Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (21): 4507-4515.doi: 10.3864/j.issn.0578-1752.2020.21.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

A Survey on Distribution of Arsenic Contents in Feedstuffs for Livestock and Poultry in China

ZHANG TieYing(),ZHANG LiYang,LIU JunLi,LIAO ChaoYong,LÜ Lin,LIAO XiuDong,LUO XuGang   

  1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2019-05-22 Accepted:2020-08-28 Online:2020-11-01 Published:2020-11-11

Abstract:

【Objective】 The aim of this survey was to study the arsenic (As) contents in various feed ingredients from different provinces in China, providing a scientific basis for controlling As contents in the feed ingredients, and even for guiding feed companies to establish a scientific process on As detection. 【Method】A total of 40 types of 4 054 feed samples were collected from 31 provinces, municipalities and regions, and then the As contents of them were measured by Ion chromatography-inductively coupled plasma mass spectrometer (IC-ICP-MS). 【Result】The results showed that the average As contents of these 40 kinds of feed ingredients ranged from 5.21 to 13 292.0 μg·kg-1, and the distribution of As contents in different species of feed ingredients was as follows: mineral ingredients (5 018.6 μg·kg-1)>animal ingredients (1 704.8 μg·kg-1)>straw ingredients (1 239.0 μg·kg-1)>pasture ingredients (500.3 μg·kg-1)>cereal by-products (329.24 μg·kg-1)>plant protein ingredients (72.99 μg·kg-1 )>cereals (38.07 μg·kg-1 ). Meanwhile, the distribution of As contents of cereals, cereal by-products and straw ingredients was as follows: corn straw>corn by-products (corn gluten meal, spray corn cortex and corn DDGS)>corn; wheat straw>wheat by-products (wheat bran, wheat DDGS and wheat middling)>wheat; rice straw>rice by-products ( rice bran and defatted rice bran)>rice>broken rice, which concerned the capacities of different parts of cereals gathering As from soil and water, root>leaf>stem>chaff>grain . The results in comparison with As contents of corn, wheat or soybean meal from different provinces (regions) are extremely significant (P<0.01) respectively, demonstrating As contents among same type of samples from different regions are significant also. Moreover, the ratios of As contents exceeding the limit standard, based on hygienical standard for feeds, have been calculated among the 40 kinds of feed ingredients. As contents in cereals, plant protein ingredients and pasture ingredients were under the limit standard. Nevertheless, As contents of only defatted rice bran in cereal by-products presented the over-limit ratio of 2.8%; As contents of only fish meal in animal ingredients showed the over-limit ratio of 5.3%; The over-limit ratio of rice straw in straw ingredients was 27.4%; Both limestone and dicalcium phosphate in mineral ingredients were with high over-limit ratios 30.8% and 60%, respectively. Over-limit ratios of As contents in different kinds of feed ingredients were as follows: dicalcium phosphate>limestone>rice straw>fish meal>defatted rice bran.【Conclusion】 The above results showed that the As contents in feed ingredients varied greatly in different kinds and regions. The As contents of those cereals relatives ingredients presented a common rule, that is, As contents of straw ingredients were highest, successively, cereals by-products and cereals. Especially, As contents of dicalcium phosphate, limestone, rice straw, fish meal and defatted rice bran were above the limit standard sometimes, which could be considered as high risk feed ingredients. Therefore, the As content in basal diets from different types and regions should be considered in the preparation of diets. It is necessary to improve As detection frequency to make sure of the As contents in animal diets under the safe limits according to the GB 13078-2017 strictly.

Key words: feedstuff, arsenic contents, pig, chicken

Table 1

The limited standard of As in feed ingredients (μg·kg-1, air-dry basis)"

项目Item 砷含量As contents
谷物籽实等及其加工副产品和植物性蛋白饲料
Cereal etc, cereal by-products and plant protein feeds
≤2000
秸秆及牧草类饲料 Straw and pasture feeds ≤4000
动物性蛋白饲料Animal protein feeds
鱼粉 Wheat straw ≤10000
肉粉 Fish meal ≤10000
其他动物性蛋白原料 Other animal protein feeds ≤2000
矿物质原料 Mineral feeds
石粉 Limestone ≤2000
骨粉 Bone meal ≤10000
其他矿物质饲料 Other mineral feeds ≤10000

