Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (12): 2644-2652.doi: 10.3864/j.issn.0578-1752.2021.12.014

• HORTICULTURE • Previous Articles     Next Articles

Analysis of Key Genes About Flower Color Variation in Iris hollandica

LIN Bing1(),CHEN YiQuan2,ZHONG HuaiQin1,YE XiuXian1,FAN RongHui1()   

  1. 1Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou 350013
    2Institute of Agriculture and Engineering Technology, Fujian Academy of Agricultural Science, Fuzhou 350013
  • Received:2020-08-24 Accepted:2020-12-08 Online:2021-06-16 Published:2021-06-24
  • Contact: RongHui FAN E-mail:lb87572540@163.com;rhfan1012@163.com

Abstract:

【Objective】 Flower color variation is of great significance for enriching color of ornamental plants, but it is difficult to clarify variation mechanism due to uncertainty of flower color variation. Dutch iris (Iris hollandica) is an important bulbous ornamental plant. In this study, the blue-purple wild type ‘Zhanchi’ and white mutant strain 'Yufei' of Dutch iris were investigated to explore molecular mechanism and difference of pigment accumulation, so as to provide a basis for mechanism of flower color variation.【Method】In this study, using inner tepals of ‘Zhanchi’ and ‘Yufei’ from Dutch Iris as materials, UHPLC-QTOF-MS method was used to determine types and contents of anthocyanins and flavonols from two varieties of Dutch Iris, and the different expression genes related to anthocyanin synthesis were screened by transcriptome sequencing. Using different flowers in developmental stages of two varieties as materials, the different expression genes were verified by qRT-PCR.【Result】Results of metabolomics analysis revealed that delphinidin, cyanidin and its derivatives were accumulated in blue-purple flowers, which were almost no accumulation in white flowers, while the flavonol contents were increased in white ‘Yufei’. Results of RNA-seq analysis revealed that a total of 46 485 unigenes were obtained, and 27 073 unigenes of them were functionally annotated by public databases, accounting for 41.85% of the total. And 701 differentially expressed genes were obtained, 485 genes of which were up-regulated and 216 genes were down-regulated in white ‘Yufei’. Two dihydroflavonol-4-reductase genes and one flavonol synthase gene involving in anthocyanin biosynthetic pathway had different expression, named IhDFR1, IhDFR2 and IhFLS1. Down-regulated expression of IhDFR1 and IhDFR2 as well as up-regulated expression of IhFLS1 in white ‘Yufei’ led to significant decrease of anthocyanins and accumulation of flavonols, which caused metabolic flow from anthocyanin to flavonol. The qRT-PCR results of three genes showed that expression levels of IhDFR1 and IhDFR2 increased in blue-purple flowers during flower developmental stage, but low expression in white flowers, and expression level of IhFLS1 increased in white flowers during flower developmental stage, but low expression in blue-purple flowers, which was consistent with RNA-seq results.【Conclusion】Low expression of IhDFR1 and IhDFR2 as well as high expression of IhFLS1 in white ‘Yufei’ blocked accumulation of anthocyanins, and some of metabolic flow changed from anthocyanins to flavonols, resulting in the change of flower color from blue violet to white.

Key words: Iris hollandica, anthocyanin, flavonol, transcriptome analyses, dihydroflavonol-4-reductase gene, flavonol synthase gene

Table 1

Primer sequences of qRT-PCR"

基因 Gene 正向引物(5′-3′)Forward primer sequence 反向引物(5′-3′)Reverse primer sequence
IhDFR1 GAGGTGGTCGCAGGATGCACT CTCCGTCTGCTGATGTTCTTT
IhDFR2 AAGGCGGTCGCAGGATGCACC TGATGAAAGGACCGACGACT
IhFLS1 GTTGGAGTGATGGACGGGATG GGGACAGGGAGGGTAGTAGTTGA
Ihactin ACGGAAATTGTATGTGGGT CAGATGCGAAAGATGTGAG

