Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (14): 2786-2794.doi: 10.3864/j.issn.0578-1752.2020.14.003

• SPECIAL FOCUS: SORGHUM BREEDING AND CULTIVATION • Previous Articles     Next Articles

Heterosis Prediction of Sweet Sorghum Based on Combining Ability and Genetic Distance

WANG LiMing(),YAN HongDong(),JIAO ShaoJie,JIANG YanXi,SU DeFeng,SUN GuangQuan   

  1. Crop Resource Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086
  • Received:2019-07-09 Accepted:2019-09-20 Online:2020-07-16 Published:2020-08-10

Abstract:

【Objective】 The heterosis, general combining ability (GCA) and special combining ability (SCA) of main agronomical traits of sweet sorghum were analyzed. Meanwhile, the feasibility of heterosis prediction based on combining ability, phenotypic genetic distance (PGD) and molecular genetic distance (MGD) was estimated. The result will provide theoretical reference for germplasm improvement and hybrid breeding of sweet sorghum.【Method】 Sixty-four hybridized combinations were generated with 8 sterile lines as females and 8 restorer lines as males in accordance with a North Carolina Design II mating scheme. Twelve agronomical traits including days to flowering, growth duration, plant height, panicle length, stem diameter, tillers, panicle weight, 1000-grain weight, grain yield per plot, biomass per plant, biomass per plot and sugar content of hybrids and their parent lines were investigated in two years. The heterosis, GCA, SCA, PGD and MGD were analyzed, as well as the correlation between combining ability, genetic distance and heterosis. 【Result】 Mid-parent heterosis (MPH) of traits from high to low was: biomass per plant, grain yield per plot, panicle weight, biomass per plot, plant height, panicle length, 1000-grain weight, stem diameter, growth duration, days to flowering, tillers and sugar content. Among which, heterosis of growth duration, days to flowering, tillers and sugar content was negative. The sequence of MPH for all traits was almost the same as that of better parent heterosis (BPH). Combining ability analysis showed that the GCA of different parents varied greatly in each trait. Meanwhile, the SCA of different combinations was also significantly different. Most combinations with high SCA also showed high GCA in their parent lines. Heterosis of biomass per plant, grain yield per plot, panicle weight, biomass per plot, panicle length, 1000-grain weight, tillers and sugar content was positively and highly significantly correlated with GCA and SCA of their parent lines simultaneously. Heterosis of growth duration was positively and highly significantly correlated with SCA. Meanwhile, heterosis of days to flowering was positively and significantly correlated with SCA. The PGD of parent lines was 2.86-6.82, and MGD was 0.50-0.96. The correlation between heterosis and MGD was greater than that of PGD in biomass per plant, grain yield per plot, panicle weight, biomass per plot, plant height, panicle length, stem diameter and sugar content. Among which, heterosis of biomass per plot, biomass per plant, panicle length and stem diameter was positively and highly significantly correlated with MGD. 【Conclusion】 Heterosis of yield related traits was higher, and that of sugar content and tillers was lower among all traits. In the prediction of heterosis, combining ability was more effective than genetic distance, therefore, can be used to predict heterosis. MGD was more effective in heterosis prediction compared with PGD.

Key words: sweet sorghum, heterosis, combining ability, genetic distance, prediction

Table 2

Better parent heterosis analysis of main agronomical traits"

性状
Trait
单株重
BP
籽粒产量
GY
单穗粒重
PW
生物产量
BM
株高
PH
穗长
PL
千粒重
TGW
茎粗
SD
生育期
GD
至开花日数
FD
含糖量
SC
分蘖
TL
最大Maximum 158.30 281.97 257.78 108.49 63.23 53.33 50.00 44.44 6.77 10.16 49.56 333.33
最小Minimum -8.55 -36.87 -29.47 -24.11 -22.27 -7.41 -23.23 -21.67 -14.18 -19.30 -62.97 -100.00
平均Mean 61.70 50.31 48.12 36.99 13.74 13.00 7.23 -2.72 -3.89 -6.95 -25.67 -41.00