Table 2

Distribution of As contents in cereals and cereal by-products (air-dry basis)"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
超标率
Over-limit ratio (%)
砷含量
As contents (μg·kg-1)
玉米 Corn 30 1191 0 6.72±0.42C
小麦 Wheat 28 251 0 33.08±6.72B
稻谷 Rice 30 207 0 221.04±8.34A
大麦 Barley 15 28 0 61.3±16.57B
PP value <0.0001
总体平均值 Total average 38.07
碎米 Broken rice 20 54 0 63.05±4.32DE
次粉 Wheat middling 20 51 0 45.09±11.19DEF
小麦麸 Wheat bran 24 117 0 95.61±10.12CD
米糠 Rice bran 22 122 0 1016.2±29.07A
脱脂米糠 Defatted rice bran 12 71 2.8 938.34±53.53A
玉米DDGS Corn DDGS 13 96 0 73.60±6.13CDE
小麦 DDGS Wheat DDGS 4 16 0 493.96±107.2ABC
玉米胚芽粕 Corn germ meal 7 49 0 7.13±2.87F
喷浆玉米皮 Spray corn cortex 14 35 0 55.11±10.91DE
玉米蛋白粉 Corn gluten meal 17 90 0 43.25±6.72E
木薯干 Cassava slice 4 17 0 456.86±25.17B
PP value <0.0001
总体平均值 Total average 329.24

Table 3

Distribution of As contents in plant protein feeds (air-dry basis)"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
超标率
Over-limit ratio (%)
砷含量
As contents (μg·kg-1)
膨化大豆 Extruded soybean 13 111 0 5.21±1.16D
豆粕 Soybean meal 23 339 0 58.11±4.8C
菜籽粕 Rapeseed meal 21 165 0 99.69±10.16B
棉粕 Cottonseed meal 14 106 0 99.16±13.76BC
花生粕 Peanut meal 11 49 0 92.11±14.69BC
亚麻粕 Linseed meal 3 19 0 128.45±26.54BC
葵花粕 Sunflower seed meal 3 14 0 315.56±27.48A
PP value <0.0001
总体平均值Total average 72.99

Table 4

Distribution of As contents in animal protein feeds (air-dry basis)"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
超标率
Over-limit ratio (%)
砷含量
As contents (μg·kg-1)
鱼粉 Fish meal 14 57 5.3 5137.1±451.8A
肉粉 Meat meal 12 24 0 190.87±28.10C
水解羽毛粉 Hydrolyzed feather meal 16 34 0 761.43±59.10B
肠系膜蛋白粉 Dried porcine solubles 3 9 0 132.23±40.54CD
血浆蛋白粉 Plasma protein powder 16 32 0 165.45±39.83CD
血球蛋白粉 Dried blood cells 16 28 0 38.05±12.19D
PP value <0.0001
总体平均值Total average 1704.8

Table 5

Distribution of As contents in straw feeds (air-dry basis)"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
超标率
Over-limit ratio (%)
砷含量
As contents (μg·kg-1)
玉米秸 Corn straw 30 83 0 154.70±22.08A
甘薯藤 Sweet potato vine 12 21 0 559.34±24.84B
稻秸 Rice straw 28 84 27.4 3025.2±252.62C
小麦秸 Wheat straw 24 57 0 435.80±23.53D
PP value <0.0001
总体平均值Total average 1239.0

Table 6

Distribution of As contents in pasture feeds (air-dry basis)"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
超标率
Over-limit ratio (%)
砷含量
As contents (μg·kg-1)
羊草 Leymus chinensis 7 35 0 663.12±88.42A
黑麦草 Ryegrass 16 72 0 607.38±26.90A
苜蓿 Alfalfa 25 93 0 502.29±28.42B
青贮玉米 Corn silage 23 88 0 345.84±28.00C
PP value <0.0001
总体平均值Total average 500.3

Table 7

Distribution of As contents in mineral feeds (air-dry basis)"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
超标率
Over-limit ratio (%)
砷含量
As contents (μg·kg-1)
石粉 Limestone 18 65 30.8 1926.4±300.36B
磷酸氢钙 Dicalcium phosphate 13 45 60 13292.5±1376.9A
贝壳粉 Oyster shell meal 5 9 0 1428.0±204.60B
骨粉 Bone meal 15 28 0 53.52±24.24C
PP value <0.0001
总体平均值Total average 5018.6

Table 8

Distribution of As contents of corn, wheat and soybean meal in some provinces (regions) of China (μg·kg-1, air-dry basis)"

