Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (12): 2653-2665.doi: 10.3864/j.issn.0578-1752.2021.12.015

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Extraction Technology, Preliminary Structure and α-glucosidase Inhibition of Polysaccharide with Alkaline-Extracted from Sugarcane Peel

WANG XuanXuan(),LIU ChunYu,XIE BeiYu,ZHANG ShuShu,WANG DanYang,ZHU ZhenYuan()   

  1. College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457
  • Received:2020-09-20 Accepted:2021-02-28 Online:2021-06-16 Published:2021-06-24
  • Contact: ZhenYuan ZHU E-mail:17320069608@163.com;zhyuanzhu@tust.edu.cn

Abstract:

【Objective】 The objectives of this research were to establish the optimized technology, further explore the structural characteristics and evaluate α-glucosidase inhibitory effect of polysaccharide with alkaline-extracted from sugarcane peel.【Method】Single factor experiment and response surface methodology (RSM) were used to optimize the extraction process of alkali-extracted sugarcane peel polysaccharide (SPAP). The method of phenol sulfuric acid was used to determine the content of polysaccharide. After deproteinization by Sevag method and depigmentation by AB-8, the structure of SPAP was characterized. The molecular weight distribution, monosaccharide compositions and characteristic functional groups of SPAP were detected by HPLC, GC-MS and FT-IR, respectively. Finally, the method of 4-nitrophenol-2-β-D-glucopyranoside (PNPG) was used to determine the α-glucosidase inhibitory effect of polysaccharide extract. 【Result】 The optimum extraction conditions were as follows: extraction temperature 37℃, sodium hydroxide concentration 5%, ratio of material to solvent 1﹕46 (g·mL-1), and extraction times 4 times. Under these conditions, the yield of SPAP reached 10.84%. After removing protein and pigment, the content of SPAP reached 86.54%. Furthermore, SPAP was mainly composed of arabinose, xylose, glucose and galactose, with molecular weight of 3.03×103 kD. It might be a pyran hetero-polysaccharide with α or β configuration. In addition, SPAP showed good inhibitory effect on α-glucosidase. The inhibition rate of SPAP reached 78.31%.【Conclusion】 The process optimization of alkali-extracted of polysaccharides from sugarcane peel could effectively utilize raw materials and improve the yield and efficiency. The structural characteristics of SPAP were preliminarily described by HPLC, FT-IR and GC-MS. At the same time, SPAP showed good inhibitory effect on α-glucosidase and potential hypoglycemic activity. These results provided a theoretical basis for further study on the structure-activity relationship of SPAP.

Key words: polysaccharide with alkaline-extracted from sugarcane peel, response surface analysis, structural characterization, α-glucosidase inhibition

Table 1

Factors and levels of response surface experiment"

因素
Factor
水平Level
-1 0 1
提取温度
Extraction temperature A (℃)
30 35 40
氢氧化钠浓度
NaOH concentration B (%)
5 6 7
料液比
Ratio of material to solvent C (g·mL-1)
1﹕45 1﹕50 1﹕55
提取次数 D (次) 3 4 5

Table 2

Experimental design of polysaccharide with alkaline-extracted from sugarcane peel on α-Glucosidase inhibition"

样品
Sample (μL)
阿卡波糖
Acarbose (μL)
α-葡萄糖苷酶
α-glucosidase (μL)
PBS (μL) PNPG (μL)
样品组 Sample group 40 40 20
样品背景组 Sample background group 40 40 20
阳性对照组 Positive control group 40 40 20
阳性背景组 Positive background group 40 40 20
空白组 Blank group 40 40 40

Fig. 1

Effect of temperature on extraction yield of polysaccharide with alkaline-extracted from sugarcane peel Different treatments marked with different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 2

Effect of sodium hydroxide concentration on extraction yield of polysaccharide with alkaline-extracted from Sugarcane peel"

Fig. 3

Effect of material liquid ratio on extraction yield of polysaccharide with alkaline-extracted from sugarcane peel"

Fig. 4

Effect of time on extraction yield of polysaccharide with alkaline-extracted from Sugarcane peel"

Fig. 5

Effect of times on extraction yield of polysaccharide with alkaline-extracted from sugarcane peel"

Table 3

Experimental design and results for response surface analysis"