Table 1

Mid-parent heterosis analysis of main agronomical traits"

性状
Trait
单株重
BP
籽粒产量
GY
单穗粒重
PW
生物产量
BM
株高
PH
穗长
PL
千粒重
TGW
茎粗
SD
生育期
GD
至开花日数
FD
分蘖
TL
含糖量
SC
最大Maximum 190.30 302.08 276.61 141.40 633.33 53.33 57.93 44.45 6.56 14.34 766.67 54.06
最小Minimum 10.59 -23.30 -23.86 -5.38 14.41 -7.40 -11.47 -17.46 -9.88 -14.29 -100.00 -59.82
平均Mean 89.17 75.39 73.69 59.49 53.64 20.94 17.24 6.51 -0.86 -3.31 -9.45 -17.40

Table 3

General combining ability effect of parent lines in main agronomical traits"

亲本
Parent lines
至开花日数
FD
生育期
GD
株高
PH
穗长
PL
茎粗
SD
分蘖
TL
籽粒产量
GY
单穗粒重
PW
千粒重
TGW
生物产量
BM
单株重
BP
含糖量
SC
A1 0.46 -0.30 29.12 -0.16 -0.02 0.14 3.22 -0.03 0.70 4.63 30.37 0.31
A2 -1.46 -2.00 13.85 -0.14 -0.01 0.03 -1.25 3.73 0.75 -0.43 6.74 0.11
A3 5.06 4.50 20.37 1.09 -0.02 -0.01 5.93 -3.30 -2.72 7.63 46.36 1.15
A4 -2.40 -2.90 -6.65 0.52 -0.07 -0.09 -8.11 1.60 1.68 -9.12 -93.45 -0.94
A5 2.48 3.90 -12.15 1.19 -0.02 0.17 1.46 -6.61 -3.19 -0.58 11.61 -0.86
A6 1.46 3.70 -12.96 1.17 0.09 -0.09 4.21 4.46 -0.76 5.17 35.83 0.18
A7 -4.46 -4.40 -19.67 -0.89 -0.05 -0.11 -8.11 -0.27 0.82 -10.18 -81.35 0.20
A8 -1.15 -2.50 -11.92 -2.77 0.10 -0.04 2.65 0.41 2.73 2.87 43.89 -0.16
R1 0.79 0.70 18.98 0.54 0.00 -0.12 2.70 0.25 0.62 1.55 9.84 1.55
R2 -0.19 -1.10 75.33 -2.25 -0.04 -0.11 1.14 4.98 -0.84 -0.33 3.69 1.26
R3 -0.65 -1.30 4.41 0.59 -0.09 0.01 -0.16 -5.30 -0.15 -2.02 9.37 -0.34
R4 0.13 -0.60 0.29 1.71 0.04 -0.07 4.26 14.65 2.24 4.09 30.98 1.01
R5 -0.65 0.60 -49.46 -0.33 0.11 -0.02 -4.42 -1.08 0.11 -4.16 -37.20 -0.07
R6 2.94 5.20 -40.40 0.32 0.05 0.13 -0.88 -7.45 -0.17 0.95 2.38 0.27
R7 -1.04 -0.70 -34.11 -0.98 0.01 0.03 -2.03 -2.77 -0.62 -1.64 -20.21 -2.64
R8 -1.33 -2.90 24.96 0.40 -0.08 0.15 -0.57 -3.29 -1.19 1.55 1.15 -1.03

Table 4

Special combining ability effect of parent lines in main agronomical traits"