Fig. 1

The parent Zhanchi and the mutant variety Yufei in Iris hollandica"

Fig. 2

KEGG analysis of DEGs involved in two varieties of Iris hollandica"

Table 2

Identification of anthocyanin and flavonol in Iris hollandica flower"

化合物种类
Species of compounds
Compound
化合物名称
含量 Content (μg·g-1)
展翅 Zhanchi 玉妃 Yufei
花青素苷Anthocyanidin 矢车菊素-3-(2G-木糖基芸香糖苷) Cyanidin -3-(2G-xylosylrutinoside) 25.22±1.66 1.34±0.05
飞燕草素-3-[6-(4-咖啡酰基木糖基)葡萄糖苷]-5-葡萄糖苷
Delphinidin-3-[6-(4-(caffeoylrhamnosyl) glucoside]-5-glucoside
61.26±1.33 1.36±0.08
矢车菊素-3-芸香糖苷 Cyanidin -3-rutinoside 144.42±6.46 16.90±0.63
6-羟基矢车菊素-3-葡萄糖苷 6-Hydroxycyanidin -3-glucoside 5.88±0.19 0.56±0.01
飞燕草素-3-(6-p-酰基葡萄糖苷)-5-(6-丙二酰基-4-鼠李糖基葡萄糖苷)
Delphinidin-3-(6-p-coumaroylglucoside)-5-[6-(malonyl)-4-(rhamnosyl) glucoside)]
209.85±3.12 1.71±0.05
飞燕草素-3-葡萄糖苷 Delphinidin-3-glucoside 4.37±0.24 0.08±0.01
飞燕草素-3-芸香糖苷 Delphinidin 3-rutinoside 30.64±0.38 16.98±0.48
矮牵牛素-3-(6-鼠李糖基-2-木糖基葡萄糖苷) Petunidin-3-[6-(rhamnosyl)-2-(xylosyl) glucoside] 61.86±0.59 8.29±0.20
总计 Total 543.5 47.22
黄酮醇
Flavonol
山奈酚-3-O-半乳糖苷 Kaempferol-3-O-galactoside 73.37±2.13 69.21±1.69
山奈酚-7-O-葡萄糖苷 Kaempferol-7-O-glucoside 62.36±2.61 56.64±0.85
槲皮素-3-O-葡萄糖苷 Quercetin-3-O-glucoside 21.45±0.32 12.81±0.24
鼠李素-3-O-葡萄糖苷 Rhamnetin-3-O-Glucoside 40.01±0.51 22.95±0.32
异鼠李素-3-O-葡萄糖苷 Isorhamnetin-3-O-Glucoside 37.02±1.20 24.14±0.67
苜蓿素-4'-甲基醚-3'-O-葡萄糖苷 Tricin-4'-methylether-3'-O-glucoside 39.31±0.45 23.55±0.33
杨梅素-3-O-葡萄糖苷 Myricetin-3-O-glucoside 3.29±0.08 145.22±3.74
杨梅素-3-O-半乳糖苷 Myricetin-3-O-galactoside 4.04±0.12 58.65±2.52
槲皮素-3-O-(6''-丙二酰)半乳糖苷 Quercetin-3-O-(6''-malonyl)galactoside 4.99±0.12 6.27±0.32
鼠李素-3-O-芸香糖苷 Rhamnetin-3-O-Rutinoside 4.36±0.21 15.05±1.23
3,5,7,4'-四羟基-8-甲氧基黄酮-3-O-葡萄糖苷-7-O-鼠李糖苷
Sexangularetin-3-O-glucoside-7-O-rhamnoside
4.48±0.09 14.39±0.41
羟基山奈酚-3,6-O-二葡萄糖苷 6-Hydroxykaempferol-3,6-O-Diglucoside 4.89±0.25 1.21±0.06
槲皮素-3-O-芸香糖苷-7-O-鼠李糖苷 Quercetin-3-O-rutinoside-7-O-rhamnoside 28.55±1.01 3.75±0.31
槲皮素-7-O-芸香糖苷-4'-O-葡萄糖苷 Quercetin-7-O-rutinoside-4'-O-glucoside 5.04±0.06 0.02±0.01
总计 Total 333.15 453.81

