 谢德体, 王子芳, 陈晨 . 长期定位施肥条件下紫色土无机磷形态演变研究. 草业学报, 2016,25(4):63-72.
HAN X F, GAO M, XIE D T, WANG Z F, CHEN C . Inorganic phosphorus in a regosol (purple) soil under long-term phosphorus fertilization. Acta Prataculturae Sinica, 2016,25(4):63-72. (in Chinese)
[12] ESCUDEY M, GALINDO G, JUANE F, MARGARITA B, PATRICIA D, ANDREW C . Chemical forms of phosphorus of volcanic ash derived soils in Chile. Communications in Soil Science and Plant Analysis, 2001,32(5/6):16.
[13] YANG X J, POST W M . Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method.Biogeosciences, 2011(10):2907-2916.
[14] 林利红, 韩晓日, 刘小虎, 战秀梅 . 长期轮作施肥对棕壤磷素形态及转化的影响. 土壤通报, 2006,37(1):80-83.
LIN L H, HAN X R, LIU X H, ZHAN X M . Effects of long-term fertilization on phosphorus forms and transformation in Brown soil. Chinese Journal of Soil Science, 2006,37(1):80-83. (in Chinese)
[15] LUO L, MA Y, SANDERS R L, XU C, LI J ,MYNENI S C B. Phosphorus speciation and transformation in long-term fertilized soil: evidence from chemical fractionation and PK-edge XANES spectroscopy. Nutrient Cycling in Agroecosystems, 2017,107(2):215-226.
[16] BOL R, JULICH D ,BRÖDLIN D,SIEMENS J,KAISER K,DIPPOLD M. A,SPIELVOGEL S,ZILLA T,MEWES D.Dissolved and colloidal phosphorus fluxes in forest ecosystems-an almost blind spot in ecosystem research.Journal of Plant Nutrition and Soil Science, 2016(179):425-438.
[17] XAVIER F A D S, OLIVEIRA T S D, ANDRADE F V, MENDONÇA E D S . Phosphorus fractionation in a sandy soil under organic agriculture in Northeastern Brazil. Geofisica Internacional, 2009,151(3):417-423.
[18] AULAKH M S, GARG A K, KABBA B S . Phosphorus accumulation, leaching and residual effects on crop yields from long-term applications in the subtropics. Soil Use and Management, 2007,23:417-427.
[19] 展晓莹, 任意, 张淑香, 康日峰 . 中国主要土壤有效磷演变及其与磷平衡的响应关系. 中国农业科学, 2015,48(23):4728-4737.
ZHAN X Y, REN Y, ZHANG S X, KANG R F . Changes in Olsen phosphorus concentration and its response to phosphorus balance in main types of soil in China. Scientia Agricultura Sinica, 2015,48(23):4728-4737. (in Chinese)
[20] 黄晶, 张杨珠, 徐明岗, 高菊生 . 长期施肥下红壤性水稻土有效磷的演变特征及对磷平衡的响应. 中国农业科学, 2016,49(6):1132-1141.
HUANG J, ZHANG Y Z, XU M G, GAO J S . Evolution characteristics of soil available phosphorus and its response to soil phosphorus balance in paddy soil derived from red earth under long-term fertilization. Scientia Agricultura Sinica, 2016,49(6):1132-1141. (in Chinese)
[21] 胡宁, 袁红, 蓝家程, 袁道先, 傅瓦利, 文志林 . 岩溶石漠化区不同植被恢复模式土壤无机磷形态特征及影响因素. 生态学报, 2014,34(24):7393-7402.
HU N, YUAN H, LAN J C, YUAN D F, FU W L, WEN Z L . Factors influencing the distribution of inorganic phosphorus fractions in different vegetation restoration areas in karst rocky desertification areas. Acta Ecologica Sinica, 2014,34(24):7393-7402. (in Chinese)
[22] MANNA M C, SWARUP A, WANJARI R H, MISHRA B, SHAHI D K . Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil and Tillage Research, 2007,94(2):397-409.
[23] 杨慧, 曹建华, 孙蕾, 栾会妮, 侯彦林 . 岩溶区不同土地利用类型土壤无机磷形态分布特征. 水土保持学报, 2010,24(2):135-140.
YANG H, CAO J H, SUN L, YI H N, HOU Y L . Fractions and distribution of inorganic phosphorus in different land use types of Karst Area. Journal of Soil and Water Conservation, 2010,24(2):135-140. (in Chinese)
[24] 于群英, 李孝良, 李粉茹, 汪建飞 . 安徽省土壤无机磷组分状况及施肥对土壤磷素的影响.水土保持学报, 2006(4):57-61.