极值
Extremum
至开花日数
FD
生育期
GD
株高
PH
穗长
PL
茎粗
SD
分蘖
TL
籽粒产量
GY
单穗粒重
PW
千粒重
TGW
生物产量
BM
单株重
BP
含糖量
SC
最大值
Maximum
9.56 7.80 102.16 3.07 0.15 0.61 12.22 25.75 6.06 12.41 269.50 3.81
最小值
Minimum
-7.94 -6.90 -70.67 -4.93 -0.20 -0.31 -16.69 -32.75 -6.84 -14.53 -218.40 -4.93

Table 5

Correlation between heterosis and combining ability"

配合力
Combining ability
单株重
BP
籽粒产量
GY
单穗粒重
PW
生物产量
BM
株高
PH
穗长
PL
千粒重
TGW
茎粗
SD
生育期
GD
至开花日数
FD
分蘖
TL
含糖量
SC
一般配合力 GCA 55.79** 71.73** 49.99** 48.36** 3.10 34.19** 32.65** 4.23 8.78 2.66 42.71** 70.02**
特殊配合力 SCA 61.83** 39.66** 49.94** 59.16** 6.82 44.46** 46.26** 8.78 52.44** 30.56* 54.57** 76.43**

Table 6

Phenotypic genetic distance (PGD) between parent lines"

亲本Parent lines A1 A2 A3 A4 A5 A6 A7 A8
R1 4.49 3.44 4.86 3.46 5.97 5.35 5.90 5.04
R2 5.03 3.41 2.86 4.14 5.71 5.15 4.64 5.68
R3 4.61 3.30 4.37 3.78 4.89 4.76 4.39 4.40
R4 5.20 4.13 3.91 4.09 6.10 5.50 6.32 6.49
R5 3.97 3.51 2.95 3.86 6.44 5.57 5.84 5.25
R6 4.74 5.05 4.48 5.58 5.92 5.91 6.82 6.45
R7 5.10 4.11 4.16 4.03 3.75 3.83 3.96 3.48
R8 3.95 4.46 4.98 4.46 5.08 4.67 4.44 4.29

Table 7

Molecular genetic distance (MGD) between parent lines"

亲本Parent lines A1 A2 A3 A4 A5 A6 A7 A8
R1 0.70 0.75 0.78 0.76 0.70 0.71 0.79 0.73
R2 0.69 0.73 0.80 0.75 0.63 0.70 0.81 0.75
R3 0.67 0.68 0.71 0.73 0.65 0.68 0.64 0.70
R4 0.65 0.70 0.74 0.72 0.63 0.70 0.70 0.72
R5 0.84 0.92 0.95 0.89 0.50 0.90 0.90 0.93
R6 0.88 0.93 0.96 0.95 0.60 0.91 0.94 0.94
R7 0.53 0.59 0.63 0.56 0.56 0.59 0.67 0.58
R8 0.72 0.72 0.76 0.78 0.67 0.73 0.76 0.71

Table 8

Correlation between heterosis and genetic distance"

