Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (18): 3777-3791.doi: 10.3864/j.issn.0578-1752.2020.18.013

• HORTICULTURE • Previous Articles     Next Articles

Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification

YUAN XinBo1(),CHENG TingTing1,XI XiaoHan1,CHEN ZhangYu1,WANG RuiHong2,KE WeiDong3,GUO HongBo1()   

  1. 1College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University/State Local Joint Research Center of TCM Fingerprint/Shaanxi Research Center of TCM Fingerprint and Natural Products Library, Yangling 712100, Shaanxi
    2College of Life Sciences Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi
    3Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430065
  • Received:2020-02-22 Accepted:2020-07-13 Online:2020-09-16 Published:2020-09-25
  • Contact: HongBo GUO E-mail:xinboyuan678@163.com;hbguo@nwsuaf.edu.cn

Abstract:

【Objective】The protein interacting with NnPPO1 (GenBank: ADC92563.1), a member of the polyphenol oxidase family of China Lotus (Nelumbo nucifera Gaertn.), was screened and verified, which laid the foundation for further studying of the molecular mechanism of PPO and precise inhibition of its activity in Nelumbo nucifera. 【Method】The interaction between Nelumbo nucifera antioxidant enzyme and NnPPO1 was verified by yeast double hybridization (Y2H). The toxicity and self-activation activity of the interacting protein catalase isoenzyme NnCAT1 (GenBank: XP_010242894.1) were detected by the transformed yeast experiment. The expression vectors of 35S-NnPPO1-SPYNER173 and 35S-NnCAT1-SPYCEM used in the BiFC experiment were constructed. The recombinant plasmid was transformed into tobacco by an agrobacteria-mediated method to further verify the interaction between NnPPO1 and NnCAT1. The proteins were truncated based on the domains of NnPPO1 and NnCAT1 to find the key domains of interaction. PlantCARE and real-time fluorescent quantitative PCR (qRT-PCR) were used to analyze the promoter-related components of NnPPO1 and NnCAT1 as well as their expression levels in different tissues of Nelumbo nucifera. The 35S-NnCAT1-GFP fusion protein expression vector was constructed by homologous recombination method to analyze subcellular localization. DNAMAN software was used to perform multi-sequence alignment between the NnCAT1 sequence and other species sequences. The basic character and structure of NnCAT1 were analyzed by using bioinformatics website. 【Result】NnCAT1 interacts with NnPPO1, had no self-activation or toxicity to yeast. The interaction between NnPPO1 and NnCAT1 was further confirmed by the yellow fluorescence signal observed on the cell membrane and nucleus. The tyrosinase domain of NnPPO1 played a major role in protein interactions. NnPPO1 and NnCAT1 promoter sequences contained a variety of cis-regulatory elements, such as photoresponse element (Box 4, GT1-motif, and TCT-motif), stress response element (ARE), and hormone response element (CGTCA-motif and TGACG-motif). The expression patterns of NnPPO1 and NnCAT1 were almost the same. They were expressed in all tissues, with the highest expression in leaf and lowest expression in stem tip. Subcellular localization showed that NnCAT1 was localized in the cell membrane and nucleus. NnCAT1 had a molecular weight of 57.0 kD and a theoretical isoelectric point (PI) of 6.93. This protein was a homologous tetramer hydrophilic protein without transmembrane structure and signal peptide, and its chloroplast transport peptide was located in the former 21 aa. The secondary structure was composed of 27.64% α-helix, 15.65% extended chain, 6.30% β-turn and 50.41% random coil. 【Conclusion】Firstly, NnCAT1 interacted with NnPPO1, and the authenticity of the interaction was further verified by the BiFC test. Secondly, the conserved tyrosinase domain of NnPPO1 played a major role in the interaction. NnPPO1 and NnCAT1 had almost the same expression pattern, and they might lead to browning of fruits and vegetables such as Nelumbo nucifera through a synergistic effect.