YU Q Y, LI X L, LI F R, WANG J F . Content of soil inorganic phosphorus fractions in Anhui Province and effects of fertilization on soil phosphorus. Journal of Soil and Water Conservation, 2006(4):57-61. (in Chinese)
[25] GUO S L, DANG T H, HAO M D . Phosphorus changes and sorption characteristics in a calcareous soil under long-term fertilization. Pedosphere, 2008,18(2):248-256.
doi: 10.1016/S1002-0160(08)60014-4
[26] 谢林花, 吕家珑, 张一平, 刘选卫, 刘利花 . 长期施肥对石灰性土壤磷素肥力的影响Ⅰ.有机质、全磷和速效磷. 应用生态学报, 2004,15(5):787-789.
XIE L H, LV J L, ZHANG Y P, LIU X W, LIU L H . Influence of long-term fertilization on phosphorus fertility of calcareous soil I. Organic matter, total phosphorus and available phosphorus. Chinese Journal of Applied Ecology, 2004,15(5):787-789. (in Chinese)
[27] 赵晓齐, 鲁如坤 . 有机肥对土壤磷素吸附的影响. 土壤学报, 1991,28(1):7-15.
ZHAO X Q, LU R K . Effects of organic manure on soil phosphorus adsorption. Acta Pedologica Sinica, 1991,28(1):7-15. (in Chinese)
[28] 夏海勇, 王凯荣 . 有机质含量对石灰性黄潮土和砂姜黑土磷吸附-解吸特性的影响. 植物营养与肥料学报, 2009,15(6):1303-1310.
XIA H Y, WANG K R . Effects of soil organic matter on characteristics of phosphorus adsorption and desorption in calcareous yellow fluvo-aquic soil and lime concretion black soil. Plant Nutrition and Fertilizer Science, 2009,15(6):1303-1310. (in Chinese)
[29] 蒋柏藩, 顾益初 . 石灰性土壤无机磷分级体系的研究. 中国农业科学, 1989,22(3):58-66.
JIANG B F, GU Y C . A suggested fraction scheme of inorganic phosphorus in calcareous soils. Scientia Agricultura Sinica, 1989,22(3):58-66. (in Chinese)
[30] 吴启华 . 长期不同施肥下三种土壤磷素有效性和磷肥利用率的差异机制[D]. 北京: 中国农业大学, 2018.
WU Q H . Mechanisms of difference in phosphorus availability and fertilizer P use efficiency in three soils under long-term fertilizations[D]. Beijing: China Agricultural University, 2018. ( in Chinese)
[31] 曹莹菲, 张红, 刘克, 代允超, 吕家珑 . 不同施肥方式对塿土土壤磷素各组分含量的影响.干旱地区农业研究, 2015(5):115-120.
CAO Y F, ZHANG H, LIU K, DAI Y C, LV J L . Effects of different fertilization implementations on phosphors fraction of manural loessial soil.Agricultural research in the Arid Areas, 2015(5):115-120. (in Chinese)
[32] 谢林花, 吕家珑, 张一平, 刘选卫, 刘利花 . 长期施肥对石灰性土壤磷素肥力的影响Ⅱ.无机磷和有机磷. 应用生态学报, 2004,15(5):790-794.
XIE L H, LV J L, ZHANG Y P, LIU X W, LIU L H . Influence of long-term fertilization on phosphorus fertility of calcareous soil Ⅱ. Inorganic and organic phosphorus. Chinese Journal of Applied Ecology, 2004,15(5):790-794. (in Chinese)
[33] 贾莉洁, 李玉会, 孙本华, 杨学云 . 不同管理方式对土壤无机磷及其组分的影响. 土壤通报, 2013,44(3):612-616.
JIA L J, LI Y H, SUN B H, YANG X Y . Effect of diverse soil managements on inorganic phosphorus and its fractions in a loess soil from a long-term experiment. Chinese Journal of Soil Science, 2013,44(3):612-616. (in Chinese)
[34] AHMAD M, AHMAD M, HEL-NAGGAR A, RAUSMAN A, ABDULJABBAR A, VITHANAGE M . Aging effects of organic and inorganic fertilizers on phosphorus fractionation in a calcareous sandy loam soil. Pedosphere, 2018,28(6):873-883.
[35] 柴博, 李隆, 杨思存, 陈英, 王成宝, 姜万礼 . 玉米/鹰嘴豆间作条件下不同施磷量对灌耕灰钙土无机磷组分的影响. 干旱地区农业研究, 2015,33(1):85-90.
CHAI B, LI L, YANG S C, CHEN Y, WANG C B, JIANG W L . Effects of different P applications on inorganic-P components in irrigated sierozems under maize /chickpea intercropping. Agricultural Research in the Arid Areas,2015, 33(1):85-90. (in Chinese)
[36] 张英鹏, 陈清, 李彦, 李国生, 孙明, 刘兆辉 . 不同磷水平对山东褐土耕层无机磷形态及磷有效性的影响. 中国农学通报, 2008,24(7):245-248.