省(区)名
Name of provinces (regions)
玉米砷含量
As contents of corn
省(区)名
Name of provinces (regions)
小麦砷含量
As contents of wheat
省(区)名
Name of provinces (regions)
豆粕砷含量
As contents of soybean meal
广西 Guangxi 5.03±1.32(36)BCD 青海Qinghai 26.31±9.78(10) 陕西 Shaanxi 67.74±14.53(15)BCDEF
山东 Shandong 11.99±2.42(54)ABC 湖北 Hubei 23.80±3.66(8) 四川 Sichuan 159.30±40.62(8)ABCDEFG
河北 Hebei 5.27±0.58(55)B 江苏 Jiangsu 19.28±3.30(16) 河南 Henan 8.92±2.51(15)EFG
贵州 Guizhou 11.83±4.64(39)ABCD 安徽 Anhui 28.13±3.89(28) 贵州 Guizhou 24.48±6.91(10)CDEFG
湖北 Hubei 1.41±0.4(38)D 河南 Henan 87.57±64.69(25) 广东 Guangdong 17.59±2.05(20)DE
四川 Sichuan 3.49±0.63(44)BCD 陕西 Shaanxi 61.17±27.67(9) 河北 Hebei 133.63±23.65(27)AB
云南 Yunan 4.57±1.01(56)BCD 山西 Shanxi 18.81±4.4(14) 辽宁 Liaoning 7.17±1.74(22)FG
安徽 Anhui 4.15±0.9(44)BCD 山东 Shandong 19.91±4.23(14) 湖北 Hubei 191.88±30.75(10)AB
河南 Henan 6.63±1.08(54)ABC 新疆 Xinjiang 43.91±19.03(10) 山东 Shandong 16.66±7.73(19)DEFG
山西 Shanxi 13.67±1.73(83)A 河北 Hebei 33.59±2.29(19) 福建 Fujian 213.79±3.74(17)A
陕西 Shaanxi 8.63±2.12(41)ABCD 甘肃 Gansu 37.51±8.16(9) 黑龙江 Heilongjiang 13.61±1.62(50)EF
江苏 Jiangsu 1.91±0.55(46)CD PP value 0.885 内蒙古Inner Mongolia 55.95±9.95(37)BCD
辽宁 Liaoning 3.88±1.07(53)BCD 总体平均值Total average 38.56 浙江 Zhejiang 23.67±11.22(12)CDEFG
甘肃 Gansu 8.52±2.96(42)ABCD 江苏 Jiangsu 4.48±0.73(15)G
黑龙江 Heilongjiang 12.31±3.95(78)ABCD PP value <0.0001
新疆 Xinjiang 3.78±0.63(48)BCD 总体平均值Total average 56.89
内蒙古Inner Mongolia 9.84±1.84(52)AB
吉林 Jilin 2.46±0.53(60)BCD
PP value <0.0001
总体平均值Total average 7.06
[1] 全国饲料工业标准化技术委员会. 2017, 饲料卫生标准 GB 13078-2017.
National Feed Industry Standardization Technical Committee. 2017, Feed Hygiene Standard GB 13078-2017. (in Chinese)
[2] PACHAURI V, MEHTA A, MISHRA D, MISHRA D, FLORA S. Arsenic induced neuronal apoptosis in guinea pigs is Ca2+ dependent and abrogated by chelation therapy: Role of voltage gated calcium channels. Nenrotoxicology, 2013,35:137-145.
[3] ZHONG F, ZHANG S N, SHAO C K, YANG J, WU X Y. Arsenic trioxide inhibits cholangiocarcinoma cell growth and induces apoptosis. Pathology & Oncology Research, 2010,16(3):413-420.
[4] WU J N, JI Z Y, LIU H L, LIU Y H, HAN D Y, SHI C, SHI C B, WANG C L, YANG G, CHEN X F, SHEN C, LI H D, BI Y K, ZHANG D Z, ZHAO S G. Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway. Toxicology Letters, 2013,220(1):61-69.
doi: 10.1016/j.toxlet.2013.03.019 pmid: 23542114
[5] KOMOROWICZ I, BARALKIEWICZ D. Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—Last decade review. Talanta, 2011,84(2):247-261.
pmid: 21376942
[6] ZHANG X Y, ZHOU M Y, LI L L, JIANG Y J, ZOU X T. Effects of arsenic supplementation in feed on laying performance, arsenic retention of eggs and organs, biochemical indices and endocrine hormones. British Poultry Science, 2016,58(1):63-68.
doi: 10.1080/00071668.2016.1216945 pmid: 27636676
[7] 刘雅慈, 李亚松, 张兆吉, 田夏, 曹胜伟. 鲁北平原养鸡场周边包气带与地下水砷化合物分布规律. 南水北调与水利科技, 2017,15(3):86-93.
LIU Y C, LI Y S, ZHANG Z J, TIAN X, CAO S W. Distribution of arsenic compounds in vadose zone and groundwater around the chicken farm in Lubei Plain. South-to-North Water Transfers and Water Science & Technology, 2017,15(3):86-93. (in Chinese)
[8] 王付民, 陈杖榴, 孙永学, 高延玲, 余静贤. 有机胂饲料添加剂对猪场周围及农田环境污染的调查研究. 生态学报, 2006(26):154-162.