遗传距离
Genetic distance
单株重
BP
籽粒产量
GY
单穗粒重
PW
生物产量
BM
株高
PH
穗长
PL
千粒重
TGW
茎粗
SD
生育期
GD
至开花日数
FD
分蘖
TL
含糖量
SC
表型遗传距离
PGD
3.84 16.28 15.77 5.52 -16.07 9.35 15.09 20.18 -15.82 -23.93 -20.02 6.54
分子遗传距离
MGD
39.31** 21.23 21.44 42.93** -21.96 37.89** 5.27 46.45** -5.79 -0.59 -1.14 17.67
[1] BERENJI J, DAHLBERG J. Perspectives of sorghum in Europe. Journal of Agronomy and Crop Science, 2004,190:332-338.
doi: 10.1111/jac.2004.190.issue-5
[2] APPIAH-NKANSAH N B, LI J, ROONEY W, WANG D. A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renewable Energy, 2019,143:1121-1132.
doi: 10.1016/j.renene.2019.05.066
[3] 邹剑秋, 王艳秋. 我国甜高粱育种方向及高效育种技术. 杂粮作物, 2007,27(6):403-404.
ZOU J Q, WANG Y Q. Sweet sorghum breeding objective and efficient breeding technology in China. Rain Fed Crops, 2007,27(6):403-404. (in Chinese)
[4] MISHRA J S, KUMAR R, RAO S S. Performance of sweet sorghum (Sorghum bicolor ) cultivars as a source of green fodder under varying levels of nitrogen in semi-arid tropical India. Sugar Technology, 2017,19(5):532-538.
[5] TAKAKI M, TAN L, MURAKAMI T, TANG Y Q, SUN Z Y, MORIMURA S, KIDA K. Production of biofuels from sweet sorghum juice via ethanol-methane two-stage fermentation. Industrial Crops and Products, 2015,63:329-336.
[6] LIU H H, REN L T, SPIERTZ H, ZHU Y B, XIE G H. An economic analysis of sweet sorghum cultivation for ethanol production in North China. Global Change Biology Bioenergy, 2015,7:1176-1184.
[7] TAZOE Y, SAZUKA T, YAMAGUCHI M, SAITO C, IKEUCHI M, KANNO K, KOJIMA S, HIRANO K, KITANO H, KASUGA S, ENDO T, FUKUDA H, MAKINO A. Growth properties and biomass production in the hybrid C4 crop Sorghum bicolor. Plant Cell Physiology, 2016,57(5):944-952.
pmid: 26508521
[8] PFEIFFER T W, BITZER M J, TOY J J, PEDERSEN J F. Heterosis in sweet sorghum and selection of a new sweet sorghum hybrid for use in syrup production in Appalachia. Crop Science, 2010,50:1788-1794.
[9] MINDAYE T T, MACE E S, GODWIN I D, JORDAN D R. Heterosis in locally adapted sorghum genotypes and potential of hybrids for increased productivity in contrasting environments in Ethiopia. The Crop Journal, 2016,4:479-489.
doi: 10.1016/j.cj.2016.06.020
[10] 张福耀, 平俊爱, 赵威军. 中国酿造高粱品质遗传改良研究进展. 农学学报, 2019,9(3):21-25.
ZHANG F Y, PING J A, ZHAO W J. Genetic quality improvement of brewing sorghum in China: Research progress. Journal of Agriculture, 2019,9(3):21-25. (in Chinese)
[11] GALICIA-JUAREZ M, MENDOZA-ONOFRE L E, GONZALEZ-HERNANDEZ V A, CISNEROS-LOPEZ M E, BENITEZ- RIQUELME I, CORDOVA-TELLEZ L. Heterosis and combining ability of seed physiological quality traits of single cross vs. three-way sorghum hybrids. Acta Scientiarum, 2017,39(2):175-181.
[12] PACKER D J, ROONEY W L. High-parent heterosis for biomass yield in photoperiod-sensitive sorghum hybrids. Field Crops Research, 2014,167:153-158.
doi: 10.1016/j.fcr.2014.07.015
[13] BIRCHLER J A, YAO H, CHUDALAYANDI S, VAIMAN D, VEITIA R A. Heterosis. The Plant Cell, 2010,22:2105-2112.
pmid: 20622146