RUN A B C D Y (%)
1 0 0 0 0 10.86
2 0 0 0 0 10.86
3 0 1 1 0 10.72
4 -1 1 0 0 10.43
5 0 0 0 0 10.95
6 -1 -1 0 0 10.62
7 0 0 0 0 10.85
8 -1 0 1 0 10.69
9 0 0 1 1 10.54
10 0 1 -1 0 10.29
11 0 -1 1 0 10.51
12 0 0 -1 -1 10.34
13 0 -1 0 -1 10.09
14 -1 0 -1 0 10.58
15 -1 0 0 1 10.23
16 1 0 0 1 10.75
17 0 1 0 1 10.30
18 0 1 0 -1 10.59
19 -1 0 0 -1 10.34
20 0 1 0 1 10.99
21 1 1 0 0 10.57
22 0 -1 -1 0 10.87
23 1 0 0 -1 10.53
24 0 0 -1 1 10.41
25 1 0 -1 0 10.71
26 0 0 0 0 10.81
27 1 0 1 0 10.83
28 0 0 1 -1 10.42
29 1 -1 0 0 10.61

Table 4

Analysis of variance table"

方差来源
Source of variance
平方和
Sum of square
自由度
Degree of freedom
均方
Mean square
F
F value
Pr>F 显著性
Significance
模型 Model 1.39 14 0.099 9.50 < 0.0001 **
A 0.10 1 0.10 9.85 0.0073 *
B 0.052 1 0.052 4.99 0.0423 *
C 0.022 1 0.022 2.08 0.1713
D 0.069 1 0.069 6.62 0.0221 *
AB 5.625E-003 1 5.625E-003 0.54 0.4747
AC 2.500E-005 1 2.500E-005 2.398E-003 0.9616
AD 0.027 1 0.027 2.61 0.1284
BC 0.16 1 0.16 14.97 0.0017 *
BD 0.35 1 0.35 33.96 < 0.0001 **
CD 6.250E-004 1 6.250E-004 0.060 0.8101
A2 0.081 1 0.081 7.77 0.0145 *
B2 0.14 1 0.14 13.86 0.0023 *
C2 0.077 1 0.077 7.43 0.0164 *
D2 0.51 1 0.51 49.39 < 0.0001 **
残差 Residual 0.15 14 0.010
失拟项 Lack of fit 0.14 10 0.014 5.15 0.0641 不显著 No significance
纯误差 Pure error 0.011 4 2.630E-003
总和 Sum 1.53 28

Fig. 6

Response surface graph of interaction of various factors on extraction rate of polysaccharides from sugarcane peel"

Fig. 7

High performance liquid chromatogram of polysaccharide with alkaline-extracted from sugarcane peel"

Fig. 8

UV spectra of polysaccharide with alkaline-extracted from sugarcane peel"

Fig. 9

GC-MS chromatogram of standard samples (A) and polysaccharide with alkaline-extracted from sugarcane peel (B)"

Fig. 10

FT-IR spectrum of polysaccharide with alkaline- extracted from sugarcane peel"

Fig. 11

Inhibition of α-glucosidase by polysaccharide with alkaline-extracted from sugarcane peel and acarbose"