WANG F M, CHEN Z L, SUN Y X, GAO Y L, YU J X. Investigation on the pollution of organoarsenical additives to animal feed in the surroundings and farmland near hog farms. Acta Ecologica Sinica, 2006(26):154-162. (in Chinese)
[9] 王克俭, 廖新俤. 猪场周围环境中砷的分布及迁移规律研究. 家畜生态学报, 2005,26(2):29-32.
WANG K J, LIAO X D. Study on the distribution and migrating disciplinavian of arsenic around the pig farm. Acta Ecologiae Animalis Domastici, 2005,26(2):29-32. (in Chinese)
[10] ADRIEN A. Selective Toxicity: The Physico-Chemical Basis of Therapy. 7th ed. London: Chapman and Hall, 1985: 550-561.
[11] MOE B, PENG H Y, LU X F, CHEN B W, CHEN L W L, GABOS S, LI X F, LE X C. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing. Journal of Environmental Sciences, 2016,49(11):113-124.
[12] NACHMAN K E, RABER G, FRANCESCONI K A, NAVAS-ACIEN A, LOVE D C. Arsenic species in poultry feather meal. Science of the Total Environment, 2012,417:183-188.
[13] AGGARWAL M, NARAHARISETTI S B, SARKAR S N, RAO G S, DEGEN G H, MALIK J K. Effects of subchronic coexposure to arsenic and endosulfan on the erythrocytes of broiler chickens: a biochemical study. Archives of Environmental Contamination and Toxicology, 2009,5(1):139-148.
[14] 袁涛, 管恩平, 何桂华, 贾俊涛, 张艺兵. 砷制剂作为畜禽促生长剂的作用及其危害分析. 中国家禽, 2010,32(22):51-53.
YUAN T, GUAN E P, HE G H, JIA J T, ZHANG Y B. Effect and hazard analysis of arsenic preparation as growth promoter for livestock and poultry. Chinese Poultry, 2010,32(22):51-53. (in Chinese)
[15] STANLEY, T R, SPAHN, J W, SMITH G J, ROSSCOE R. Main and interactive effects of arsenic and selenium on mallard reproduction and duckling growth and survival. Archives of Environmental Contamination and Toxicology, 1994(26):444-451.
[16] HERMAYER K L, STAKE P E, SHIPPE R L. Evaluation of dietary zinc, cadmium, tin, lead, bismuth and arsenic toxicity in hens. Poultry Science, 1977(56):1721.
[17] VODELA J K, LENZ S D, RENDEN J A, MCELHENNEY W H, KEMPPAINEN B W. Drinking water contaminants (arsenic, cadmium, lead, benzene, and trichloroethylene). 2. Effects on reproductive performance, egg quality, and embryo toxicity in broiler breeders. Poultry Science, 1997,76(11):1493-1500.
pmid: 9355141
[18] 周岩民, 杜文兴, 韩兆玉, 王冉, 陆治年, 王恬. 洛克沙生对肉鸭生产性能和砷残留及组织病变的影响. 南京农业大学学报, 2001,24(4):46-50.
ZHOU Y M, DU W X, HAN Z Y, WANG R, LU Z N, WANG T. Effect of organic arsenic on performance, tissue arsenic residue and tissue pathogenic change of meat-strain ducks. Journal of Nanjing Agricultural University, 2001,24(4):46-50. (in Chinese)
[19] 周利英, 戴璐, 倪小波, 骆海清, 常云芝, 李桂景, 魏云计. 微波消解ICP-AES法同时测定饲料中8种重金属元素. 饲料工业, 2018,39(1):46-48.
ZHOU L Y, DAI L, NI X B, LUO H Q, CHANG Y Z, LI G J, WEI Y J. Determination of eight heavy metal elements in feeds by microwave digestion ICP-AES. Feed Industry, 2018,39(1):46-48. (in Chinese)
[20] 贺燕, 籍燕燕, 田蕴, 蒋向君. 微波消解-原子荧光光度法测定饲料中总砷. 山东畜牧兽医, 2012,33:22-23.
HE Y, JI Y Y, TIAN Y, JIANG X J. Determination of total arsenic in feed by microwave digestion-atomic fluorescence spectrometry. Shandong Journal of Animal Science and Veterinary Medicine, 2012,33:22-23. (in Chinese)
[21] 李俊, 李宏, 董颖超, 李胜, 杨汉卿, 杨坤, 李洁. 天然矿物质饲料中重金属安全隐患调查报告. 畜牧兽医杂志, 2014,33(4):81-89.
