Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (14): 2872-2884.doi: 10.3864/j.issn.0578-1752.2020.14.011

• PLANT PROTECTION • Previous Articles     Next Articles

Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton

SUN Qi(),HE Fang,SHAO ShengNan,LIU Zheng(),HUANG JiaFeng()   

  1. College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
  • Received:2020-01-10 Accepted:2020-02-21 Online:2020-07-16 Published:2020-08-10
  • Contact: Zheng LIU,JiaFeng HUANG E-mail:784594752@qq.com;lzh8200@126.com;jiafeng_huang@163.com

Abstract:

【Objective】The objective of this study is to determine the function of a novel gene (VdHP1) in Verticillium dahliae causing cotton verticillium wilt, and to provide a basis for analyzing the pathogenic mechanism of V. dahliae and the prevention and treatment of cotton verticillium wilt.【Method】The full length of VdHP1 was cloned and sequenced from V. dahliae wild-type strain V592 genomic DNA and cDNA. The relative expression of VdHP1 in V592 strain induced by cotton roots for different times and from different tissues of V592 was measured by reverse transcription quantitative real-time PCR (RT-qPCR). VdHP1 gene knockout vector, complementary vector and overexpressed vector were constructed to produce VdHP1 gene knockout strains, complementary strains and overexpressed strains by Agrobacterium tumefaciens-mediated transformation, respectively. Taking wild-type strain V592 as the control, colony growth on PDA and hypha morphology were observed, microsclerotia production, conidial production and pathogenicity to cotton of VdHP1 gene knockout mutants and complementary strains were measured. The relative expression of other genes involved in pathogenicity in VdHP1 knockout mutants and overexpressed strains was measured by RT-qPCR.【Result】The full length of VdHP1 was determined to be 862 bp and deduced protein contained 268 amino acids, which shared no significant sequence similarity to any known annotated gene in GenBank. The transcriptional expression of VdHP1 was significantly up-regulated when V592 strain induced by cotton roots for 6-12 h, indicating that VdHP1 plays a role at the early stage of the infection. The transcriptional expression of VdHP1 in conidia was significantly higher than that in mycelia and microsclerotia, indicating that VdHP1 is differentially expressed in different tissues of V. dahliae. Compared with wild-type strain V592, VdHP1 gene knockout mutants showed significantly decreased conidia and conidiophores, branching hyphae were spirally shaped, and the pathogenicity to cotton was significantly decreased. The relative expression of genes involved in penetration peg formation (VdCrz1, VdNoxB, VdPls1), delivery of secretory protein (VdSep5) and conidial production (Vdpf, VdSge1, VGB, VdPLP, VdCYC8, VdNLP1, VdNLP2) was significantly down-regulated in VdHP1 knockout mutants, but was up-regulated in the overexpressed strains; whereas, the relative expression of genes involved in melanin synthesis (VdCmr1, VdSho1, VdLAC, VdPKS1) was significantly up-regulated in VdHP1 knockout mutants, and was down-regulated in the overexpressed strains. 【Conclusion】VdHP1 is participated in the production of conidia and conidiophores, and is involved in pathogenicity in V. dahliae. VdHP1 positively regulates the transcriptional expression of genes involved in penetration peg formation, delivery of secretory protein and conidial production, and negatively regulates the transcriptional expression of genes involved in melanin synthesis.