Table 3

RNAseq data statistics"

样品
Sample
Clean read 数量
Number of clean reads
GC含量
GC content (%)
%≥Q30
展翅 Zhanchi 45850456 50.29 87.76%
玉妃 Yufei 48903721 50.30 87.08%

Fig. 3

Phylogenetic analysis of DFR and FLS in Iris hollandica"

[1] MOL J, CORNISH E, MASON J, KOES R. Novel coloured flowers. Current Opinion in Biotechnology, 1999,10(2):198-201.
doi: 10.1016/S0958-1669(99)80035-4
[2] 林兵, 钟淮钦, 黄敏玲, 樊荣辉, 罗远华. 60Co-γ射线辐射对荷兰鸢尾花色诱变效应的研究. 核农学报, 2019,33(4):633-639.
LIN B, ZHONG H Q, HUANG M L, FAN R H, LUO Y H. The study of 60Co-γ ray irradiation effects on flower color of Iris hollandica. Journal of Nuclear Agricultural Sciences, 2019,33(4):633-639. (in Chinese)
[3] ZHOU C B, MEI X, RORHENBERG D O N, YANG Z B, ZHANG W T, WAN S H, YANG H J, ZHANG L Y. Metabolome and transcriptome analysis reveals putative genes involved in anthocyanin accumulation and coloration in white and pink tea (Camellia sinensis) flower. Molecules, 2020,25:190.
doi: 10.3390/molecules25010190
[4] LOU Q, LIU Y L, QI Y Y, JIAO S Z, TIAN F F, JIANG L, WANG Y J. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. Journal of Experimental Botany, 2014,65(12):3157-3164.
doi: 10.1093/jxb/eru168
[5] WU Q, WU J, Li S S, ZHANG H J, FENG C Y, YIN D D, WU R Y, WANG L S. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily. BMC Genomics, 2016,17:897.
doi: 10.1186/s12864-016-3226-9
[6] TANAKA Y, BRUGLIERA F, KALC G, SENIOR M, DYSON B, NAKAMURA N, KATSUMOTO Y, CHANDLER S. Flower color modification by engineering of the flavonoid biosynthetic pathway: Practical perspectives. Bioscience Biotechnology and Biochemistry, 2010,74(9):1760-1769.
doi: 10.1271/bbb.100358
[7] TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 2008,54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x
[8] NAKATSUKA T, MISHIBA K, KUBOTA A, ABE Y, YAMAMURA S, NAKAMURA N, TANAKA Y, NISHIHARA M. Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. Journal of Plant Physiology, 2010,167(3):231-237.
doi: 10.1016/j.jplph.2009.08.007
[9] WU X X, GONG Q H, NI X P, ZHOU Y, GAO Z H. UFGT: the key enzyme associated with the petals variegation in Japanese Apricot. Frontiers in Plant Science, 2017,8:108.
[10] MIZUNO T, UEHARA A, MIZUTA D, YABUYA T, IWASHINA T. Contribution of anthocyanin-flavone copigmentation to grayed violet flower color of Dutch iris cultivar ‘Tiger’s Eye’ under the presence of carotenoids. Scientia Horticulturae, 2015,186(21):201-206.
doi: 10.1016/j.scienta.2015.01.037
[11] YOSHIHARA N, IMAYAMA T, FUKUCHI-MIZUTANI M, OKUHARA H, TANAKA Y, INO I, YABUYO T. cDNA cloning and characterization of UDP-glucose: Anthocyanidin 3-O-glucosyltransferase in Iris hollandica. Plant Science, 2005,169(3):496-501.
doi: 10.1016/j.plantsci.2005.04.007
[12] IMAYAMA T, YOSHIHARA N, FUKUCHIMIZUTANI M, TANAKA Y, INO I, YABUYA T. Isolation and characterization of a cDNA clone of UDP-glucose: anthocyanin 5-O-glucosyltransferase in Iris hollandica. Plant Science, 2004,167(6):1243-1248.
doi: 10.1016/j.plantsci.2004.06.020
[13] YOSHIHARA N, FUKUCHI-MIZUTANI M, OKUHARA H, TANAKA Y, YABUYA T. Molecular cloning and characterization of O-methyltransferases from the flower buds of Iris hollandica. Journal of Plant Physiology, 2008,165(4):415-422.