Key words: Nelumbo nucifera, NnPPO1, NnCAT1, protein interaction, subcellular localization, tissue-specific expression

Table 1

PCR primer list"

引物名称Name 序列Sequence 用途Use
APX-EcoR I-F ggaggccagtgaattcATGGCTTGTCTGGGCGGTGC 酵母双杂交
Yeast two hybrid
APX-Xho I-R tcatctgcagctcgagTCATGTTGAGAAACCCTCAGGAGG
NnCAT1-EcoR I-F ggaggccagtgaattcATGGATCCTTACAAGTATCGCCC
NnCAT1-Xho I-R tcatctgcagctcgagTCACATGCTCGGCTTCAC
cytCuZnSOD-EcoR I-F ggaggccagtgaattcATGGTGAAGGCTGTTGCGG
cytCuZnSOD-Xho I-R tcatctgcagctcgagTTAACCCTGCAAGCCAATAATACC
PER1-EcoR I-F ggaggccagtgaattcATGCCTGGACTGACGATCGG
PER1-Xho I-R tcatctgcagctcgagTCAGACGTTGGTAAAACGGAG
POD3L-EcoR I-F ggaggccagtgaattcATGAGGACTACTTATCTTCCGTT
POD3L-Xho I-R tcatctgcagctcgagTTAAGGGTTCACAACCGCACACT
POD43L-EcoR I-F ggaggccagtgaattcATGGCTCTGGTTTTTGCTC
POD43L-Xho I-R tcatctgcagctcgagTCAATTGAAAGACCTGCAGGAC
PODP7L-EcoR I-F ggaggccagtgaattcATGGCCTCCATCATCACCC
PODP7L-Xho I-R tcatctgcagctcgagTCAGTTCACTCTCCTGCAATTC
NnCAT116-398-EcoR I-F ggaggccagtgaattcATGTTCTGGAGCACAAATTCTGG
NnCAT116-398-Xho I-R tcatctgcagctcgagTCAATCATACCTTGAAGGAAAGTAA
NnCAT116-493-EcoR I-F ggaggccagtgaattcATGTTCTGGAGCACAAATTCTGG
NnCAT116-493-Xho I-R tcatctgcagctcgagTCACATGCTCGGCTTCAC
NnPPO1175-380-Nco I-F ctgcatatggccatgATGCCACGTAACTTCACGCA
NnPPO1175-380-BamH I-R gcaggtcgacggatcTCATATTGTCCACATCCGGTCGAC
NnPPO1381-468-NcoI-F ctgcatatggccatgATGTGGAAAAAGCTGGGAGG
NnPPO1381-468-BamH I-R gcaggtcgacggatcTCACTCACTGACGGTTGGC
NnPPO1469-597-Nco I-F ctgcatatggccatgATGTTCCCCAAAGAACTTGATGCG
NnPPO1469-597-BamH I-R gcaggtcgacggatcTCACGAAGCGAACACTATCTTG
NnCAT1-BD-Nco I-F ctgcatatggccatgATGGATCCTTACAAGTATCGCCC 自激活验证
Self-activated tast
NnCAT1-BD-BamH I-R gcaggtcgacggatcTCACATGCTCGGCTTCAC
NnPPO1-BiFC-N-BamH I-F cccaggcctactagtggatccATGGCGTCGCTGTCTCCC 双分子荧光标记
BiFC
NnPPO1-BiFC-N-Xho I-R cccgggagcggtaccctcgagTCACGAAGCGAACACTATCTTGA
NnCAT1-BiFC-C-BamH I-F tggcgcgccactagtggatccATGGATCCTTACAAGTATCGCCC
NnCAT1-BiFC-C-Xho I-R cccgggagcggtaccctcgagCATGCTCGGCTTCACATTGA
NnCAT1-GFP-BamH I-F ggactctagaggatccATGGATCCTTACAAGTATCGCCC 亚细胞定位
Subcellulcar locatization
NnCAT1-GFP-Kpn I-R cccttgctcaccatggtaccCATGCTCGGCTTCACATTGAGAC
β-actin-F GCCATCCAGGCCGTTCTCTC qRT-PCR
β-actin-R GGGACAGTGTGGCTGACACC
NnPPO1-qPCR-F CAAACTCCGCGATGCCAAGC
NnPPO1-qPCR-R CGTCGAGCCATTGGACACCA
NnCAT1-qPCR-F TTTGCCCTGGCGTTGTGGTC
NnCAT1-qPCR-R GGTGAGCACACTTGGGAGCA

