Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (18): 3792-3804.doi: 10.3864/j.issn.0578-1752.2020.18.014

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Microstructure and Rheological Behavior of Mixed Konjac Glucomannan and Xanthan Induced by Thermo-Alkali Treatment

LI PeiYuan(),LI XiaoFei,LI AnQi,YU WenYan,GUO Chuo,YANG Xi,GUO YuRong()   

  1. College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119
  • Received:2019-12-11 Accepted:2020-04-03 Online:2020-09-16 Published:2020-09-25
  • Contact: YuRong GUO E-mail:peiyuanli@snnu.edu.cn;yrguo730@snnu.edu.cn

Abstract:

【Objective】This study intended to investigate the gelation mechanism and gel properties of the alkaline-induced gelation of mixed konjac glucomannan and xanthan sol systems under heating treatment, in order to provide a theoretical basis for konjac glucomannan and xanthan-related gel food design. 【Method】At a fixed total polysaccharide concentration of about 2.0%, the mixed sol systems with different konjac glucomannan to xanthan ratios were prepared by altering the mixing volume ratio of konjac glucomannan to xanthan. Then, the composite gels were prepared by heating the sol systems at 90℃ for 2 h with Na2CO3 as alkaline regulator, followed by cooling to room temperature. The effect of alkaline treatment on the rupture strength of the composite gel was investigated by determining the gel rupture strength with and without alkali addition and at room temperature (20℃). In order to investigate the properties of the composite gel, the gel rupture strength was tested, and microstructure was observed by scanning electron microscope (SEM) after deionized water immersion, 2.0% citric acid solution immersion and freeze-thaw treatment, respectively. Furthermore, rheological analysis was adopted to study the formation mechanism of the composite gel. 【Result】At room temperature, the optimum synergistic ratio of konjac glucomannan to xanthan was 5:5 for without hot alkali treated composite gels. However, the optimum synergistic ratio shift towards 7:3 after hot alkali treatment, because part of the acetyl group was removed from the molecular chain of konjac glucomannan after alkalization, forming a three-dimensional network structure between the molecules. In the subsequent cooling process, the synergistic binding sites of konjac glucomannan and xanthan were reduced. Therefore, more konjac glucomannan molecules were needed to participate in the maximum synergistic ratio. Furthermore, after immersing the gels in deionized water and 2.0% citric acid solution, a slightly decrease in gel rupture strength was observed, and 2.0% citric acid solution immersion caused a more pronounced decrease in gel rupture strength compared with deionized water immersion. Syneresis phenomenon of all composite gels was also observed after freeze-thaw treatment. The higher the ratio of konjac glucomannan to xanthan, the more significant the syneresis phenomenon was. The gelation process of the composite sol system was further revealed under the condition of 2.0% alkali concentration and at 90℃. The results showed that the gelation rate was decreased with increasing xanthan addition. G' of the gels was decreased when the temperature decreased from 90℃ to 60℃, but the G' showed a continuously upward trend as the temperature further decreased. 【Conclusion】 Konjac glucomannan and xanthan could form a thermal irreversible gel under alkaline treatment at 90℃ followed by cooling to room temperature. When the temperature of the system was lowered, xanthan began to combine with konjac glucomannan network at 60℃ and increased the elastic modulus of the whole gel. When the ratio of konjac glucomannan to xanthan was 7:3, the alkaline-treated composite gel showed the highest gel strength. After immersion in deionized water and 2.0% citric acid solution, the gel strength decreased. Compared with alkaline-induced konjac glucomannan gels, the composite gel presented higher gel strength, better freeze-thaw stability and lower syneresis ratio.

Key words: konjac glucomannan, xanthan, gel rupture strength, rheological properties

Table 1

Addition amount of each component for sample preparation"

魔芋胶﹕黄原胶
Konjac glucomannan: Xanthan
2.5%魔芋胶
2.5% Konjac glucomannan (mL)
2.5%黄原胶
2.5% Xanthan (mL)
去离子水
Deionized water (mL)
10﹕0 160 0 30
9﹕1 144 16 30
8﹕2 128 32 30
7﹕3 112 48 30
6﹕4 96 64 30
5﹕5 80 80 30
4﹕6 64 96 30
3﹕7 48 112 30
2﹕8 32 128 30
1﹕9 16 144 30
0﹕10 0 160 30