Key words: cotton verticillium wilt, Verticillium dahliae, VdHP1, conidiation, pathogenicity, transcriptional expression

Table 1

Primers used for vector construction"

引物Primer 引物序列Primer sequence (5′-3′)
VdHP1 full-F ATGCGTTTCTTCGCCTTTTT
VdHP1 full-R TAGTCCATTCTGATCCATGT
VdHP1 up-F CTTGCTGAGGTCTTAATTAAACCTCCAAGGCATCGTTGC
VdHP1 up- R AGTGCTGAGGCATTAATTAACAAACGAGACGCGAATGGTG
VdHP1 down-F CCCGCTGAGGACTTAATTAA GGATCTTGCGTCTCGTAGGT
VdHP1 down- R CTCGCTGAGGGTTTAATTAA AGGCCATTCATTACGATGCC
HygU AACCACGGCCTCCAGAAGAA
HygL AGCCTGACCTATTGCATCTCCC
ECVdHP1-F CGGCCAGTGCCAAGCTT AAATATCGTGTGGTGCGAAA
ECVdHP1-R GCAGCTTCTGCGAATTC TTAGTCCATTCTGATCCATG
OEVdHP1-F AATGAATATAGGCCGTCGACATGCGTTTCTTCGCCTTTTT
OEVdHP1-R CTGCATCCGAATTCACTAGTTTAGTCCATTCTGATCCATGC
VdHP1-qPCR-F AGAGCCAGAGGGTTCGTGGA
VdHP1-qPCR-R ATGCGTTTCTTCGCCTTTTTACAGA

Table 2

The genes involved in pathogenicity and primers used for RT-qPCR"

基因Gene 引物Primer 引物序列Primer sequence (5′-3′)
VdPKS1 (VDAG_00190) VdPKS1-F ATGGTCGGCACCATGTCTTTTCTCC
VdPKS1-R GCCTGTTCGAGAAAGGTCTTGGCAA
VMK1 (VDAG_09461.1) VMK1-F CGCAGCAACGCCCCTAATC
VMK1-R GGCAGTGGTCATCGGAGAGGT
VdNLP1 (VDAG_04701.1) VdNLP1-F TCGGTCTTTGCCCTCGTC
VdNLP1-R GCCTGGTTTGCGTTGTTC
VdNLP2 (VDAG_01995.1) VdNLP2-F AAGCCGTACCTCAAGGTGTTCA
VdNLP2-R CCGACCCAAAGTCCGTGTTCT
VdCYC8 (VDAG_07052) VdCYC8-F GGATGCCCTCGATGCTTACT
VdCYC8-R CGTCGCTGATCTGGTTGTTG
VGB (JQ665433.1) VGB-F GCAATCTCCAAACGACGTGTCG
VGB-R GCGAACTGACGTGTGGTGTCGG
VdSge1 (VDAG_06298.1) VdSge1-F CATGGATCCTTCCGAGGCATCTAG
VdSge1-R GATGATGCGGGACGCTTCTGAAC
VdHog1 (VDAG_08982) VdHog1-F CTTCCACGTGTCTACTGGCAGG
VdHog1-R TGCTCCTTACCACGACCTTACCGA
VdNoxB (VDAG_09930) VdNoxB-F TGCGTGGCAAGCATAAGACATAC
VdNoxB-R GACAGCACGAGTGAAATCACCAAC
VdPls1 (VDAG_01769) VdPls1-F ATGGTCAACAAGATCCTCGCGA
VdPls1-R TCCGGCTGCTCAAACATGTTGT
VdSep5 (VDAG_04382) VdSep5-F AGCTCGACCTGGACGAGGA
VdSep5-R GAGGCTTCGTTATCAATCTCGTCTC
VdSho1 (VDAG_01836) VdSho1-F GAGATAACCCAAAGGGCCATGGG
VdSho1-R GAGAGCGTATCCAATCGCACC
VdCrz1 (VDAG_03208) VdCrz1-F ATGGATCAGCAAGCTCAACATCG
VdCrz1-R GATCCAGACCGAGACCGAGAC
VdLAC (VDAG_00189) VdLAC-F ATGCTCTTCTCGCGTTTCCTCA
VdLAC-R GCCACTGACCATTGATGCCAAT
VdCmr1 (VDAG_00195) VdCmr1-F GCGCCACAAGCTCTGCATCTTC
VdCmr1-R CAGAATCAAGGTGGCGCGATACAC
VdPLP (VDAG_00942) VdPLP-F GCTGACCAGTATCTGTCGGAGG
VdPLP-R ATGACGACTGGCTTCTCGGCCT
Vdpf (VDAG_08521.1) Vdpf-F ACCATTTTCAACAGTCGGGTACGCG
Vdpf-R GTGTGACGTACCAGCAACCGCTT
β-tubulin (DQ266153) β-tubulin-F TCACCAGCCGTGGCAAGGTTG
β-tubulin-R AGCAAAGGGCGGTCTGGACGTTG

