Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3881-3891.doi: 10.3864/j.issn.0578-1752.2021.18.008

• PLANT PROTECTION • Previous Articles     Next Articles

Cloning, Expression and Functional Analysis of SeDuox from Spodoptera exigua

FU ChaoRan1(),LI YaZi1,WU Han1,ZHAO Dan1(),GUO Wei1,2(),GUO XiaoChang1   

  1. 1College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
    2Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2021-01-04 Accepted:2021-02-07 Online:2021-09-16 Published:2021-09-26
  • Contact: Dan ZHAO,Wei GUO E-mail:1354598764@qq.com;zhaodan@hebau.edu.cn;guowei05@caas.cn

Abstract:

【Objective】The production of reactive oxygen species (ROS) mediated by dual oxidase (Duox) is an important immune mechanism to regulate the dynamic balance of insect intestinal microorganisms. The objective of this study is to analyze the sequence characteristics and expression patterns of SeDuox from Spodoptera exigua, explore the effect of SeDuox silencing on the intestinal bacterial load of host by RNAi and analyze the immune response of SeDuox to Bacillus thuringiensis (Bt), so as to clarify the role of SeDuox in the intestinal immune regulation of insects, and provide new ideas and targets for the comprehensive control of S. exigua.【Method】The SeDuox was cloned by reverse transcription PCR (RT-PCR), and the sequence characteristics were analyzed by bioinformatics. The phylogenetic tree was constructed by ClustalX and MEGA_X software. The extramembrane fragment of SeDuox (91-1 767 bp) named SeDuox-OM was cloned by PCR. The Bacmid-SeDuox-OM was constructed using the Bac to Bac expression system and transfected into the Sf9 insect cells by liposome transfection to express SeDuox-OM. Real-time quantitative PCR (RT-qPCR) was used to analyze the expression level of SeDuox in different tissues (peritrophic membrane, hemolymph, fat body, Malpighian tubules, midgut, epidermis) and developmental stages (egg, 1st- to 5th-instar larvae, female pupa, male pupa). The 4th instar larvae were injected with dsSeDuox using RNAi technology for functional analysis, with dsGFP as control group. The efficiency of gene silence and intestinal bacterial load changes were detected at 48 h and 72 h after injection. In addition, Bt was fed to S. exigua larvae to detect relative expression of SeDuox and related immune genes by RT-qPCR.【Result】The length of open reading frame (ORF) of SeDuox is 4 497 bp, encoding 1 498 amino acids, and the deduced molecular weight of protein is 171.62 kD. SMART analysis showed that SeDuox domain is similar to that of Spodoptera litura, Spodoptera frugiperda, including peroxidase domain, nicotinamide adenine dinucleotide binding domain (NAD), N-terminal calcium binding domain (EFH), iron reductase binding domain (Ferric) and flavin adenie dinucleotide binding domain (FAD). TMHMM analysis showed that there are seven transmembrane regions. The transmembrane fragment named SeDuox-OM was successfully expressed about 80 kD recombinant protein in insect cells. The results of RT-qPCR showed that SeDuox was expressed in different tissues of the 4th instar larvae of S. exigua, and the expression level was higher in peritrophic membrane and midgut. It was expressed in each developmental stage, and highly expressed at the egg stage. Compared with dsGFP injection, dsSeDuox injection significantly reduced the expression of SeDuox, which was reduced by 62.08% and 74.94% at 48 h and 72 h, respectively, and the load of intestinal microbial in S. exigua larvae was significantly increased. Compared with the control group, the expression level of SeDuox was significantly increased at 48 h after being fed on Bt GS36. With the extension of infection time, the expression level of SeDuox was increased at first, then decreased and turned to stabilize finally.【Conclusion】SeDuox contains conserved domains, which is highly expressed in the midgut and perinogphic matrix. SeDuox plays an important role in the regulation of host intestinal immunity, it probably has synergistic effect with antimicrobial peptide gene against Bt infection.