doi: 10.1016/j.jplph.2006.12.002
[14] TRAPNELLl C, WILLIAMS B A, PERTEA G, MORTAZAVI A, KWAN G, BAREN M J, SALZBERG S L, WOLD B J, PACHTER L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010,28:511-515.
doi: 10.1038/nbt.1621
[15] ANDERS S, HUBER W. Differential expression analysis for sequence count data. Genome Biology, 2010,11:R106.
doi: 10.1186/gb-2010-11-10-r106
[16] 樊荣辉, 黄敏玲. 花青素苷调控研究进展. 中国细胞生物学学报, 2013,35(5):741-746.
FAN R H, HUANG M L. Progress in regulation of anthocyanins. Chinese Journal of Cell Biology, 2013,35(5):741-746. (in Chinese)
[17] ZHENG C, MA J Q, CHEN J D, MA C L, CHEN W, YAO M Z, CHEN L. Gene coexpression networks reveal key drivers of flavonoid variation in eleven tea cultivars (Camellia sinensis). Journal of Agricultural and Food Chemistry, 2019,67(35):9967-9978.
doi: 10.1021/acs.jafc.9b04422
[18] CASTELLARIN S D, GASPERO G D. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biology, 2007,7:46.
doi: 10.1186/1471-2229-7-46
[19] WANG K L, BOLITHO K, GRAFTON K, KORTSTEE A, KARUNAIRETNAM S, MCGHIE T K, ESPLEY R V, HELLENS R P, ALLAN A C. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 2010,10:50.
doi: 10.1186/1471-2229-10-50
[20] FENG C, CHEN M, XU C J, BAI L, YIN X R, LI X, ALLAN A C, FERGUSON I B, CHEN K S. Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics, 2012,13:19.
doi: 10.1186/1471-2164-13-19
[21] YUAN Y, MA X H, SHI Y M, TANG D Q. Isolation and expression analysis of six putative structural genes involved in anthocyanin biosynthesis in Tulipa fosteriana. Scientia Horticulturae, 2013,153(4):93-102.
doi: 10.1016/j.scienta.2013.02.008
[22] HUANG Y, GOU J Q, JIA Z C, YANG L, SUN Y M, XIAO X Y, SONG F, LUO K M. Molecular cloning and characterization of two genes encoding dihydroflavonol-4-reductase from Populus trichocarpa. PLoS ONE, 2012,7(2):e30364.
doi: 10.1371/journal.pone.0030364
[23] LUO P, NING G G, WANG Z, SHEN Y X, JIN H N, LI P H, HUANG S S, ZHAO J, BAO M Z. Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white vs. red color flower formation in plants. Frontiers in Plant Science, 2015,6:1257
[24] HAN Y P, VIMOLMANGKANG S, SORIA-GUERRA R E, KORBAN S S. Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin. Journal of Experimental Botany, 2012,63(7):2437-2447.
doi: 10.1093/jxb/err415
[25] SAITO R, FUKUTA N, OHMIYA A, ITOH Y, OZEKI Y, KUCHITSU K, NAKAYAMA M. Regulation of anthocyanin biosynthesis involved in the formation of marginal picotee petals in Petunia. Plant Science, 2006,170(4):828-834.
doi: 10.1016/j.plantsci.2005.12.003
[26] SPITZER B, ZVI M M B, OVADIS M, MARHEVKA E, BAEKAI O, EDELBAUM O, MARTON I, MASCI T, ALON M, MORIN S, ROGACHEV I, AHARONI A, VAINSTEIN A. Reverse genetics of floral scent: Application of tobacco rattle virus-based gene silencing in Petunia. Plant Physiology, 2007,145(4):1241-1250.
doi: 10.1104/pp.107.105916
[27] HEMLEBEN V, DRESSEL A, EPPING B, LUKACIN R, MARTENS S, AUSTIN M. Characterization and structural features of a chalcone synthase mutation in a white-flowering line of Matthiola incana R. Br. (Brassicaceae). Plant Molecular Biology, 2004,55(3):455-465.