Fig. 1

Gene cloning and screening of interacting proteins A: Amplification of seven genes using Nelumbo nucifera cDNA as template. M:DL2000 marker; 1: APX; 2: CuZnSOD; 3: PER1; 4: POD3L; 5: POD43L; 6: PODP7L; 7: NnCAT1; B: Screening of JDPPO1 interacting proteins by yeast two-hybrid"

Fig. 2

Detection of Toxicity and self-activation of NnCAT1 Protein A: Detection of toxicity; B: Detection of self-activation"

Fig. 3

Interaction between NnPPO1 and NnCAT1 detected by bimolecular fluorescence complementarity"

Fig. 4

Amino acid sequence alignment of NnCAT1 with other CAT proteins"

Fig. 5

Results of the yeast two-hybrid"

Fig. 6

Subcellular localization analysis of NnCAT1 protein"

Table 2

The response elements of NnPPO1 and NnCAT1"

元件名称Elements name 功能Function 所属序列Owned sequence
GT1-motif 光响应元件Light responsive element NnPPO1NnCAT1
ARE 厌氧诱导必不可少的顺式作用调节元件
Cis-acting regulatory element essential for the anaerobic induction
NnPPO1NnCAT1
CGTCA-motif、TGACG-motif MeJA反应性中涉及的顺式作用调节元件
Cis-acting regulatory element involved in the MeJA-responsiveness
NnPPO1NnCAT1
CAAT-box 启动子和增强子区域常见的顺式作用元件
Common cis-acting element in promoter and enhancer regions
NnPPO1NnCAT1
Box 4 涉及光响应性的保守DNA模块的一部分
Part of a conserved DNA module involved in light responsiveness
NnPPO1NnCAT1
TCT-motif 光响应元件的一部分Part of a light responsive element NnPPO1NnCAT1
TATA-box 转录启动子周围-30个核心启动子
Core promoter element around -30 of transcription start
NnPPO1NnCAT1
P-box 赤霉素反应元件Gibberellin-responsive element NnPPO1
A-box 顺式作用调节元件Cis-acting regulatory element NnCAT1
ABRE 脱落酸反应性涉及的顺式作用元件
Cis-acting element involved in the abscisic acid responsiveness
NnCAT1
MBS MYB结合位点参与干旱诱导MYB binding site involved in drought-inducibility NnCAT1
TC-rich repeats 参与防御和应激反应的顺式作用元件
Cis-acting element involved in defense and stress responsiveness
NnCAT1
TCA-element 水杨酸反应性涉及的顺式作用元件
Cis-acting element involved in salicylic acid responsiveness
NnCAT1
G-box 参与光响应的顺式作用调节元件
Cis-acting regulatory element involved in light responsiveness
NnCAT1

Fig. 7

Tissue-specific expression of NnPPO1 and NnCAT1 Different lowercases indicate significant difference (P<0.05) "

Fig. 8

Hydrophilicity of NnCAT1 Protein"

Fig. 9

Secondary structure and tertiary structure prediction of NnCAT1"