LI J, LI H, DONG Y C, LI S, YANG H Q, YANG K, LI J. investigation report on potential safety hazards of heavy metals in natural mineral feed. Journal of Animal Science and Veterinary Medicine, 2014,33(4):81-89. (in Chinese)
[22] 林建斌, 李金秋, 宋国华. 水产饲料安全与水产品质量. 水利渔业, 2008,28(2):112-114.
LIN J B, LI J Q, SONG G H. Aquatic feed safety and aquatic product quality. Reservoir Fisheries, 2008,28(2):112-114. (in Chinese)
[23] 林建斌. 水产饲料安全的特点与影响因素. 科学养鱼, 2008(9):65-66.
LIN J B. Characteristics and influencing factors of aquatic feed safety. Scientific Fish Farming, 2008(9):65-66. (in Chinese)
[24] 黎修全. 浅析动物源性饲料产品安全及卫生质量评价指标. 饲料工业, 2008,29(19):57-62.
LI X Q. Analysis on the evaluation index of safety and hygiene quality of animal-derived feed products. Feed Industry, 2008,29(19):57-62. (in Chinese)
[25] 杨荣, 朱双红, 王华朗, 韩垂旺, 宋增廷, 王立志, 张旭娟. 大米加工主要副产品资源在畜禽饲料中的应用. 广东饲料, 2018,27(9):39-42.
YANG R, ZHU S H, WANG H L, HAN C W, SONG Z T, WANG L Z, ZHANG X J. Application of main by-product resources of rice processing in livestock and poultry feed. Guangdong Feed, 2018,27(9):39-42. (in Chinese)
[26] 陈同斌. 土壤溶液中的砷及其与水稻生长效应的关系. 生态学报, 1996,16(2):147-153.
CHEN T B. Arsenic in soil solution and its effect on the growth of rice (Oryza Sativa L.). Acta Ecologica Sinica, 1996,16(2):147-153. (in Chinese)
[27] 吴佳, 纪雄辉, 魏维, 谢运河. 水分状况对水稻镉砷吸收转运的影响. 农业环境科学学报, 2018,37(7):1427-1434.
WU J, JI X H, WEI W, XIE Y H. Effect of water levels on cadmium and arsenic absorption and transportation in rice. Journal of Agro-Environment Science, 2018,37(7):1427-1434. (in Chinese)
[28] YANG Y P, ZHANG H M, YUAN H Y, DUAN G L, JIN D C, ZHAO F J, ZHU Y G. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environmental Pollution, 2018,236:598-608.
pmid: 29433100
[29] LIU W J, ZHU Y G, SMITH F A, SMITH S E. Do phosphorus nutrition and iron plaque alter arsenate(As)uptake by rice seedlings in hydroponic culture? New Phytologist, 2010,162(2):481-488.
[30] 邹丽娜, 戴玉霞, 邱伟迪, 张舒, 赵佳伟, 唐先进, 施积炎, 徐建明. 硫素对土壤砷生物有效性与水稻吸收的影响研究. 农业环境科学学报, 2018,37(7):1435-1447.
ZOU L N, DAI Y X, QIU W D, ZHANG S, ZHAO J W, TANG X J, SHI J Y, XU J M. Effect of sulfur on the bioavailability of arsenic in soil and its accumulation in rice plant ( Oryza sativa L.). Journal of Agro-Environment Science, 2018,37(7):1435-1447. (in Chinese)
[31] 袁雪花, 苏玉红. 高砷地下水灌溉区动物饲料及产品中砷污染水平研究. 畜牧与兽医, 2017,49(4):46-50.
YUAN X H, SU Y H. Arsenic contaminated levels in forage and animal products in irrgation district with high arsenic groundwater. Animal Husbandry&Veterinary Medicine, 2017,49(4):46-50. (in Chinese)
[1] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[4] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[5] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[6] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[7] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[8] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[9] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[10] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[11] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[12] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[13] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[14] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[15] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!