doi: 10.1007/s11103-004-1125-y
[28] ZHANG Y Z, CHENG Y W, YA H Y, XU S Z, HAN J M. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes. Frontiers in Plant Science, 2015,6:964.
[29] CLARK S T, VERWOERD W S. A systems approach to identifying correlated gene targets for the loss of colour pigmentation in plants. BMC Bioinformatics, 2011,12:343.
doi: 10.1186/1471-2105-12-343
[30] MA H W, ZHAO X M, YUAN Y J, ZENG A P. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph. Bioinformatics, 2004,20(12):1870-1876.
doi: 10.1093/bioinformatics/bth167
[31] BOGS J, JAFFE F W, TAKOS A M, WALKER A R, ROBINSON S P. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiology, 2007,143:1347-1361.
doi: 10.1104/pp.106.093203
[32] HAN Y P, VIMOLMANGKANG S, SORIA-GUERRA R E, KORBAN S S. Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin. Journal of Experimental Botany, 2012,63(7):2437-2447.
doi: 10.1093/jxb/err415
[1] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[2] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[3] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[4] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[5] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[6] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[7] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[8] XU Ming,LIN ShiQiang,NI DongXin,YI HenJie,LIU JiangHong,YANG ZhiJian,ZHENG JinGui. Cloning and Function Characterization of Chalcone Synthase Gene AgCHS1 in Ampelopsis grossedentata [J]. Scientia Agricultura Sinica, 2020, 53(24): 5091-5103.
[9] WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917.
[10] SONG Yang,LIU HongDi,WANG HaiBo,ZHANG HongJun,LIU FengZhi. Molecular Cloning and Functional Characterization of VcNAC072 Reveals Its Involvement in Anthocyanin Accumulation in Blueberry [J]. Scientia Agricultura Sinica, 2019, 52(3): 503-511.
[11] ShaoKang DI,QingGang YIN,YaYing XIA,YongZhen PANG. Functional Characterization of a UDP: Flavonoid Glycosyltransferase Gene UGT73C19 in Glycine max [J]. Scientia Agricultura Sinica, 2019, 52(20): 3507-3519.
[12] XU YunMei, LI YuMei, JIA YuXin, ZHANG ChunZhi, LI CanHui, HUANG SanWen, ZHU GuangTao. Fine Mapping and Candidate Genes Analysis for Regulatory Gene of Anthocyanin Synthesis in Red-Colored Tuber Flesh [J]. Scientia Agricultura Sinica, 2019, 52(15): 2678-2685.
[13] LI XinLei,YIN HengFu,FAN ZhengQi,LI JiYuan. The Relationship Between Anthocyanins and Flower Colors of Bud Mutation in Camellia japonica [J]. Scientia Agricultura Sinica, 2019, 52(11): 1961-1969.
[14] AN JianPing, SONG LaiQing, ZHAO LingLing, YOU ChunXiang, WANG XiaoFei, HAO YuJin. Cloning and Functional Characterization of an Auxin Response Factor Gene MdARF5 in Apple [J]. Scientia Agricultura Sinica, 2018, 51(7): 1345-1352.
[15] XU Xi, REN MingJian, LI LuHua, YANG XiCui, XU RuHong. Differential Expression of Grain Pigment Related Genes of Guizimai No.1 [J]. Scientia Agricultura Sinica, 2018, 51(2): 203-216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!