ZHANG Y P, CHEN Q, LI Y, LI G S, SUN M, LIU Z H . Effect of phosphorus levels on form and bioavailability of inorganic P in plough layer of cinnamon soil in Shandong Province. Chinese Agricultural Science Bulletin, 2008,24(7):245-248. (in Chinese)
[37] 王海龙, 张民, 刘之广, 于小晶, 赵洪猛, 陈海宁 . 多年定位试验条件下不同施磷水平对土壤无机磷分级的影响. 水土保持学报, 2018,32(5):321-327.
WANG H L, ZHANG M, LIU Z G, YU X J, ZHAO H M, CHEN H N . Efferent of different phosphorus application levels on the inorganic phosphorus fraction under multi-year location experiment. Journal of Soil and Water Conservation, 2018,32(5):321-327. (in Chinese)
[38] 杨文静, 张树兰, 杨学云 . 不同管理措施塿土无机碳储量及其与有机碳含量的关系. 西北农林科技大学学报(自然科学版), 2016,44(9):74-82.
YANG W J, ZHANG S L, YANG X Y . Effect of long-term soil management and fertilization on storage of soil inorganic carbon and its relationship with soil organic carbon content in plough layer of manual loess soil. Journal of Northwest A&F University (Natural Science Edition), 2016,44(9):74-82. (in Chinese)
[39] 张林, 吴宁, 吴彦, 罗鹏, 刘琳, 陈文年 . 土壤磷素形态及其分级方法研究进展.应用生态学报, 2009(7):1775-1782.
ZHANG L, WU N, WU Y, LUO P, LIU L, CHEN W N . Advances in the study of soil phosphorus forms and their classification methods.Chinese Journal of Applied Ecology, 2009(7):1775-1782. (in Chinese)
[40] 韩晓日, 马玲玲, 王晔青, 王颖, 战秀梅 . 长期定位施肥对棕壤无机磷形态及剖面分布的影响. 水土保持学报, 2007,21(4):51-55.
HAN X R, MA L L, WANG Y Q, WANG Y, ZHAN X M . Effects of long-term fertilization on inorganic phosphorus forms and profile distribution in Brown soil. Journal of Soil and Water Conservation, 2007,21(4):51-55. (in Chinese)
[41] WANG J, LIU W Z, MU H F, DANG T H . Inorganic phosphorus fractions and phosphorus availability in a calcareous soil receiving 21-year superphosphate application. Pedosphere, 2010,20(3):304-310.
doi: 10.1016/S1002-0160(10)60018-5
[42] 顾益初, 蒋柏藩, 鲁如坤 . 风化对土壤粒级中磷素形态转化及其有效性的影响. 土壤学报, 2011,21(2):134-143.
GU Y C, JIANG B F, LU R K . Effects of weathering on phosphorus form transformation and its availability in soil fractions. Acta Pedologica Sinica, 2011,21(2):134-143. (in Chinese)
[43] 沈仁芳, 蒋柏藩 . 石灰性土壤无机磷的形态分布及其有效性. 土壤学报, 1992,29(1):80-86.
SHEN R F, JIANG B F . Morphological distribution and availability of inorganic phosphorus in calcareous soils. Acta Pedologica Sinica, 1992,29(1):80-86. (in Chinese)
[44] 张海军, 石发庆, 戴建军, 王兆荣 . 黑龙江省西部草地苏打盐渍土无机磷的转化及其对有效磷的影响. 土壤通报, 2002,33(1):39-43.
ZHANG H J, SHI F Q, DAI J J, WANG Z R . Inorganic phosphorus transformation in soda saline soil in Western Heilongjiang Province and its effect on available phosphorus. Chinese Journal of Soil Science, 2002,33(1):39-43. (in Chinese)
[45] 马利民, 张明, 滕衍行, 赵建夫 . 三峡库区消落区周期性干湿交替环境对土壤磷释放的影响. 环境科学, 2008,29(4):1035-1039.
MA L M, ZHANG M, TENG Y X, ZHAO J F . Characteristics of phosphorous release from soil in periodic alternately waterlogged and drained environments at WFZ of the Three Gorges Reservoir. Environmental Science, 2008,29(4):1035-1039. (in Chinese)
[46] 吕家珑, 张一平, 陶国树, 韩新宁 . 23年肥料定位试验0~100 cm土壤剖面中各形态磷之间的关系研究. 水土保持学报, 2003,17(3):48-50.
LV J L, ZHANG Y P, TAO G S, HAN X N . Relationship among phosphorus forms in 0~100cm soil profiles after 23 year application of fertilizers. Journal of Soil and Water Conservation, 2003,17(3):48-50. (in Chinese)
[47] 贾兴永, 李菊梅 . 壤磷有效性及其与土壤性质关系的研究. 中国土壤与肥料, 2011(6):76-82.