[1] TANG P L, HAO E W, DU Z C, DENG J G, HOU X T, QIN J F. Polysaccharide extraction from sugarcane leaves: Combined effects of different cellulolytic pretreatment and extraction methods. Cellulose, 2019,26(18):9423-9438.
doi: 10.1007/s10570-019-02740-2
[2] 韦相贵, 何永玲, 侯昭武, 樊东红, 刘渊, 薛斌, 颜世周, 张千锋, 宾凯. 甘蔗皮的保健功能及其产品开发研究. 时珍国医国药, 2013,24(4):933-935.
WEI X G, HE Y L, HOU Z W, FAN D H, LIU Y, XUE B, YAN S Z, ZHANG Q F, BIN K. Study on the health function of sugarcane rind and its product development. Lishizhen Medicine and Materia Medica Research, 2013,24(4):933-935. (in Chinese)
[3] 周惠芳. 甘蔗皮黄酮的提取分离纯化、结构鉴定及生物活性研究[D]. 广州: 华南理工大学, 2014.
ZHOU H F. Study on extraction, purification, identification and biological activity of the flavonoids from sugarcane skin[D]. Guangzhou: South China University of Technology, 2014. (in Chinese)
[4] 陈纯. 甘蔗皮多酚的提取、分离鉴定及抗氧化活性研究[D]. 杭州: 浙江大学, 2013.
CHEN C. Studies on extraction, isolation, identification and antioxidant activity of sugarcane polyphenol[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[5] 闫怀锋, 赵振刚. 甘蔗皮花色苷的提取及辅色剂对花色苷的辅色作用研究. 现代食品科技, 2017,33(9):176-182, 108.
YAN H F, ZHAO Z G. Extraction of anthocyanins from sugarcane rind and co-pigmentation effect of co-pigments on anthyocynins. Modern Food Science and Technology, 2017,33(9):176-182, 108. (in Chinese)
[6] 田洛, 宣依昉, 范荣军, 姜云垒, 邢茗, 刘立东, 陈霞. 醇碱提取法提取黄芪多糖. 吉林大学学报(理学版), 2006,44(4):652-657.
TIAN L, XUAN Y F, FAN R J, JIANG Y J, XING M, LIU L D, CHEN X. Ethanol-alkali extraction method of Astragalus polysaccharides. Journal of Jilin University (Science Edition), 2006,44(4):652-657. (in Chinese)
[7] 焦中高, 张春岭, 刘杰超, 陈大磊, 王思新. 碱提红枣多糖与水提红枣多糖生物活性的比较研究. 食品安全质量检测学报, 2015,6(10):4181-4187.
JIAO Z G, ZHANG C L, LIU J C, CHEN D L, WANG S X. Comparison of bioactivities of polysaccharides from Zizyphus jujuba fruit extracted with hot water and alkaline solution. Journal of Food Safety and Quality, 2015,6(10):4181-4187. (in Chinese)
[8] 胡蕾, 叶鹏, 彭子木, 张民, 刘锐, 吴涛, 隋文杰. 蒸汽爆破麦胚多糖提取工艺优化及其理化性质研究. 食品工业科技, 2021,42(1):149-155.
HU L, YE P, PENG Z M, ZHANG M, LIU R, WU T, SUI W J. Extraction process optimization and physicochemical properties of polysaccharide from wheat germ modified by steam explosion. Science and Technology of Food Industry, 2021,42(1):149-155. (in Chinese)
[9] 张斌, 张璐, 李沙沙, 江晓, 朱红霞, 黄志刚. 甘蔗渣多糖脱蛋白方法研究. 辽宁中医药大学学报, 2012,14(10):101-102.
ZHANG B, ZHANG L, LI S S, JIANG X, ZHU H X, HUANG Z G. Study on the deproteinization method of polysaccharide in sugarcane residue. Journal of Liaoning University of Traditional Chinese Medicine, 2012,14(10):101-102. (in Chinese)
[10] DUBOIS M, GILLES K A, HAMILTON J K, REBERS P A, SMITH F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956,28(3):350-356.
doi: 10.1021/ac60111a017
[11] 裴若楠, 翟红蕾, 戚勃, 郝淑贤, 黄卉, 杨贤庆. 石花菜多糖的分离纯化及单糖组成分析. 食品与发酵工业, 2020,46(7):57-62.
PEI R N, ZHAI H L, QI B, HAO S X, HUANG H, YANG X Q. Isolation, purification and monosaccharide composition analysis of polysaccharide from Gelidium amansii. Food and Fermentation Industries, 2020,46(7):57-62. (in Chinese)
[12] ZHAO P, LI X, WANG Y, YAN L Y, GUO L P, HUANG L Q, GAO W Y. Characterisation and saccharide mapping of polysaccharides from four common Polygonatum spp. Carbohydrate Polymers, 2020,233:115836.
doi: 10.1016/j.carbpol.2020.115836
[13] GU J Y, ZHANG H H, WEN C T, ZHANG J X, HE Y Q, MA H L, DUAN Y Q. Purification, characterization, antioxidant and immunological activity of polysaccharide from Sagittaria sagittifolia L. Food Research International, 2020,136:109345.
doi: 10.1016/j.foodres.2020.109345