Key words: dual oxidase (Duox), Spodoptera exigua, gene expression, RNAi, immune regulation, Bacillus thuringiensis (Bt)

Table 1

Primer information"

引物名称
Primer name
引物序列
Primer sequence
SeDuox-F GGTTCAACAATAGAGCTTACCC
SeDuox-R TGACTTGCTCGCATGCGGACAT
SeDuox-OM-F CGGATCCGCCAGAAGTGTACTACGAGAAGC
SeDuox-OM-R CGGAATTCGTTGCCCTCGAAGTAGTCATAG
SeActin-F CTACCTCACGCCATTCTC
SeActin-R AACCTGAGTCTTTGTGTACCTCC
SeqPCR-F CGTATACTAATGGACCAGGTTTTCG
SeqPCR-R AACCTGAGTCTTTGTGTACCTCC
dsSeDuox-T7-F TAATACGACTCACTATAGGCCGCCATACTACTGA
GAGAC
dsSeDuox-T7-R TAATACGACTCACTATAGGGATGACCCGTGGATT
CTAAC
dsSeDuox-F CCGCCATACTACTGAGAGAC
dsSeDuox-R GATGACCCGTGGATTCTAAC
dsGFP-T7-F TAATACGACTCACTATAGGCCACAAGTTCAGCGT
GT
dsGFP-T7-R TAATACGACTCACTATAGGAGTTCACCTTGATGC
CG
dsGFP-F CCACAAGTTCAGCGTGT
dsGFP-R AGTTCACCTTGATGCCG
16S-F TCCTACGGGAGGCAGCAGT
16S-R GGACTACCAGGGTATCTAATCCTGTT
Attacin-F GGACTGACCGTGATGAAGG
Attacin-R CGTTGTGGTTGTCGTTGTG
Definsin-F GACTTGGACGCGAAATTGA
Definsin-R TGGTAGACAATGCTCCTGG
PGRP-F CACTCGAACTTGCAATACGG
PGRP-R ACCAATCACGAACGAGGACC
Es-F CCCTTATTGTTAGTTGCCATCATT
Es-R ACTCGTTGTACTTCCCATTGT
Bc-F GCCCTGGTATGTATATTGGATCTAC
Bc-R GGTCATAATAACTTCTACAGCAGGA
下划线分别表示酶切位点和T7 RNA聚合酶启动子
Restriction enzyme cutting site and T7 RNA polymerase promoter are underlined

Fig. 1

Analysis of amino acid sequence of SeDuox The signal peptide sequence of SeDuox protein is marked with black solid line, the transmembrane region is labeled with rectangle, the peroxidase domain is labeled with green wavy line, the N-terminal calcium binding domain (EFH) is labeled with short dashed line, the iron reductase binding domain (Ferric) is labeled with double dashed line, the flavin adenie dinucleotide binding domain (FAD) is labeled with double solid line, the nicotinamide adenine dinucleotide binding domain (NAD) is labeled with long dashed line, the O-glycosylation site is marked with the red arrow, and the N-glycosylation site is marked with the black arrow"

Fig. 2

The prediction of transmembrane domain and the domain analysis of the SeDuox"

Fig. 3

Phylogenetic tree of Duox amino acid sequence of S. exigua and other insects"

Fig. 4

PCR amplification of SeDuox and SeDuox-OM"

Fig. 5

Expression of recombinant protein SeDuox-OM in Sf9 cells"

Fig. 6

mRNA expression of SeDuox in different tissues and developmental stages of S. exigua"

Fig. 7

Electrophoresis detection of dsSeDuox and dsGFP of S. exigua"

Fig. 8

Silencing efficiency of SeDuox induced by RNAi Data are representative of three independent experiments (mean±SE), *P<0.05, **P<0.01with a Student’s t-test. The same as Fig. 9"

Fig. 9

Effects of SeDuox gene silencing on intestinal flora"

Fig. 10

Effects of Bt GS36 on the expression of SeDuox and antimicrobial peptides of S. exigua"