[14] REDDY B V S, RAMESH S, REDDY P S, RAMAIAH B. Combining ability and heterosis as influenced by male-sterility inducing cytoplasms in sorghum [Sorghum bicolor(L.) Moench]. Euphytica, 2007,154:153-164.
doi: 10.1007/s10681-006-9281-6
[15] WEGARY D, VIVEK B, LABUSCHAGNE M. Association of parental genetic distance with heterosis and specific combining ability in quality protein maize. Euphytica, 2013,191:205-216.
doi: 10.1007/s10681-012-0757-2
[16] 曲玉杰, 孙君灵, 耿晓丽, 王骁, SARFRAZ Z, 贾银华, 潘兆娥, 何守朴, 龚文芳, 王立如, 庞保印, 杜雄明. 陆地棉亲本间遗传距离与杂种优势的相关性研究. 中国农业科学, 2019,52(9):1488-1500.
doi: 10.3864/j.issn.0578-1752.2019.09.002
QU Y J, SUN J L, GENG X L, WANG X, SARFRAZ Z, JIA Y H, PAN Z E, HE S P, GONG W F, WANG L R, PANG B Y, DU X M. Correlation between genetic distance of parents and heterosis in upland cotton. Scientia Agricultura Sinica, 2019,52(9):1488-1500. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.09.002
[17] 韩东倩, 韩立朴, 薛帅, 尤明山, 谢光辉. 基于能源利用的高粱配合力和杂种优势分析. 中国农业大学学报, 2012,17(1):26-32.
HAN D Q, HAN L P, XUE S, YOU M S, XIE G H. Combining ability and heterosis of sorghum for biomass energy. Journal of China Agricultural University, 2012,17(1):26-32. (in Chinese)
[18] BUNPHAN D, JAISIL P, SANITCHON J, KNOLL J E, ANDERSON W F. Heterosis and combining ability of F1 hybrid sweet sorghum in Thailand. Crop Science, 2015,55:178-187.
doi: 10.2135/cropsci2014.05.0363
[19] UMAKANTH A V, PATIL J V, RANI C, GADAKH S R, KUMAR S S, RAO S S, KOTASTHANE T V. Combining ability and heterosis over environments for stalk and sugar related traits in sweet sorghum (Sorghum bicolor(L.) Moench). Sugar Technology, 2012,14(3):237-246.
doi: 10.1007/s12355-012-0166-9
[20] MAKANDA I, TONGOONA P, DERERA J, SIBIYA J, FATO P. Combining ability and cultivar superiority of sorghum germplasm for grain yield across tropical low- and mid-altitude environments. Field Crops Research, 2010,116:75-85.
doi: 10.1016/j.fcr.2009.11.015
[21] MAKANDA I, TONGOONA P, DERERA J. Combining ability and heterosis of sorghum germplasm for stem sugar traits under off-season conditions in tropical lowland environments. Field Crops Research, 2009,114:272-279.
doi: 10.1016/j.fcr.2009.08.009
[22] 侯荷亭, 杜志宏, 赵根弟. 高粱亲本遗传距离与杂种优势和特殊配合力的关系. 遗传, 1995,17(1):30-33.
HOU H T, DU Z H, ZHAO G D. Studies on the relationships of genetic distance of sorghum parental lines with heterosis and specific combining ability. Hereditas, 1995,17(1):30-33. (in Chinese)
[23] AMELEWORK B, SHIMELIS H, LAING M. Genetic variation in sorghum as revealed by phenotypic and SSR markers: Implications for combining ability and heterosis for grain yield. Plant Genetic Resources, 2016,3:1-13.
doi: 10.1079/PGR200566
[24] 王瑞, 王金胜, 张福耀, 程庆军, 田承华, 凌亮. 1970s—2000s中国高粱杂交种亲本遗传距离演变的 SSR 分析. 中国农业科学, 2015,48(3):415-425.
doi: 10.3864/j.issn.0578-1752.2015.03.02
WANG R, WANG J S, ZHANG F Y, CHENG Q J, TIAN C H, LING L. Evolution of genetic distance between parental lines of Chinese sorghum hybrids from1970s-2000s based on SSR analysis. Scientia Agricultura Sinica, 2015,48(3):415-425. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.03.02
[25] 陆平. 高粱种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006:51-58.