Fig. 1

Gel strength and gel appearance of different konjac glucomannan to xanthan ratios A: Gel strength of 2.0% konjac glucomannan gel at different heating time and at 90℃; B: Gel appearance of 2.0% konjac glucomannan gel with different heating time; C: Gel strength of different konjac glucomannan to xanthan ratios after hot alkali co-treatment for 2 h and alkali treatment; D: Appearance of different ratios of konjac glucomannan: xanthan gels after hot alkali co-treatment 2 h and alkali treatment, respectively. Different lowercase letters indicate significant differences (P<0.05). The same as below. "

Fig. 2

SEM images of the composite gels with different konjac glucomannan to xanthan ratios"

Fig. 3

Effects of water immersion on the rupture strength and SEM images of the composite gels with different konjac glucomannan to xanthan ratios A, B: Gel strength and micro-morphologies of different ratios of konjac glucomannan to xanthan composite gels after soaking in deionized water; C, D: Gel strength and micro-morphologies of different ratios of konjac glucomannan to xanthan composite gels after soaking in 2.0% citric acid solution"

Fig. 4

Effects of freeze-thaw treatment on the rupture strength and syneresis rates and micro-morphologies of the composite gels with different konjac glucomannan to xanthan ratios A, B: Gel strength of different ratios of konjac glucomannan to xanthan composite gels before and after freeze-thaw treatment; C: Syneresis rates of the composite gels after freeze-thaw; D: Gel morphology of the composite gels after freeze-thaw treatment"

Fig. 5

Time sweep curves of the prepared konjac glucomannan/xanthan gels with fixed total gum concentration but varying konjac glucomannan to xanthan ratios at 90℃"

Fig. 6

G' evolution process of the composite gels with different konjac glucomannan to xanthan ratios The black squares represent the monitored G', and the bolded gray lines are fitted curves"

Table 2

Parameters of the fitted equation of first order kinetics of G' of the composite gels with different konjac glucomannan to xanthan ratios"

魔芋胶﹕黄原胶
Konjac glucomannan:Xanthan
G'sat k R2
对照(2.0%魔芋胶)
Control (2.0% konjac glucomannan)
5944.73 3.58×10-4 0.9800
9﹕1 3827.16 2.51×10-4 0.9815
7﹕3 1560.97 1.27×10-4 0.9939
5﹕5 455.16 0.64×10-4 0.9829

Fig. 7

Gel evolution process (G') of the composite gels with different konjac glucomannan/xanthan ratios during cooling"

Fig. 8

Frequency sweep curves of the composite gels with different konjac glucomannan to xanthan ratios"