[1] 司升云, 周利琳, 王少丽, 江幸福, 许再福, 慕卫, 王冬生, 王小平, 陈浩涛, 杨亦桦, 吉训聪. 甜菜夜蛾防控技术研究与示范——公益性行业(农业)科研专项“甜菜夜蛾防控技术研究与示范”研究进展. 应用昆虫学报, 2012, 49(6): 1432-1438.
SI S Y, ZHOU L L, WANG S L, JIANG X F, XU Z F, MU W, WANG D S, WANG X P, CHEN H T, YANG Y H, JI X C. Progress in research on prevention and control of beet armyworm, Spodoptera exigua in China. Chinese Journal of Applied Entomology, 2012, 49(6): 1432-1438. (in Chinese)
[2] MAYHEW P J. Why are there so many insect species? Perspectives from fossils and phylogenies. Biological Reviews of the Cambridge Philosophical Society, 2007, 82(3): 425-454.
doi: 10.1111/brv.2007.82.issue-3
[3] KIMBRELL D A, BEUTLER B. The evolution and genetics of innate immunity. Nature Reviews. Genetics, 2001, 2:256-267.
doi: 10.1038/35066006
[4] CHOE K M, LEE H, ANDERSON K V. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(4): 1122-1126.
[5] 宁媛媛, 尤民生, 王成树. 昆虫免疫识别与病原物免疫逃避机理研究进展. 昆虫学报, 2009, 52(5): 567-575.
NING Y Y, YOU M S, WANG C S. Advances in the mechanisms of insect immune recognition and pathogen immune escape. Acta Entomologica Sinica, 2009, 52(5): 567-575. (in Chinese)
[6] 张磊. 家蚕体内活性氧代谢及相关基因表达调控[D]. 杨凌: 西北农林科技大学, 2015.
ZHANG L. Reactive oxygen species metabolism and regulation of related genes in the silkworm, Bombyx mori[D]. Yangling: Northwest A&F University, 2015. (in Chinese)
[7] SHIN S C, KIM S H, YOU H, KIM B, KIM A C, LEE K A, YOON J H, RYU J H, LEE W J. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science, 2011, 334(6056): 670-674.
doi: 10.1126/science.1212782
[8] SHARON G, SEGAL D, RINGO J M, HEFETZ A, ZILBER- ROSENBERG I, ROSENBERG E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 20051-20056.
[9] HA E M, OH C T, BAE Y S, LEE W J. A direct role for dual oxidase in Drosophila gut immunity. Science, 2005, 310(5749): 847-850.
doi: 10.1126/science.1117311
[10] RYU J H, HA E M, LEE W J. Innate immunity and gut-microbe mutualism in Drosophila. Developmental and Comparative Immunology, 2010, 34(4): 369-376.
doi: 10.1016/j.dci.2009.11.010
[11] EL HASSANI R A, BENFARES N, CAILLOU B, TALBOT M, SABOURIN J C, BELOTTE V, MORAND S, GNIDEHOU S, AGNANDJI D, OHAYON R, et al. Dual oxidase2 is expressed all along the digestive tract. American Journal of Physiology. Gastrointestinal and Liver Physiology, 2005, 288(5): G933-G942.
doi: 10.1152/ajpgi.00198.2004
[12] HA E M, OH C T, RYU J H, BAE Y S, KANG S W, JANG I H, BREY P T, LEE W J. An antioxidant system required for host protection against gut infection in Drosophila. Developmental Cell, 2005, 8(1): 125-132.
doi: 10.1016/j.devcel.2004.11.007
[13] HA E M, LEE K A, PARK S H, KIM S H, NAM H J, LEE H Y, KANG D, LEE W J. Regulation of DUOX by the Gαq-phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity. Developmental Cell, 2009, 16(3): 386-397.
doi: 10.1016/j.devcel.2008.12.015
[14] GEISZT M, LETO T L. The Nox family of NAD(P)H oxidases: Host defense and beyond. Journal of Biological Chemistry, 2004, 279(50): 51715-51718.
doi: 10.1074/jbc.R400024200
[15] BAE Y S, CHOI M K, LEE W J. Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends in Immunology, 2010, 31(7): 278-287.
doi: 10.1016/j.it.2010.05.003
[16] YAO Z, WANG A, LI Y, CAI Z, LEMAITRE B, ZHANG H. The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis. The ISME Journal, 2016, 10(5): 1037-1050.
doi: 10.1038/ismej.2015.202
[17] 马振刚, 汪燕, 李春峰, 潘国庆, 周泽扬. 家蚕双重氧化酶BmDUOX的序列特征、表达模式及病原诱导表达. 昆虫学报, 2017, 60(11): 1255-1265.