LU P. Descriptors and Data Standard for Sorghum [Sorghum bicolor(L.) Moench]. Beijing: China Agricultural Press, 2006:51-58. (in Chinese)
[26] WANG L M, JIAO S J, JIANG Y X, YAN H D, SU D F, SUN G Q, YAN X F, SUN L F. Genetic diversity analysis in parent lines of sweet sorghum based on agronomical traits and SSR markers. Field Crops Research, 2013,149:11-19.
doi: 10.1016/j.fcr.2013.04.013
[27] 孔繁玲. 植物数量遗传学. 北京: 中国农业大学出版社, 2006:403-412.
KONG F L. Quantitative Genetics in Plants. Beijing: China Agricultural University Press, 2006:403-412. (in Chinese)
[28] NEI M, LI W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the USA, 1979,76(10):5269-5273.
pmid: 291943
[29] 邹剑秋, 王艳秋, 张志鹏, 朱凯. A3型细胞质能源用甜高粱生物产量、茎秆含糖锤度和出汁率研究. 中国农业大学学报, 2011,16(2):8-13.
ZOU J Q, WANG Y Q, ZHANG Z P, ZHU K. Research on biomass, brix and juice extraction of A3-type cytoplasmic sweet sorghum for energy use. Journal of China Agricultural University, 2011,16(2):8-13. (in Chinese)
[30] 高士杰, 刘晓辉, 李玉发, 李继洪. 中国甜高粱资源与利用. 杂粮作物, 2006,26(4):273-274.
GAO S J, LIU X H, LI Y F, LI J H. Sweet sorghum resources and its utilization in China. Rain Fed Crops, 2006,26(4):273-274. (in Chinese)
[31] ZHANG C X, XIE G D, LI S M, GE L Q, HE T T. The productive potentials of sweet sorghum ethanol in China. Applied Energy, 2010,87:2360-2368.
doi: 10.1016/j.apenergy.2009.12.017
[32] SHUKLA S, FELDERHOFF T J, SABALLOS A, VERMERRIS W. The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor(L.) Moench). Field Crops Research, 2017,203:181-191.
[33] KNOLL J E, ANDERSON W F, HARRIS-SHULTZ K R, NI X Z. The environment strongly affects estimates of heterosis in hybrid sweet sorghum. Sugar Technology, 2018,20(3):261-274.
doi: 10.1007/s12355-018-0596-0
[34] JAIKISHAN I, RAJENDRAKUMAR P, HARIPRASANNA K, BHAT B V. Gene expression analysis in sorghum hybrids and their parental lines at critical developmental stages in relation to grain yield heterosis by exploiting heterosis-related genes from major cereals. Plant Molecular Biology Reporter, 2018,36:418-428.
doi: 10.1007/s11105-018-1079-x
[35] NDHLELA T, HERSELMAN L, SEMAGN K, MAGOROKOSHO C, MUTIMAAMBA C, LABUSCHAGNE M T. Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions. Euphytica, 2015,204:635-647.
[36] PAVANI M, SUNDARAM R M, RAMESHA M S, KISHORE P B K, KEMPARAJU K B. Prediction of heterosis in rice based on divergence of morphological and molecular markers. Journal of Genetics, 2018,97(5):1263-1279.
pmid: 30555075
[37] 王林友, 张礼霞, 勾晓霞, 范宏环, 金庆生, 王建军. 利用InDel标记鉴定浙优系列杂交稻籼粳属性和预测杂种优势. 中国农业科学, 2014,47(7):1243-1255.
WANG L Y, ZHANG L X, GOU X X, FAN H H, JIN Q S, WANG J J. Identification of Indica-Japonica attribute and prediction of heterosis of Zheyou hybrids rice using InDel molecular markers. Scientia Agricultura Sinica, 2014,47(7):1243-1255. (in Chinese)
[38] JORDAN D R, TAO Y, GODWIN I D, HENZELL R G, COOPER M, MCINTYRE C L. Prediction of hybrid performance in grain sorghum using RFLP markers. Theoretical and Applied Genetics, 2003,106:559-567.
doi: 10.1007/s00122-002-1144-5 pmid: 12589557