[1] 黄明发, 张盛林. 魔芋葡甘聚糖的增稠特性及其在食品中的应用. 中国食品添加剂, 2008(6):127-131.
HUANG M F, ZHANG S L. The thickening characteristics of konjac glucomannan and its application in food industry. China Food Additives, 2008(6):127-131. (in Chinese)
[2] 钟燕, 索化夷. 魔芋葡甘聚糖的功能及在食品领域的应用. 中国酿造, 2014,33(8):6-9.
doi: 10.11882/j.issn.0254-5071.2014.08.002
ZHONG Y, SUO H Y. Konjac glucomannan function and its application in food industry. China Brewing, 2014,33(8):6-9. (in Chinese)
doi: 10.11882/j.issn.0254-5071.2014.08.002
[3] DEVARAJ R D, REDDY A K, XU B J. Health-promoting effects of konjac glucomannan and its practical applications: A critical review. International Journal of Biological Macromolecules, 2018,126:273-281.
doi: 10.1016/j.ijbiomac.2018.12.203 pmid: 30586587
[4] YANG X, GONG T, LU Y H, Li A Q, SUN L J, GUO Y R. Compatibility of sodium alginate and konjac glucomannan and their applications in fabricating low-fat mayonnaise-like emulsion gels. Carbohydrate Polymers, 2020,229:115468.
doi: 10.1016/j.carbpol.2019.115468 pmid: 31826449
[5] 谭燕, 刘曦, 袁芳. 魔芋葡甘聚糖的结构、性质及其在食品中的应用. 中国调味品, 2019,44(2):168-174.
TAN Y, LIU X, YUAN F. Structure, properties of konjac glucomannan and its application in food industry. China Condiment, 2019,44(2):168-174. (in Chinese)
[6] YUAN Y, YAN Z M, RUO J M, WANG L, GONG J N, HONG X, MARYAM H H, PANG J. The effects of graphene oxide on the properties and drug delivery of konjac glucomannan hydrogel. Journal of Applied Polymer Science, 2017,134(38):45327-45336.
doi: 10.1002/app.45327
[7] WANG J. Konjac glucomannan as a carrier material for time-temperature integrator. Food Science and Technology International, 2010,16(2):127-134.
doi: 10.1177/1082013209353082 pmid: 21339128
[8] DING B M, XU Y C, XIONG H L, XU Z M, TIAN Z H. Preparation and characterization of xanthan-modified konjac gel. Journal of Texture Studies, 2015,46(2):87-93.
doi: 10.1111/jtxs.2015.46.issue-2
[9] 咸娜. 黄原胶复配及流变学特性和应用研究[D]. 广州: 华东理工大学, 2017.
XIAN N. The rheological characteristics and application of xanthan gum and its hydrocolloids mixtures[D]. Guangzhou: East China University of Science and Technology, 2017. (in Chinese)
[10] 曾瑞琪, 李苇舟, 赵欣, 张甫生, 郑炯. 魔芋胶-黄原胶复配体系流变学特性及其凝胶形成动力学分析. 食品科学, 2018,39(9):39-46.
ZENG R Q, LI W Z, ZHAO X, ZHANG F S, ZHENG J. Rheological properties and gelation kinetics of konjac gum-xanthan gum mixtures. Food Science, 2018, 39(9):39-46. (in Chinese)
[11] MORRIS E R. Ordered conformation of xanthan in solutions and “weak gels”: Single helix, double helix-or both. Food Hydrocolloids, 2019,86:18-25.
doi: 10.1016/j.foodhyd.2017.11.036
[12] 马正智, 彭小明, 董杰, 吴彬, 胡国华. 我国魔芋胶的应用研究进展. 中国食品添加剂, 2008(S1):101-107.
MA Z Z, PENG X M, DONG J, WU B, HU G H. Research progress on application of konjac gum in China. China Food Additives, 2008(S1):101-107. (in Chinese)
[13] 杨新亭, 王林风, 王香东. 黄原胶与魔芋胶的协效凝胶性研究. 食品科学, 2001,1(3):38-40.
YANG X T, WANG L F, WANG X D. Study on the synergistic gelation of xanthan gum and konjac gum. Food Science, 2001,1(3):38-40. (in Chinese)
[14] 刘瑞雪, 李义梦, 樊晓敏, 李迎博, 张浩然. 魔芋葡甘聚糖基水凝胶的研究进展. 轻工学报, 2018,33(3):16-29.
LIU R X, LI Y M, FAN X M, LI Y B, ZHANG H R. Research progress of konjac glucomannan-based hydrogels. Journal of Light Industry, 2018,33(3):16-29. (in Chinese)
[15] 孙远明, 吴青, 谌国莲, 黄晓钰. 魔芋葡甘聚糖的结构、食品学性质及保健功能. 食品与发酵工业, 1999,25(5):47-51.
SUN Y M, WU Q, CHEN G L, HUANG X Y. Chemical structure, properties, healthy function of konjac glucomannan. Food and Fermentation Industry, 1999,25(5):47-51. (in Chinese)
[16] 王元兰, 李忠海, 魏玉. 黄原胶与魔芋胶复配体系的流变特性及影响因素. 中南林业科技大学学报, 2010,30(11):125-128.