[1] MAHMAD N, TAHA R M, OTHMAN R, SALEH A, HASBULLAH N A, ELIAS H. Effects of NAA and BAP, double-layered media, and light distance on in vitro regeneration of Nelumbo nucifera Gaertn. (Lotus), an aquatic edible plant. Scientific World Journal, 2014,2014(12):745148.
[2] 谢晋, 韩迪, 王靖, 张松涛, 张鸿儒. 中国莲藕产业发展现状及展望. 农业展望, 2017,13(12):42-45, 51.
XIE J, HAN D, WANG J, ZHANG S T, ZHANG H R. Development status quo and prospect of china's lotus root industry. Agricultural Outlook, 2017,13(12):42-45, 51. (in Chinese)
[3] 康娟. 丝瓜PPO基因家族的鉴定及其在褐变中作用的初步研究[D]. 福州: 福建农林大学, 2018.
KANG J. Identification and study on the role of polyphenol oxidase (PPO) gene in the browning of Luffa cylindrical[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese)
[4] LI C L, LI D Q, LI J, SHAO F J, LU S F. Characterization of the polyphenol oxidase gene family reveals a novel microRNA involved in posttranscriptional regulation of PPOs in Salvia miltiorrhiza. Scientific Reports, 2017,7:44622.
doi: 10.1038/srep44622 pmid: 28304398
[5] 权美平. 鲜切莲藕中褐变因素分析的研究进展. 保鲜与加工, 2017,17(4):145-148.
QUAN M P. Research progress on analysis of browning factor in fresh-cut lotus root. Storage and Process, 2017,17(4):145-148. (in Chinese)
[6] LI D J, DENG Z, LIU C R, ZHAO M M, GUO H N, XIA Z H, LIU H. Molecular cloning, expression profiles, and characterization of a novel polyphenol oxidase (PPO) gene in Hevea brasiliensis. Bioscience, Biotechnology, and Biochemistry, 2014,78(10):1648-1655.
doi: 10.1080/09168451.2014.940828 pmid: 25051980
[7] TRAN L T, TAYLOR J S, CONSTABEL C P. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion. Bmc Genomics, 2012,13(1):395-395.
doi: 10.1186/1471-2164-13-395
[8] 王曼玲, 胡中立, 周明全, 宋运淳. 植物多酚氧化酶的研究进展. 植物学通报, 2005,22(2):215-222.
WANG M L, HU Z L, ZHOU M Q, SONG Y C. Advances in research of polyphenol oxidase in plants. Chinese Bulletin of Botany, 2005,22(2):215-222. (in Chinese)
[9] SHETTY S M, CHANDRASHEKAR A, VENKATESH Y P. Eggplant polyphenol oxidase multigene family: Cloning, phylogeny, expression analyses and immunolocalization in response to wounding. Phytochemistry, 2011,72(18):2275-2287.
doi: 10.1016/j.phytochem.2011.08.028
[10] RICHTER C, DIRKS M E, GRONOVER C S, PRVFER D, MOERSCHBACHER B M. Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv.tomato. Molecular Plant-Microbe Interactions, 2012,25(2):200-210.
doi: 10.1094/MPMI-04-11-0082
[11] NAKAYAMA T, YONEKURA-SAKAKIBARA K, SATO T, KIKUCHI S, FUKUI Y, FUKUCHI-MIZUTANI M, UEDA T, NAKAO M, TANAKA Y, KUSUMI T, NISHINO T. Aureusidin synthase: A polyphenol oxidase homolog responsible for flower coloration. Science, 2000,290(5494):1163-1166.
doi: 10.1126/science.290.5494.1163 pmid: 11073455
[12] CHEN X, YANG B X, HUANG W, WANG T T, LI Y H, ZHONG Z H, YANG L, LI S X, TIAN J K. Comparative proteomic analysis reveals elevated capacity for photosynthesis in polyphenol oxidase expression-silenced clematis terniflora DC. leaves. International Journal of Molecular Sciences, 2018,19(12):3897.
doi: 10.3390/ijms19123897
[13] ONO E, HATAYAMA M, ISONO Y, SATO T, WATANABE R, YONEKURA-SAKAKIBARA K, FUKUCHI-MIZUTANI M, TANAKA Y, KUSUMI T, NISHINO T, NAKAYAMA T. Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant Journal, 2006,45(2):133-143.
doi: 10.1111/j.1365-313X.2005.02625.x pmid: 16367960
[14] 张跃进, 郝晓燕, 梁宗锁, 林文超, 郭宏波. 莲藕多酚氧化酶基因(PPO)的克隆与表达分析. 农业生物技术学报, 2011,19(4):634-641.