Fig. 1

VdHP1 transcriptional expression in the wild-type strain V592 A:VdHP1 transcriptional expression in V592 strain induced by cotton roots;B:VdHP1 transcriptional expression in different tissues of V592 strain Different lowercases indicate that the differences are significant at 0.05 level;**:P<0.01。下同 The same as below"

Fig. 2

Knockout of VdHP1 in V. dahliae V592 strain。。。 A:Strategy diagram of VdHP1 knockout vector construction;B:Specific primers were used to detect VdHP1 by PCR;C:Confirmation of transcriptional expression of VdHP1 by RT-qPCR analysis"

Fig. 3

Colony morphology on PDA media and microsclerotia weight of VdHP1 gene knockout mutants A:Colony morphology of V592 strain, VdHP1 gene knockout mutants and complementary strains on PDA media;B:Fresh and dry weights of microsclerotia of V592 strain, VdHP1 gene knockout mutants and complementary strains"

Fig. 4

Conidial production of VdHP1 gene knockout mutants *:P<0.05。The same as below"

Fig. 5

Morphology of hyphae under microscope"

Fig. 6

Effect of VdHP1 gene knockout on pathogenicity in V. dahliae A:The symptoms of diseased cotton plants, the photograph were taken at 20βdays post inoculation;B:Disease index of cotton plants;C:Vascular discoloration of diseased cotton plants;D:Relative quantification of fungal biomass in roots, stems and leaves of cotton plants;E: The transcriptional expression of genes involved in penetration peg formation and delivery of secretory protein in VdHP1 gene knockout mutants;F:Cellophane penetration test of VdHP1 gene knockout mutants"

Fig. 7

Relative expression of genes involved in pathogenicity in VdHP1 gene knockout mutants A:Transcriptional expression of VdHP1 in V592 strain and overexpressed strains;B:Transcriptional expression of genes involved in melanin synthesis;C:Transcriptional expression of genes involved in penetration peg and delivery of secretory protein;D:Transcriptional expression of genes involved in conidial production"