WANG Y L, LI Z H, WEI Y. Study of rheological properties and influence factor of solution xanthan/konjac gum mixtures. Journal of Central South University of Forestry & Technology, 2010,30(11):125-128. (in Chinese)
[17] ZHOU Y, JIANG R S, PERKINS W S, CHENG Y Q. Morphology evolution and gelation mechanism of alkali induced konjac glucomannan hydrogel. Food Chemistry, 2018,269:80-88.
doi: 10.1016/j.foodchem.2018.05.116 pmid: 30100487
[18] GAO S J, NISHINARI K. Effect of degree of acetylation on gelation of konjac glucomannan. Biomacromolecules, 2004,5(1):175-185.
doi: 10.1021/bm034302f pmid: 14715024
[19] HUANG L, TAKAHASHI R, KOBAYASHI S, KAWASE T, NISHINARI K. Gelation behavior of native and acetylated konjac glucomannan. Biomacromolecules, 2002,3(6):1296-1303.
doi: 10.1021/bm0255995 pmid: 12425668
[20] SAHA D, BHATTACHARYA S. Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology, 2010,47(6):587-597.
doi: 10.1007/s13197-010-0162-6 pmid: 23572691
[21] LI A Q, GONG T, YANG X, GUO Y R. Interpenetrating network gels with tunable physical properties: glucono-δ-lactone induced gelation of mixed Alg/gellan sol systems. International Journal of Biological Macromolecules, 2020. doi: 10.1016/j.ijbiomac.2020.02.107.
doi: 10.1016/j.ijbiomac.2020.09.091 pmid: 32961179
[22] 李晓飞, 李培源, 李安琪, 余文艳, 郭绰, 杨曦, 郭玉蓉. 黄原胶添加对碱法诱导魔芋胶凝胶特性及凝胶机制的影响. 中国农业科学, 2020,53(14):2941-2955.
LI X F, LI P Y, LI A Q, YU W Y, GUO C, YANG X, GUO Y R. Effects of xanthan addition on the gel properties and gel mechanism of alkaline-induced konjac glucomannan gels. Scientia Agricultura Sinica, 2020,53(14):2941-2955. (in Chinese)
[23] YANG X, GONG T, LI D, LI A Q, SUN L J, GUO Y R. Preparation of high viscoelastic emulsion gels based on the synergistic gelation mechanism of xanthan and konjac glucomannan. Carbohydrate Polymers, 2019,226:115278.
doi: 10.1016/j.carbpol.2019.115278 pmid: 31582087
[24] 丁保淼, 徐焱春, 熊洪录, 徐振明, 田志宏. 以黄原胶为改良剂的复配胶魔芋豆腐的制备. 食品科技, 2014,39(1):65-69.
DING B M, XU Y C, XIONG H L, XU Z M, TIAN Z H. Preparation of konjac-xanthan mixed gum bean curd using xanthan gum modifier. Food Science and Technology, 2014,39(1):65-69. (in Chinese)
[25] 黄林青, 许圆, 佘楚芬. 魔芋胶、黄原胶、卡拉胶共混凝胶特性的研究. 现代食品, 2017(15):123-124.
HUANG L Q, XU Y, SHE C F. Study on the gel properties of konjac gum, xanthan gum and carrageenan. Modern Food, 2017(15):123-124. (in Chinese)
[26] 刘敏, 代曜伊, 毕家钰, 张甫生, 郑炯. 魔芋胶对莲藕淀粉糊化和流变特性的影响. 食品与发酵工业, 2017,43(7):109-114.
LIU M, DAI Y Y, BI J Y, ZHANG F S, ZHENG J. Effect of konjac gum on pasting and rheological properties of lotus root starch. Food and Fermentation Industries, 2017,43(7):109-114. (in Chinese)
[27] KALIIA S, CHOUDHURY A R. Synthesis and rheological studies of a novel composite hydrogel of xanthan, gellan and pullulan. International Journal of Biological Macromolecules, 2019,137:475-482.
doi: 10.1016/j.ijbiomac.2019.06.212 pmid: 31260765
[28] YAN H, JING T, JIAN Z, YUAN X Q, JING L, LIANG H S, ZHAN F C, LI B. Partial removal of acetyl groups in konjac glucomannan significantly improved the rheological properties and texture of konjac glucomannan and κ-carrageenan blends. International Journal of Biological Macromolecules, 2019,123:1165-1171.
doi: 10.1016/j.ijbiomac.2018.10.190 pmid: 30385341
[29] YANG X, LI A Q, LI D, LI X F, LI P Y, SUN L J, GUO Y R. Improved physical properties of konjac glucomannan gels by co-incubating composite konjac glucomannan/xanthan systems under alkaline conditions. Food Hydrocolloids, 2020,106:105870.
doi: 10.1016/j.foodhyd.2020.105870
[30] 沈悦玉, 张明春, 王吰. 魔芋胶的结构及其流变性. 天津商学院学报, 1995(3):17-22.