MA Z G, WANG Y, LI C F, PAN G Q, ZHOU Z Y. Sequence characteristics, expression pattern and pathogen induced expression of BmDUOX from the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Acta Entomologica Sinica, 2017, 60(11): 1255-1265. (in Chinese)
[18] WEI G, LAI Y, WANG G, CHEN H, LI F, WANG S. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(23): 5994-5999.
[19] LIN J, YU X Q, WANG Q, TAO X, LI J, ZHANG S, XIA X, YOU M. Immune responses to Bacillus thuringiensis in the midgut of the diamondback moth. Plutella xylostella. Developmental and Comparative Immunology, 2020, 107:103661.
doi: 10.1016/j.dci.2020.103661
[20] LEE K A, KIM S H, KIM E K, HA E M, YOU H, KIM B, KIM M J, KWON Y, RYU J H, LEE W J. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell, 2013, 153(4): 797-811.
doi: 10.1016/j.cell.2013.04.009
[21] XIAO X, YANG L, PANG X, ZHANG R, ZHU Y, WANG P, GAO G, CHENG G. A Mesh-Duox pathway regulates homeostasis in the insect gut. Nature Microbiology, 2017, 2:17020.
doi: 10.1038/nmicrobiol.2017.20
[22] NIETHAMMER P, GRABHER C, LOOK A T, MITCHISON T J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 2009, 459(7249): 996-999.
doi: 10.1038/nature08119
[23] BRODERICK N A, RAFFA K F, HANDELSMAN J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(41): 15196-15199.
[24] RAYMOND B, JOHNSTON P R, WRIGHT D J, ELLIS R J, CRICKMORE N, BONSALL M B. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environmental Microbiology, 2009, 11(10): 2556-2563.
doi: 10.1111/emi.2009.11.issue-10
[25] OROZCO-FLORES A A, VALADEZ-LIRA J A, OPPERT B, GOMEZ-FLORES R, TAMEZ-GUERRA R, RODRÍGUEZ-PADILLA C, TAMEZ-GUERRA P. Regulation by gut bacteria of immune response, Bacillus thuringiensis susceptibility and hemolin expression in Plodia interpunctella. Journal of Insect Physiology, 2017, 98:275-283.
doi: 10.1016/j.jinsphys.2017.01.020
[26] PICKETT B R, GULZAR A, FERRÉ J, WRIGHT D J. Bacillus thuringiensis Vip3Aa toxin resistance in Heliothis virescens (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 2017, 83(9): e03506-16.
[27] MAHON R J, DOWNES S J, JAMES B. Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin. PLoS ONE, 2012, 7(6): e39192.
doi: 10.1371/journal.pone.0039192
[28] 宗召莉, 郭巍, 赵丹. 棉铃虫双重氧化酶HaDuox的序列特征和表达及病原诱导分析. 北京农学院学报, 2020, 35(4): 1-8.
ZONG Z L, GUO W, ZHAO D. Sequence characteristics, expression pattern and pathogen-induced analysis of HaDuox from Helicoverpa armigera. Journal of Beijing University of Agriculture, 2020, 35(4): 1-8. (in Chinese)
[1] CHEH ErHu, SHEN DanRong, DU WenWei, MENG HongJie, TANG PeiAn. Cuticle Protein Genes are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707.
[2] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[3] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[4] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[5] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[6] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[7] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[8] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[9] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[10] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[11] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[12] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[13] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[14] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[15] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!