ZHANG Y J, HAO X Y, LIANG Z S, LIN W C, GUO H B. Cloning of polyphenol oxidase gene (PPO) from lotus rhizome bud and its expression in different tissues. Journal of Agricultural Biotechnology, 2011,19(4):634-641. (in Chinese)
[15] ALI S, ANJUM M A, NAWAZ A, NAZ S, HUSSAIN S, EJAZ S, SARDAR H. Effect of pre-storage ascorbic acid and Aloe vera gel coating application on enzymatic browning and quality of lotus root slices. Journal of Food Biochemistry, 2020,44:e13136.
doi: 10.1111/jfbc.13136 pmid: 31907949
[16] ALI S, KHAN A S, ANJUM M A, NAWAZ A, NAZ S, EJAZ S, HUSSAIN S. Effect of postharvest oxalic acid application on enzymatic browning and quality of lotus (Nelumbo nucifera Gaertn.) root slices. Food Chemistry, 2020,312:126051.
doi: 10.1016/j.foodchem.2019.126051 pmid: 31891888
[17] CHI M, BHAGWAT B, LANE W D, TANG G L, SU Y Q, SUN R C, OOMAH B D, WIERSMA P A, XIANG Y. Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biology, 2014, 14(1): 62.
doi: 10.1186/1471-2229-14-62
[18] LEE M Y, LEE M K, PARK I. Inhibitory effect of onion extract on polyphenol oxidase and enzymatic browning of taro (Colocasia antiquorum var. esculenta). Food Chemistry, 2007,105(2):528-532.
doi: 10.1016/j.foodchem.2007.04.010
[19] RIGAL D D, CERNY M, RICHARD-FORGET F, VAROQUAUX P. Inhibition of endive (Cichorium endivia L.) polyphenoloxidase by a Carica papaya latex preparation. International Journal of Food Science & Technology, 2001,36(6):677-684.
[20] MURATA M, NISHIMURA M, MURAI N, HARUTA M, HOMMA S, ITOH Y. A transgenic apple callus showing reduced polyphenol oxidase activity and lower browning potential. Bioscience, Biotechnology,and Biochemistry, 2001,65(2):383-388.
doi: 10.1271/bbb.65.383 pmid: 11302173
[21] 蒋娟. 鲜切莲藕褐变的生理生化机制及蛋白表达差异研究[D]. 南京: 南京农业大学, 2011.
JIANG J. The physio-chemical mechanism and differential expressions of proteins for the browning of fresh-cut lotus root[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[22] 鄢敏丽. 莲藕多酚氧化酶互作蛋白的筛选及验证[D]. 杨凌: 西北农林科技大学, 2019.
YAN M L. Screening and verification of polyphenol oxidase interacting protein in lotus[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[23] 王亚静. 水稻OsNOX2基因的表达及其功能分析[D]. 杨凌: 西北农林科技大学, 2016.
WANG Y J. The expression and function research of rice OsNOX2 gene[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[24] 范晓江, 郭小华, 牛芳芳, 杨博, 江元清. 拟南芥WRKY61转录因子的转录活性与互作蛋白分析. 西北植物学报, 2018,38(1):1-8.
FAN X J, GUO X H, NIU F F, YANG B, JIANG Y Q. Exploring the transcriptional activity and interacting proteins of WRKY61 transcriptional factor in Arabidopsis Thaliana. Acta Botanica Boreali-Occidentalia Sinica, 2018,38(1):1-8. (in Chinese)
[25] DONG C, ZHENG X F, LI G L, PAN C, ZHOU M Q, HU Z L. Cloning and expression of one chloroplastic ascorbate peroxidase gene from Nelumbo nucifera. Biochemical Genetics, 2011,49(9/10):656-664.
[26] DONG C, ZHENG X F, LI G L, ZHU H L, ZHOU M Q, HU Z L. Molecular cloning and expression of two cytosolic copper-zinc superoxide dismutases genes from Nelumbo nucifera. Applied Biochemistry and Biotechnology, 2011,163(5):679-691.
doi: 10.1007/s12010-010-9074-1
[27] CHEN H H, CHU P, ZHOU Y L, DING Y, LI Y, LIU J, JIANG L W, HUANG S Z. Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis. Plant Journal for Cell & Molecular Biology, 2016,88(4):608-619.
doi: 10.1111/tpj.13286 pmid: 27464651
[28] WU Z H, GUI S T, WANG S Z, DING Y. Molecular evolution and functional characterisation of an ancient phenylalanine ammonia-lyase gene (NnPAL1) from Nelumbo nucifera: Novel insight into the evolution of the PAL family in angiosperms. BMC Evolutionary Biology, 2014,14(1):100.