[1] 朱荷琴, 李志芳, 冯自力, 冯鸿杰, 魏锋, 赵丽红, 师勇强, 刘世超, 周京龙. 我国棉花黄萎病研究十年回顾及展望. 棉花学报, 2017,29(增刊):37-50.
ZHU H Q, LI Z F, FENG Z L, FENG H J, WEI F, ZHAO L H, SHI Y Q, LIU S C, ZHOU J L. Overview of cotton verticillium wilt research over the past decade in China and its prospect in future. Cotton Science, 2017,29(Suppl.):37-50. (in Chinese)
[2] KAWCHUK L M, HACHEY J, LYNCH D R, KULCSAR F, VAN ROOIJEN G, WATERER D R, ROBERTSON A, KOKKO E, BYERS R, HOWARD R G, FISHER R, PRUFER D. Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(11):6511-6515.
pmid: 11331751
[3] GAO F, ZHANG B S, ZHAO J H, HUANG J F, JIA P S, WANG S, ZHANG J, ZHOU J M, GUO H S. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nature Plants, 2019,5(11):1167-1176.
doi: 10.1038/s41477-019-0527-4 pmid: 31636399
[4] QIN J, WANG K, SUN L, XING H, WANG S, LI L, CHEN S, GUO H S, ZHANG J. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. Elife, 2018,7: DOI: 10.7554/eLife.34902.
pmid: 29376824
[5] ZHOU B J, JIA P S, GAO F, GUO H S. Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein- encoding gene family from Verticillium dahliae. Molecular Plant- Microbe Interactions, 2012,25(7):964-975.
doi: 10.1094/MPMI-12-11-0319 pmid: 22414440
[6] SANTHANAM P, VAN ESSE H P, ALBERT I, FAINO L, NURNBERGER T, THOMMA B P. Evidence for functional diversification within a fungal NEP1-like protein family. Molecular Plant-Microbe Interactions, 2013,26(3):278-286.
doi: 10.1094/MPMI-09-12-0222-R pmid: 23051172
[7] GUI Y J, ZHANG W Q, ZHANG D D, ZHOU L, SHORT D P G, WANG J, MA X F, LI T G, KONG Z Q, WANG B L, WANG D, LI N Y, SUBBARAO K V, CHEN J Y, DAI X F. A Verticillium dahliae extracellular cutinase modulates plant immune responses. Molecular Plant-Microbe Interactions, 2018,31(2):260-273.
pmid: 29068240
[8] ZHAO Y L, ZHOU T T, GUO H S. Hyphopodium-specific VdNoxB/ VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS Pathogens, 2016,12(7):e1005793.
pmid: 27463643
[9] ZHOU T T, ZHAO Y L, GUO H S. Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae. PLoS Pathogens, 2017,13(3):e1006275.
doi: 10.1371/journal.ppat.1006275
[10] BUI T T, HARTING R, BRAUS-STROMEYER S A, TRAN V T, LEONARD M, HOFER A, ABELMANN A, BAKTI F, VALERIUS O, SCHLUTER R, STANLEY C E, AMBROSIO A, BRAUS G H. Verticillium dahliae transcription factors Som1 and Vta3 control microsclerotia formation and sequential steps of plant root penetration and colonisation to induce disease. New Phytologist, 2019,221(4):2138-2159.
pmid: 30290010
[11] LUO X, MAO H, WEI Y, CAI J, XIE C, SUI A, YANG X, DONG J. The fungal-specific transcription factor Vdpf influences conidia production, melanized microsclerotia formation and pathogenicity in Verticillium dahliae. Molecular Plant Pathology, 2016,17(9):1364-1381.
doi: 10.1111/mpp.12367 pmid: 26857810
[12] SANTHANAM P, THOMMA B P H J. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Molecular Plant-Microbe Interactions, 2013,26(2):249-256.
pmid: 22970788
[13] WANG Y, HU X, FANG Y, ANCHIETA A, GOLDMAN P H, HERNANDEZ G, KLOSTERMAN S J. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae. Microbiology, 2018,164(4):685-696.
pmid: 29485393
[14] WANG Y, DENG C, TIAN L, XIONG D, TIAN C, KLOSTERMAN S J. The transcription factor VdHapX controls iron homeostasis and is crucial for virulence in the vascular pathogen Verticillium dahliae. mSphere, 2018,3(5):e00400-18.