[14] ZHANG X J, KONG X R, HAO Y L, ZHANG X L, ZHU Z Y. Chemical structure and inhibition on α-glucosidase of polysaccharide with alkaline-extracted from Glycyrrhiza inflata residue. International Journal of Biological Macromolecules, 2020,147:1125-1135.
doi: 10.1016/j.ijbiomac.2019.10.081
[15] LIU W, HU C, LIU Y M, LV X, YAO W B, GAO X D. Preparation, characterization, and α-glycosidase inhibition activity of a carboxymethylated polysaccharide from the residue of Sarcandra glabra (Thunb.) Nakai. International Journal of Biological Macromolecules, 2017,99:454-464.
doi: 10.1016/j.ijbiomac.2017.02.065
[16] 戴宏杰, 孙玉林, 杨梅语, 辛欣欣, 冯梓欣, 文菁, 陈道海. 拟目乌贼生殖腺碱提多糖的抗氧化及吸湿保湿特性. 食品科学, 2016,37(2):31-38.
DAI H J, SUN Y L, YANG M Y, XIN X X, FENG Z X, WEN J, CHEN D H. Antioxidant activity, moisture absorption and retention capacities of alkali-Soluble polysaccharides extracted from gonad of Sepia lycidas. Food Science, 2016,37(2):31-38. (in Chinese)
[17] 商云帅, 王东, 杨玉民. Box-Behnken响应面法优化人参花多糖提取工艺. 北方园艺, 2020(13):105-111.
SHANG Y S, WANG D, YANG Y M. Extraction technology of response surface optimization of polysaccharide from Ginseng Flower. Northern Horticulture, 2020(13):105-111. (in Chinese)
[18] 李惠, 熊忠飞, 李喜宏. 响应面法优化芦笋多糖提取工艺及抗氧化性研究. 中国调味品, 2020,45(5):1-6, 12.
LI H, XIONG Z F, LI X H. Research on optimization of extraction process and antioxidant activity of asparagus polysaccharides by response surface methodology. China Condiment, 2020,45(5):1-6, 12. (in Chinese)
[19] 李珊, 梁俭, 冯彬, 刘晓凤, 冼丽清. 响应面法优化超声波辅助提取山竹果皮多糖的工艺及其体外抗氧活性研究. 食品研究与开发, 2020,41(10):103-110.
LI S, LIANG J, FENG B, LIU X F, XIAN L Q. Response surface methodology promoted ultrasound-assisted extraction of polysaccharides from Mangosteen peels and evaluation of antioxidant activity in vitro. Food Research and Development, 2020,41(10):103-110. (in Chinese)
[20] 李珊, 梁俭, 冯彬, 冼丽清. 番石榴多糖的提取工艺优化、纯化及其抗氧化活性测试. 粮油与油脂, 2020,33(7):68-73.
LI S, LIANG J, FENG B, XIAN L Q. Extraction process optimization, purification and antioxidant activity test of guava polysaccharides. Cereals & Oils, 2020,33(7):68-73. (in Chinese)
[21] 丛朋. 碱溶性金针菇多糖的分离纯化与结构分析[D]. 长春: 东北师范大学, 2017.
CONG P. Isolation, purification and structural analysis of alkali- souble polysaccharides from Flammulina velutipes[D]. Changchun: Northeast Normal University, 2017. (in Chinese)
[22] 张斌. 甘蔗滓多糖的提取分离、纯化、结构鉴定及降脂护肝活性研究[D]. 广州: 南方医科大学, 2013.
ZHANG B. Structure characterization and lipid activity studies of polysaccharide isolated from Sugarcane residue[D]. Guangzhou: Southern Medical University, 2013. (in Chinese)
[23] WU L R, SUN H Q, HAO Y L, ZHENG X M, SONG Q Y, DAI S H, ZHU Z Y. Chemical structure and inhibition on α-glucosidase of the polysaccharides from Cordyceps militaris with different developmental stages. International Journal of Biological Macromolecules, 2020,148:722-736.
doi: 10.1016/j.ijbiomac.2020.01.178
[24] 董梅月, 丁洁, 任文静, 李雪玲, 蒋海强, 李静, 刘玉红. GC和HPLC分析金银花多糖的单糖组成方法比较. 中国食品添加剂, 2020,31(4):124-128.
DONG M Y, DING J, REN W J, LI X L, JIANG H Q, LI J, LIU Y H. Comparison of GC and HPLC methods for analysis of monosaccharide composition of polysaccharides from Lonicera japonica. China Food Additives, 2020,31(4):124-128. (in Chinese)
[25] ZHOU R M, CUI M X, WANG Y, ZHANG M, LI F F, LIU K H. Isolation, structure identification and anti-inflammatory activity of a polysaccharide from Phragmites rhizoma. International Journal of Biological Macromolecules, 2020,161:810-817.
doi: 10.1016/j.ijbiomac.2020.06.124
[26] WANG W, WANG X Q, YE H, HU B, ZHOU L, LI Z, JABBAR S, ZENG X X, SHEN W B. Optimization of extraction, characterization and antioxidant activity of polysaccharides from Brassica rapa L. International Journal of Biological Macromolecules, 2016,82:979-988.