doi: 10.1186/1471-2148-14-100
[29] YAN J, NIU F, LIU W Z, ZHANG H, WANG B, LAN W, CHE Y, YANG B, LUAN S, JIANG Y Q. Arabidopsis CIPK14 positively regulates glucose response. Biochemical and Biophysical Research Communications, 2014,450(4):1679-1683.
doi: 10.1016/j.bbrc.2014.07.064
[30] BIASINI M, BIENERT S, WATERHOUSE A, ARNOLD K, STUDER G, SCHMIDT T, KIEFER F, GALLO CASSARINO T, BERTONI M, BORDOLI L, SCHWEDE T. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014,42(W1):W252-W258.
doi: 10.1093/nar/gku340
[31] 张海星. 丹参多酚氧化酶互作蛋白的筛选与验证[D]. 杨凌: 西北农林科技大学, 2019.
ZHANG H X. Screening and Verification of Polyphenol Oxidase Interaction Protein from Salvia miltiorrhiza[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[32] LI J, LIU J T, WANG G Q, CHA J Y, LI G N, CHEN S. A chaperone function of no catalase activity1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. The Plant Cell, 2015,27(3):908-925.
doi: 10.1105/tpc.114.135095 pmid: 25700484
[33] ZHANG Z S, XU Y Y, XIE Z W, LI X Y, HE Z H, PENG X X. Association-dissociation of glycolate oxidase with catalase in rice: a potential switch to modulate intracellular H2O2 levels. Molecular Plant, 2016,9(5):737-748.
doi: 10.1016/j.molp.2016.02.002 pmid: 26900141
[34] MOREIRA S F I, BAILÃO A M, BARBOSA M S, JESUINO R S, FELIPE M S, PEREIRA M, DE ALMEIDA SOARES C M. Monofunctional catalase P of Paracoccidioides brasiliensis: identification, characterization, molecular cloning and expression analysis. Yeast, 2004,21(2):173-182.
doi: 10.1002/yea.1077 pmid: 14755642
[35] YANG T, POOVAIAH B W. Hydrogen peroxide homeostasis: Activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences, 2002,99(6):4097-4102.
[36] LIU Y F, YANG X X, ZHU S J, WANG Y Q. Postharvest application of MeJA and NO reduced chilling injury in cucumber (Cucumis sativus) through inhibition of H2O2 accumulation. Postharvest Biology and Technology, 2016,119:77-83.
doi: 10.1016/j.postharvbio.2016.04.003
[37] GONDIM F A, GOMES-FILHO E, COSTA J H, MENDES ALENCAR N L, PRISCO J T. Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology & Biochemistry, 2012,56:62-71.
doi: 10.1016/j.plaphy.2012.04.012 pmid: 22609456
[38] ARIAS-MORENO D M, JIMéNEZ-BREMONT J F, MARURI- LóPEZ I, DELGADO-SáNCHEZ P. Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress. Scientific Reports, 2017,7(1):8656.
doi: 10.1038/s41598-017-08744-x pmid: 28819160
[39] MILLER G, SUZUKI N, CIFTCI-YILMAZ S, MITTLE R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell & Environment, 2010,33(4):453-467.
[40] ZHANG Y, SHI X P, LI B H, ZHANG Q M, LIANG W X, WANG C X. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple. Plant Physiology and Biochemistry, 2016,106:64-72.
doi: 10.1016/j.plaphy.2016.04.047 pmid: 27139585
[41] ZIMMERMANN P, HEINLEIN C, ORENDI G, ZENTGRAF U. Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant, Cell & Environment, 2006,29(6):1049-1060.
doi: 10.1111/j.1365-3040.2005.01459.x pmid: 17080932
[42] SCANDALIOS J G, TONG W F, ROUPAKIAS D G. Cat3, a third gene locus coding for a tissue-specific catalase in maize: Genetics, intracellular location, and some biochemical properties. Molecular &General Genetics, 1980,179:33-41.
[43] ZOU J J, LI X D, RATNASEKERA D, WANG C, LIU W X, SONG L F, ZHANG W Z, WU W H. Arabidopsis calcium-dependent protein kinase8 and catalase3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. The Plant Cell, 2015,27(5):1445-1460.