JIA X Y, LI J M . Study on soil phosphorus availability and its relation to the soil properties in 14 soils from different sites in China.Soil and Fertilizer Sciences in China, 2011(6):76-82. (in Chinese)
[48] 鲁艳红, 廖育林, 聂军, 周兴, 谢坚, 杨曾平 . 长期施肥红壤性水稻土磷素演变特征及对磷盈亏的响应.土壤学报, 2017(6):161-175.
LU Y H, LIAO Y L, NIE J, ZHOU X, XIE J, YANG Z P . Evolution of phosphorus in long-term fertilized red paddy soil and its response to phosphorus deficiency. Acta Pedologica Sinica, 2017(6):161-175. (in Chinese)
[49] 沈浦 . 长期施肥下典型农田土壤有效磷的演变特征及机制[D]. 北京: 中国农业科学院, 2014.
SHEN P . Evolution characteristics and mechanism of soil available phosphorus in typical farmland under long-term fertilization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. ( in Chinese)
[50] WU Q H, ZHANG S X, ZHU P, HUANG S M, WANG B R, ZHAO L P, XU M G . Characterizing differences in the phosphorus activation coefficient of three typical cropland soils and the influencing factors under long-term fertilization. PloS One, 2017,12(5):e0176437.
[51] 王永壮, 陈欣, 史奕 . 农田土壤中磷素有效性及影响因素. 应用生态学报, 2013,24(1):260-268.
WANG Y Z, CHEN X, SHI Y , Phosphorus availability in cropland soils of China and related affecting factors. Chinese Journal of Applied Ecology, 2013,24(1):260-268. (in Chinese)
[1] ZHANG HongCheng,HU YaJie,DAI QiGen,XING ZhiPeng,WEI HaiYan,SUN ChengMing,GAO Hui,HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[2] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[3] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[4] JI BingJie,LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun. Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594.
[5] SHANG Jie, GENG Zeng-chao, WANG Yue-ling, CHEN Xin-xiang, ZHAO Jun. Effect of Biochar Amendment on Soil Microbial Biomass Carbon and Nitrogen and Enzyme Activity in Tier Soils [J]. Scientia Agricultura Sinica, 2016, 49(6): 1142-1151.
[6] WANG Ren-jie, Qiang Jiu Ci-ren, XUE Yan-fei, ZHANG Shu-lan, YANG Xue-yun. Effect of Long-Term Organic-Manure Combined with Chemical Fertilizers on Aggregate Sizes Distribution and Its Organic and Inorganic Carbon on a Tier Soil [J]. Scientia Agricultura Sinica, 2015, 48(23): 4678-4689.
[7] LI Chun-Yue, WANG Yi, PhilipBrookes , DANG Ting-Hui, WANG Wan-Zhong. Effect of Soil pH on Soil Microbial Carbon Phosphorus Ratio [J]. Scientia Agricultura Sinica, 2013, 46(13): 2709-2716.
[8] XUE Liang, MEI Xu-Rong, WANG Ji-Min, WANG Fei-Jie, LU Jian-Zhong, WU Jing-Xue, NIE Feng-Ying, SHEN Yin-Shu, ZHANG Yu, XIA Xu. Reflections on Some Issues Regarding the Chinese Agricultural Science and Technology Development in the Post-Financial Crisis Era —Attaches Great Importance to the Original Innovation, and Competing for the Commanding Heights of the Frontier Field in Agricultural Science and Technology [J]. Scientia Agricultura Sinica, 2013, 46(13): 2808-2820.
[9] XIA Hai-Long, GUO Yan-Zhi, GUO Jing-Li. An Empirical Analysis on the Decomposition of Output Growth in Wheat Production of Agricultural Household: A Case Study in Henan Province [J]. Scientia Agricultura Sinica, 2012, 45(3): 569-574.
[10] WANG Pei, ZHOU Zhou, SU Li-Juan, YIN Xin-Ming. Transformed mBt886Cry3Aa into Chrysanthemum Mediated by Agrobacterium tumefaciens and Its Resistance to Phytoecia rufiventris Gautier [J]. Scientia Agricultura Sinica, 2011, 44(14): 2918-2925 .
[11] WANG Yuan,ZHOU Jian-bin,YANG Xue-yun
. Effects of Different Long-Term Fertilization on the Fractions of Organic Nitrogen and Nitrogen Mineralization in Soils#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1173-1180 .
[12] ,,. Impact of Land Fragmentation on Small Rice Farmers’ Technical Efficiency in Southeast China [J]. Scientia Agricultura Sinica, 2006, 39(12): 2467-2473 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!