doi: 10.1016/j.ijbiomac.2015.10.051
[27] 宋林珍, 朱丽云, 高永生, 李素芳, 张拥军. 茶多糖的结构特征与降血糖活性. 食品科学, 2018,39(19):162-168.
SONG L Z, ZHU L Y, GAO Y S, LI S F, ZHANG Y J. Structural characteristics and hypoglycemic activity of polysaccharides from green tea leaves. Food Science, 2018,39(19):162-168. (in Chinese)
[28] ZENG F K, CHEN W B, HE P, ZHAN Q P, WANG Q, WU H, ZHANG M M. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels. Carbohydrate Polymers, 2020,246:116551.
doi: 10.1016/j.carbpol.2020.116551
[29] 英欣. 红参多糖的分离纯化及结构分析[D]. 长春: 东北师范大学, 2018.
YING X. Purification and structural analysis of polysaccharides from Red Ginseng[D]. Changchun: Northeast Normal University, 2018. (in Chinese)
[30] 栗晓庆, 吕俊平, 刘琪, 南芳茹, 刘旭东, 谢树莲, 冯佳. 裸藻多糖碱提工艺优化及其体外抗氧化活性研究. 食品科技, 2019,44(9):209-215.
LI X Q, LÜ J P, LIU Q, NAN F R, LIU X D, XIE S L, FENG J. Optimization of alkaline extraction and antioxidant activities of paramylon in vitro. Food Science and Technology, 2019,44(9):209-215. (in Chinese)
[31] 肖亚聪. 甘蔗渣多糖的提取工艺研究. 求医问药, 2013,11(4):95-97.
XIAO Y C. Study on the extraction process of bagasse polysaccharides. Seek Medical And Ask The Medicine, 2013,11(4):95-97. (in Chinese)
[32] DAS B, SAHOO R N, PARGAL S, KRISHNA G, VERMA R, CHINNUSAMY V, SEHGAL V K, GUPTA V K, DASH S K, SWAIN P. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2018,192:41-51.
doi: 10.1016/j.saa.2017.10.076
[33] SUN J, CHEN H, KAN J, GOU Y R, LIU J, ZHANG X, WU X N, TANG S X, SUN R, QIAN C L, ZHANG N F, NIU F X, JIN C H. Anti-inflammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS- induced colitis mice. International Journal of Biological Macromolecules, 2020,153:708-722.
doi: 10.1016/j.ijbiomac.2020.03.053
[34] 汤凯, 周际松, 叶帆宇, 吴鹏. 硫酯化碱溶性茯苓多糖的抗氧化性分析. 中国食品添加剂, 2020,31(7):21-26.
TANG K, ZHOU J S, YE F Y, WU P. Antioxidant activity of thioesterificated alkali soluble poria cocos polysaccharide. China Food Additives, 2020,31(7):21-26. (in Chinese)
[35] LIU X F, WANG X Q, XU X F, ZHANG X W. Purification, antitumor and anti-inflammation activities of an alkali-soluble and carboxymethyl polysaccharide CMP33 from Poria cocos. International Journal of Biological Macromolecules, 2019,127:39-47.
doi: 10.1016/j.ijbiomac.2019.01.029
[36] HUA Y L, GAO Q, WEN L R, YANG B, TANG J, YOU L J, ZHAO M M. Structural characterisation of acid- and alkali-soluble polysaccharides in the fruiting body of Dictyophora indusiata and their immunomodulatory activities. Food Chemistry, 2012,132(2):739-743.
doi: 10.1016/j.foodchem.2011.11.010
[37] 贾丰, 郭玉蓉, 杨曦, 刘冬, 李洁. 发酵苹果渣多糖分离纯化、结构及其与加工特性的关系. 中国农业科学, 2017,50(10):1873-1884.
JIA F, GUO Y R, YANG X, LIU D, LI J. Isolation and purification of polysaccharide from fermented apple pomace and its relationship with processing characteristics. Scientia Agricultura Sinica, 2017,50(10):1873-1884. (in Chinese)
[38] LI F, WEI Y L, LIANG L, HUANG L L, YU G Y, LI Q H. A novel low-molecular-mass pumpkin polysaccharide: Structural characterization, antioxidant activity, and hypoglycemic potential. Carbohydrate Polymers, 2021,251:117090.
doi: 10.1016/j.carbpol.2020.117090
[39] 吕青青, 曹娟娟, 刘瑞, 陈寒青. 小麦麸皮多糖的结构表征及其对α-淀粉酶和α-葡萄糖苷酶的抑制活性研究. 中国食品科学技术学会第十六届年会暨第十届中美食品业高层论坛, 2019: 123-124.
LÜ Q Q, CAO J J, LIU R, CHEN H Q. Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran[C]. Abstracts of Food Summit in China & 16* Annual Meeting of CIFST, 2019: 123-124. (in Chinese)
[1] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[2] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!