doi: 10.1105/tpc.15.00144 pmid: 25966761
[44] 梁婷, 沈文涛, 庹德财, 言普, 黎小瑛, 唐庆华, 周鹏. 槟榔Catalase基因的克隆及亚细胞定位. 热带作物学报, 2020.
LIANG T, SHEN W T, TUO D C, YAN P, LI X Y, TANG Q H, Zhou P. cloning and subcellular localization of Catalase gene in Areca catechu L. Chinese Journal of Tropical Crops, 2020. (in Chinese)
[45] CHEN N, TENG X L, XIAO X G. Subcellular localization of a plant catalase-phenol oxidase, AcCATPO, from Amaranthus and identification of a non-canonical peroxisome targeting signal. Frontiers in Plant Science, 2017,8:1345.
doi: 10.3389/fpls.2017.01345 pmid: 28824680
[46] FODE B, SIEMSEN T, THUROW C, WEIGEL R, GATZ C. The Arabidopsis GRAS protein SCL14 interacts with Class II TGA transcription factors and is essential for the activation of stress- inducible promoters. The Plant Cell, 2008,20(11):3122-3135.
doi: 10.1105/tpc.108.058974 pmid: 18984675
[1] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[2] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[3] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[4] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[5] WANG Hao,YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng. The Carotenoid Cleavage Dioxygenases Gene AgCCD4 Regulates the Pigmentation of Celery Tissues with Different Colors [J]. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294.
[6] ZHANG ZhiXing,MIN XiuMei,SONG Guo,CHEN Hua,XU HaiLong,LIN WenXiong. Identification of 14-3-3 Client Proteins in Rice Grains and Their Response to Exogenous Hormones During the Grain Filling Stage [J]. Scientia Agricultura Sinica, 2021, 54(12): 2523-2537.
[7] SUN HongYing,WANG Yan,LI WeiJia,ZHU TianShu,JIANG Ying,XU Yan,WU QingYue,ZHANG ZhiHong. Expression Characteristics and Function of FveD27 in Woodland Strawberry [J]. Scientia Agricultura Sinica, 2021, 54(10): 2179-2191.
[8] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[9] GE Ting,HUANG Xue,XIE RangJin. Cloning, Subcellular Localization and Expression Analysis of CitPG34 in Citrus [J]. Scientia Agricultura Sinica, 2019, 52(19): 3404-3416.
[10] JIANG MengTing,ZHU Ning,GONG HongYong,HOU YingJun,YU XinYi,QU ShenChun. Cloning and Function Analysis of Gibberellin Insensitive DkGAI2 Gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi) [J]. Scientia Agricultura Sinica, 2019, 52(19): 3417-3429.
[11] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[12] ZHAO QingQing, LI JunPing, LIANG LiBin, HUANG ShanYu, ZHOU ChenChen, ZHAO YuHui, WANG Qian, ZHOU Yuan, JIANG Li, CHEN HuaLan, LI ChengJun. Interaction between Influenza Virus PA Protein and Host Protein PCBP1 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3389-3396.
[13] WEI ZhouLing, PENG HaoRan, PAN Qi, ZHANG YongZhi, PU YunDan, WU GenTu, QING Ling, SUN XianChao. Subcellular Localization of the Ribosome-Inactivating Protein α-MC and Its Antiviral Effect on TMV [J]. Scientia Agricultura Sinica, 2017, 50(5): 840-848.
[14] LIU Wei, LIU Hao, DONG ShuangYu, GU FengWei, CHEN ZhiQiang, WANG JiaFeng, WANG Hui. Construction of Rice Leaf Sheath Protoplast Transformation System and Transient Expression of Pik-H4 and AvrPik-H4 Proteins [J]. Scientia Agricultura Sinica, 2017, 50(23): 4575-4584.
[15] PENG HaoRan, PU YunDan, ZHANG YongZhi, XUE Yang, WU GaiXia, QING Ling, SUN XianChao. Subcellular Localization and Expression Analyses of IP-L Protein Interacting with ToMV Coat Protein [J]. Scientia Agricultura Sinica, 2017, 50(17): 3344-3351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!