SHEN Y Y, ZHANG M C, WANG H. The structure and the rheological properties of amophophallus. Journal of Tianjin University of Commerce, 1995(3):17-22. (in Chinese)
[31] JIANG Y Y, CHAGAM K R, HUANG K H, CHEN L Y Q, XU B J. Hydrocolloidal properties of flaxseed gum/konjac glucomannan compound gel. International Journal of Biological Macromolecules, 2019,133:1156-1163.
doi: 10.1016/j.ijbiomac.2019.04.187 pmid: 31047927
[32] SHEN D, WAN C, GAO S J. Molecular weight effects on gelation and rheological properties of konjac glucomannan-xanthan mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2010,48(3):313-321.
[33] YANG X, GONG T, LI D, LI A Q, SUN L J, GUO Y R. Preparation of high viscoelastic emulsion gels based on the synergistic gelation mechanism of xanthan and konjac glucomannan. Carbohydrate Polymers, 2020,226:115278.
doi: 10.1016/j.carbpol.2019.115278 pmid: 31582087
[34] ANNABLE P, WILLIAMS P A, NISHINARI K. Interaction in xanthan-glucomannan mixtures and the influence of electrolyte. Macromolecules, 1994,27:4204-4211.
doi: 10.1021/ma00093a023
[1] Di WU,JiaYu WANG,XiaoZhi TANG,QiuHui HU. Influence of Exogenous Protein Addition on Whole Wheat Dough Properties and Bread Quality Characteristics [J]. Scientia Agricultura Sinica, 2021, 54(6): 1258-1269.
[2] LI XiaoFei,LI PeiYuan,LI AnQi,YU WenYan,GUO Chuo,YANG Xi,GUO YuRong. Effects of Xanthan Addition on the Gel Properties and Gel Mechanism of Alkaline-Induced Konjac Glucomannan Gels [J]. Scientia Agricultura Sinica, 2020, 53(14): 2941-2955.
[3] LIANG Di, YANG Xi, GUO YuRong. Effects of Different Concentrations of Apple Polyphenols on the Physicochemical Properties of Chitosan Membrane Fluids [J]. Scientia Agricultura Sinica, 2018, 51(14): 2799-2813.
[4] NING JiYing, GU FengYing, GAO PingPing, CAO JingJing, LUO QiQi, WANG Feng. Freeze-Thaw Stability of Waxy Corn Starch Gel [J]. Scientia Agricultura Sinica, 2017, 50(8): 1514-1524.
[5] ZHANG QingAn, ZHANG XinYun, FENG YuLin, SHI FangFang. Compositions and Physicochemical Properties of Sweet Almond Isolate Proteins [J]. Scientia Agricultura Sinica, 2017, 50(13): 2564-2575.
[6] YANG Ling, ZHANG Cai-xia, KANG Guo-dong, TIAN Yi, CONG Pei-hua. Rheologic Properties of ‘Huahong’ Apple Pulp and Their Principal Component Analysis [J]. Scientia Agricultura Sinica, 2015, 48(12): 2417-2427.
[7] TANG Xiao-Zhi, HU Zhan-Qiang, ZHOU Jian-Min, FANG Yong, SHEN Xin-Chun, HU Qiu-Hui. Influence of Brown Rice Flour on Wheat Dough Rheological Properties and Cookie Quality Characteristics [J]. Scientia Agricultura Sinica, 2014, 47(8): 1567-1576.
[8] YU Hua-Ning-12, WANG Jia-Yue-3, HANG Feng-1, LIU Zhen-Min-1, LI Yun-Fei-2, GUO Ben-Heng-1, MEI Jun-2, XIA Yong-Jun-1, HOU Jian-Ping-1. Texture and Rheological Properties of Camembert Cheeses During Ripening [J]. Scientia Agricultura Sinica, 2013, 46(19): 4149-4156.
[9] HU Qiu-Hui, GAO Yong-Xin, YANG Wen-Jian, FANG Yong, MA Ning, YUAN Biao, ZHAO Li-Yan. Evaluation of the Effect of Lentinus edodes Powder on Dough Rheological Properties with Mixolab [J]. Scientia Agricultura Sinica, 2013, 46(10): 2159-2167.
[10] LI Yan-Jie, HA Yi-Ming, WANG Feng, LI Yong-Fu. Effect of Irradiation on the Molecular Weight and Structure and Rheological Behaviour of Xanthan Gum [J]. Scientia Agricultura Sinica, 2011, 44(21): 4454-4463.
[11] ,,. Effect of Deacetylation in Course of Konjac Glucomannan Carboxy Methylation and Structure Characterization of the Products [J]. Scientia Agricultura Sinica, 2005, 38(10): 2090-2095 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!