doi: 10.1128/mSphere.00400-18 pmid: 30185514
[15] LI J J, ZHOU L, YIN C M, ZHANG D D, KLOSTERMAN S J, WANG B L, SONG J, WANG D, HU X P, SUBBARAO K V, CHEN J Y, DAI X F. The Verticillium dahliae Sho1-MAPK pathway regulates melanin biosynthesis and is required for cotton infection. Environmental Microbiology, 2019,21(12):4852-4874.
doi: 10.1111/1462-2920.14846 pmid: 31667948
[16] RAUYAREE P, OSPINA-GIRALDO M D, KANG S, BHAT R G, SUBBARAO K V, GRANT S J, DOBINSON K F. Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Current Genetics, 2005,48(2):109-116.
pmid: 16003535
[17] TIAN L, XU J, ZHOU L, GUO W. VdMsb regulates virulence and microsclerotia production in the fungal plant pathogen Verticillium dahliae. Gene, 2014,550(2):238-244.
[18] TIAN L, YU J, WANG Y, TIAN C. The C2H2 transcription factor VdMsn2 controls hyphal growth, microsclerotia formation, and virulence of Verticillium dahliae. Fungal Biology, 2017,121(12):1001-1010.
doi: 10.1016/j.funbio.2017.08.005 pmid: 29122172
[19] TZIMA A, PAPLOMATAS E J, RAUYAREE P, KANG S. Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae. Fungal Genetics and Biology, 2010,47(5):406-415.
doi: 10.1016/j.fgb.2010.01.007 pmid: 20144723
[20] TZIMA A K, PAPLOMATAS E J, TSITSIGIANNIS D I, KANG S. The G protein β subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae. Fungal Genetics and Biology, 2012,49(4):271-283.
pmid: 22387367
[21] 宋雯, 王春巧, 俞燕, 高峰, 黄家风. 棉花黄萎病菌鸟氨酸脱羧酶抗酶蛋白基因VdOAZ的功能分析. 棉花学报, 2019,31(2):101-113.
SONG W, WANG C Q, YU Y, GAO F, HUANG J F. Functional analysis of an ornithine decarboxylase antizyme gene VdOAZ in Verticillium dahliae isolated from cotton. Cotton Science, 2019,31(2):101-113. (in Chinese)
[22] 王春巧, 陈志荣, 宋雯, 何芳, 黄家风. 一个编码富含丝氨酸蛋白的基因影响大丽轮枝菌的微菌核形成、产孢及致病力. 植物病理学报, 2019,49(5):650-659.
WANG C Q, CHEN Z R, SONG W, HE F, HUANG J F. A serine-rich protein identified in Verticillium dahliae affects microsclerotial formation, conidiation and pathogenicity. Acta Phytopathologica Sinica, 2019,49(5):650-659. (in Chinese)
[23] WANG S, XING H, HUA C, GUO H S, ZHANG J. An improved single-step cloning strategy simplifies the Agrobacterium tumefaciens- mediated transformation (ATMT)-based gene-disruption method for Verticillium dahliae. Phytopathology, 2016,106(6):645-652.
doi: 10.1094/PHYTO-10-15-0280-R pmid: 26780432
[24] GAO F, ZHOU B J, LI G Y, JIA P S, LI H, ZHAO Y L, ZHAO P, XIA G X, GUO H S. A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS ONE, 2010,5(12):e15319.
doi: 10.1371/journal.pone.0015319 pmid: 21151869
[25] ZHANG T, ZHANG B, HUA C, MENG P, WANG S, CHEN Z, DU Y, GAO F, HUANG J. VdPKS1 is required for melanin formation and virulence in a cotton wilt pathogen Verticillium dahliae. Science China Life Sciences, 2017,60(8):868-879.
doi: 10.1007/s11427-017-9075-3 pmid: 28755294
[26] KLOSTERMAN S J, SUBBARAO K V, KANG S, VERONESE P, GOLD S E, THOMMA B P, CHEN Z, HENRISSAT B, LEE Y H, PARK J, et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathogens, 2011,7(7):e1002137.
pmid: 21829347
[27] BOLTON M D, VAN ESSE H P, VOSSEN J H, DE JONGE R, STERGIOPOULOS I, STULEMEIJER I J, VAN DEN BERG G C, BORRAS-HIDALGO O, DEKKER H L, DE KOSTER C G, DE WIT P J, JOOSTEN M H, THOMMA B P. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Molecular Microbiology, 2008,69(1):119-136.