[39] MELCHINGER A E, LEE M, LAMKEY K R, WOODMAN W L. Genetic diversity for restriction fragment length polymorphisms: Relation to estimated genetic effects in maize inbreds. Crop Science, 1990,30:1033-1040.
doi: 10.2135/cropsci1990.0011183X003000050016x
[40] CHARCOSSET A, LEFORT-BUSEN M, GALLAIS A. Relationship between heterosis and heterozygosity at marker loci: A theoretical computation. Theoretical and Applied Genetics, 1991,81:571-575.
doi: 10.1007/BF00226720 pmid: 24221369
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[3] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[4] SU YuanYuan,ZHANG DeQuan,GU MingHui,ZHANG ChunJuan,LI ShaoBo,ZHENG XiaoChun,CHEN Li. Characterization of Chilled Mutton by ATP from Different Sources [J]. Scientia Agricultura Sinica, 2022, 55(19): 3841-3853.
[5] LI HongYan,XUE Jun,WANG YongHong,WANG KeRu,ZHAO RuLang,MING Bo,ZHANG ZhenTao,ZHANG WenJie,LI ShaoKun. Study on Optimal Time and Construct a Prediction Model of Mechanical Grain Harvest of Maize in Ningxia [J]. Scientia Agricultura Sinica, 2022, 55(12): 2324-2337.
[6] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[7] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
[8] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[9] TAO Bu, QI YongZhi, QU Yun, CAO ZhiYan, ZHAO XuSheng, ZHEN WenChao. Construction and Verification of Fusarium Head Blight Prediction Model in Haihe Plain Based on Boosted Regression Tree [J]. Scientia Agricultura Sinica, 2021, 54(18): 3860-3870.
[10] TianYu ZHOU,JiangLing LI,Lan YANG,RenWu RUAN,YuHeng YANG,ZhongAn LI. The Resistance Prediction of Wheat Hybrids Based on the Sensibility of Their Parents to Stripe Rust [J]. Scientia Agricultura Sinica, 2020, 53(9): 1806-1819.
[11] LIU YanXia,WANG ZhenYu,ZHENG XiaoChun,ZHU YaoDi,CHEN Li,ZHANG DeQuan. Prediction of Center Temperature of Beijing Roast Duck Based on Quality Index [J]. Scientia Agricultura Sinica, 2020, 53(8): 1655-1663.
[12] ZHAO JiuRan, LI ChunHui, SONG Wei, LIU XinXiang, WANG YuanDong, ZHANG RuYang, WANG JiDong, SUN Xuan, WANG XiaQing. Heterosis and Genetic Recombination Dissection of Maize Key Inbred Line Jing2416 [J]. Scientia Agricultura Sinica, 2020, 53(22): 4527-4536.
[13] ZHANG HuanHuan,CUI GuiMei,WANG ChangBiao,WANG XiaoQing,HAO YaoShan,DU JianZhong,WANG YiXue,SUN Yi. Breeding and Characteristics of a New Male Sterile Line of Maize, Jinyu1A [J]. Scientia Agricultura Sinica, 2020, 53(21): 4322-4332.
[14] LI YongXiang,LI ChunHui,YANG JunPin,YANG Hua,CHENG WeiDong,WANG LiMing,LI FengYan,LI HuiYong,WANG YanBo,LI ShuHua,HU GuangHui,LIU Cheng,LI Yu,WANG TianYu. Genetic Dissection of Heterosis for Huangzaosi, a Foundation Parental Inbred Line of Maize in China [J]. Scientia Agricultura Sinica, 2020, 53(20): 4113-4126.
[15] XIANG FangLin,LI XinGe,MA JiFeng,LIU XiaoJun,TIAN YongChao,ZHU Yan,CAO WeiXing,CAO Qiang. Using Canopy Time-Series Vegetation Index to Predict Yield of Winter Wheat [J]. Scientia Agricultura Sinica, 2020, 53(18): 3679-3692.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!