pmid: 18452583
[28] VAN ESSE H P, VAN’T KLOOSTER J W, BOLTON M D, YADETA K A, VAN BAARLEN P, BOEREN S, VERVOORT J, DE WIT P J, THOMMA B P. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. The Plant Cell, 2008,20(7):1948-1963.
pmid: 18660430
[29] VAN ESSE H P, BOLTON M D, STERGIOPOULOS I, DE WIT P J, THOMMA B P. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Molecular Plant-Microbe Interactions, 2007,20(9):1092-1101.
pmid: 17849712
[30] QI X, LI X, GUO H, GUO N, CHENG H. VdPLP, a patatin-like phospholipase in Verticillium dahliae, is involved in cell wall integrity and required for pathogenicity. Genes, 2018,9(3):162.
[31] WANG Y, TIAN L, XIONG D, KLOSTERMAN S J, XIAO S, TIAN C. The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae. Fungal Genetics and Biology, 2016,88:13-23.
pmid: 26812120
[32] LI Z F, LIU Y J, FENG Z L, FENG H J, KLOSTERMAN S J, ZHOU F F, ZHAO L H, SHI Y Q, ZHU H Q. VdCYC8, encoding CYC8 glucose repression mediator protein, is required for microsclerotia formation and full virulence in Verticillium dahliae. PLoS ONE, 2015,10(12):e0144020.
doi: 10.1371/journal.pone.0144020 pmid: 26633180
[33] 曹亚松, 王春生, 李海源, 徐小鸿, 商文静, 杨家荣, 胡小平. 大丽轮枝菌VdLac基因克隆与功能分析. 西北农业学报, 2018,27(2):275-282.
CAO Y S, WANG C S, LI H Y, XU X H, SHANG W J, YANG J R, HU X P. Cloning and functional analysis of VdLac in Verticillium dahliae. Acta Agriculturae Boreali-Occidentalis Sinica, 2018,27(2):275-282. (in Chinese)
[1] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[2] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[3] ZHANG XiaoXue,SUN TianGe,ZHANG YingChun,CHEN LiHua,ZHANG XinYu,LI YanJun,SUN Jie. Identification of Xylosidase Genes from Verticillium dahliae and Functional Analysis Based on HIGS Technology [J]. Scientia Agricultura Sinica, 2021, 54(15): 3219-3231.
[4] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[5] WeiSong ZHAO,QingGang GUO,SheZeng LI,YaJiao WANG,XiuYun LU,PeiPei WANG,ZhenHe SU,XiaoYun ZHANG,Ping MA. Control Efficacy of Broccoli Residues on Cotton Verticillium Wilt and Its Effect on Soil Bacterial Community at Different Growth Stages [J]. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517.
[6] DENG Sheng, ZHANG Xin, LIN Ling. Regulation of Cultural Characteristics and Virulence in Verticillium dahliae Hyphal Type Strain V07DF2 by the Catalytic Subunit VdPKAC1 of cAMP-Dependent Protein Kinase A [J]. Scientia Agricultura Sinica, 2014, 47(17): 3382-3391.
[7] ZHU He-Qin, FENG Zi-Li, LI Zhi-Fang, SHI Yong-Qiang, ZHAO Li-Hong, LI Cai-Hong, LIU Yi-Jie, WANG Ling-Fei. Identification of Isolates of Verticillium Species from Cotton [J]. Scientia Agricultura Sinica, 2013, 46(10): 2032-2040.
[8] HAO Jun-jie,MA Qi-xiang,LIU Huan-min,JIA Xin-he,DONG Zhong-dong,LIU Shu-mei,CUI Xiao-wei,ZHANG Zhi-xin
. Effects of Grafting Cotton on Verticillium Wilt Resistance,Yield and Fiber Quality of Cotton
[J]. Scientia Agricultura Sinica, 2010, 43(19): 3974-3980 .
[9] ,. Cloning and Mapping of cDNA from Cotton Induced by Toxin of Verticillium dahliae [J]. Scientia Agricultura Sinica, 2004, 37(10): 1474-1480 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!